1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117
PDF

Abstract

[

Reconstruction of thesedimentary processes active on the basin before, during, and after thevertical movement of the long‐wavelength uplift (Central Area) and the short‐wavelengthuplift (diapirs D1 to D4). This model is based on the interpretation ofgeomorphological proxies.

, Abstract

The seafloor morphology reflects both past and on‐going sedimentary, oceanographic and tectonic processes. Vertical movement is one of the drivers responsible for reshaping the seafloor through forming steep flanks that decrease slope stability, favour landslides, change current paths, form minibasins and control the sediment deposition, distribution and geometry. Here, we make use of these interactions to derive vertical movements and constrain the active tectonic processes at the western termination of the upper Calabrian accretionary wedge from the integrated analysis of bathymetric, backscatter, surface attributes and high‐resolution reflection seismic data. Within this area, we identify two types of deformational features and mechanisms that affect the depositional, erosional and tectonic processes at different scales. These include the deviation of channels, landslide scars, mass transport deposits (MTDs), separated drifts, sediment waves, lineaments and offset seafloor structures. The first type (long‐wavelength uplift) is an uplifted 22‐km‐wide region, in which seismic onlap relationships and the dip of deep reflectors suggest long‐lasting but slow tectonic uplift affecting sedimentation, and the second type (short‐wavelength uplift) includes three narrow elongated structures and one circular dome encircling the first region of uplift. We interpret that the first type of uplift feature was caused by tectonic deformation, while the second type is interpreted as formed by the fast uplift, tilting and faulting of modern sediments caused by diapirism due to rapid sedimentation in response to the first tectonically driven uplift. The study provides insight into the complex interaction of tectonic and sedimentary processes in the upper Calabrian accretionary wedge.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12819
2024-01-11
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/1/bre12819.html?itemId=/content/journals/10.1111/bre.12819&mimeType=html&fmt=ahah

References

  1. Argnani, A., & Bonazzi, C. (2005). Malta Escarpment fault zone offshore eastern Sicily: Pliocene‐Quaternary tectonic evolution based on new multichannel seismic data. Tectonics, 24, TC4009. https://doi.org/10.1029/2004TC001656
    [Google Scholar]
  2. Argnani, A., Mazzarini, F., Bonazzi, C., Bisson, M., & Isola, I. (2013). The deformation offshore of Mount Etna as imaged by multichannel seismic reflection profiles. Journal of Volcanology and Geothermal Research, 251, 50–64. https://doi.org/10.1016/j.jvolgeores.2012.04.016
    [Google Scholar]
  3. Barreca, G., Scarfì, L., Gross, F., Monaco, C., & de Guidi, G. (2019). Fault pattern and seismotectonic potential at the south‐western edge of the Ionian Subduction system (southern Italy): New field and geophysical constraints. Tectonophysics, 761, 31–45. https://doi.org/10.1016/j.tecto.2019.04.020
    [Google Scholar]
  4. Billi, A., Funiciello, R., Minelli, L., Faccenna, C., Neri, G., Orecchio, B., & Presti, D. (2008). On the cause of the 1908 Messina tsunami, southern Italy. Geophysical Research Letters, 35, L06301. https://doi.org/10.1029/2008GL033251
    [Google Scholar]
  5. Blumsack, S. L. (1993). A model for the growth of mudwaves in the presence of time‐varying currents. Deep Sea Research Part II: Topical Studies in Oceanography, 40, 963–974. https://doi.org/10.1016/0967‐0645(93)90043‐M
    [Google Scholar]
  6. Branca, S., Coltelli, M., & Groppelli, G. (2011). Geological evolution of a complex basaltic stratovolcano: Mount Etna, Italy. Italian Journal of Geosciences, 130, 306–317. https://doi.org/10.3301/IJG.2011.13
    [Google Scholar]
  7. Brown, C., Beaudoin, J., Brissette, M., & Gazzola, V. (2019). Multispectral multibeam echo sounder backscatter as a tool for improved seafloor characterization. Geosciences (Basel), 9, 126. https://doi.org/10.3390/geosciences9030126
    [Google Scholar]
  8. Camerlenghi, A., del Ben, A., Hübscher, C., Forlin, E., Geletti, R., Brancatelli, G., Micallef, A., Saule, M., & Facchin, L. (2020). Seismic markers of the Messinian salinity crisis in the deep Ionian Basin. Basin Research, 32, 716–738. https://doi.org/10.1111/bre.12392
    [Google Scholar]
  9. Chapman, R. E. (1983). Chapter 1— Concepts of sedimentary basins. In Developments in petroleum science (pp. 1–22). Elsevier. https://doi.org/10.1016/S0376‐7361(08)70085‐2
    [Google Scholar]
  10. Chiocci, F. L., Coltelli, M., Bosman, A., & Cavallaro, D. (2011). Continental margin large‐scale instability controlling the flank sliding of Etna volcano. Earth and Planetary Science Letters, 305, 57–64. https://doi.org/10.1016/j.epsl.2011.02.040
    [Google Scholar]
  11. Covault, J. A., Sylvester, Z., Hudec, M. R., Ceyhan, C., & Dunlap, D. (2020). Submarine channels ‘swept’ downstream after bend cutoff in salt basins. The Depositional Record, 6, 259–272. https://doi.org/10.1002/dep2.75
    [Google Scholar]
  12. Dellong, D., Klingelhoefer, F., Kopp, H., Graindorge, D., Margheriti, L., Moretti, M., Murphy, S., & Gutscher, M.‐A. (2018). Crustal structure of the Ionian Basin and eastern Sicily margin: Results from a wide‐angle seismic survey. Journal of Geophysical Research: Solid Earth, 123(3), 2090–2114. https://doi.org/10.1002/2017JB015312
    [Google Scholar]
  13. Dillon, C. (2016). Modelling submerged coastal environments: Remote sensing technologies, techniques, and comparative analysis (Master). Trent University.
    [Google Scholar]
  14. Doughty‐Jones, G., Lonergan, L., Mayall, M., & Dee, S. J. (2019). The role of structural growth in controlling the facies and distribution of mass transport deposits in a deep‐water salt minibasin. Marine and Petroleum Geology, 104, 106–124. https://doi.org/10.1016/j.marpetgeo.2019.03.015
    [Google Scholar]
  15. Faccenna, C., Becker, T. W., Auer, L., Billi, A., Boschi, L., Brun, J. P., Capitanio, F. A., Funiciello, F., Horvàth, F., Jolivet, L., Piromallo, C., Royden, L., Rossetti, F., & Serpelloni, E. (2014). Mantle dynamics in the Mediterranean. Reviews of Geophysics, 52, 283–332. https://doi.org/10.1002/2013RG000444
    [Google Scholar]
  16. Flood, R. D. (1988). A lee wave model for deep‐sea mudwave activity. Deep Sea Research Part A. Oceanographic Research Papers, 35, 973–983. https://doi.org/10.1016/0198‐0149(88)90071‐4
    [Google Scholar]
  17. Gallais, F., Graindorge, D., Gutscher, M. A., & Klaeschen, D. (2013). Propagation of a lithospheric tear fault (STEP) through the western boundary of the Calabrian accretionary wedge offshore eastern Sicily (Southern Italy). Tectonophysics, 602, 141–152. https://doi.org/10.1016/j.tecto.2012.12.026
    [Google Scholar]
  18. Gambino, S. (2022). Deformation pattern and modelling of active faults along the northern sector of the Malta Escarpment (western Ionian basin) (PhD). University of Catania. https://doi.org/10.13140/RG.2.2.17355.67363
    [Google Scholar]
  19. Gambino, S., Barreca, G., Gross, F., Monaco, C., Gutscher, M., & Alsop, G. I. (2022). Assessing the rate of crustal extension by 2D sequential restoration analysis: A case study from the active portion of the Malta Escarpment. Basin Research, 34(1), 321–341. https://doi.org/10.1111/bre.12621
    [Google Scholar]
  20. Gambino, S., Barreca, G., Gross, F., Monaco, C., Krastel, S., & Gutscher, M. A. (2021). Deformation pattern of the northern sector of the Malta escarpment (Offshore SE Sicily, Italy): Fault dimension, slip prediction, and seismotectonic implications. Front Earth Sci (Lausanne), 8, 1–20. https://doi.org/10.3389/feart.2020.594176
    [Google Scholar]
  21. Gross, F., Krastel, S., Geersen, J., Behrmann, J. H., Ridente, D., Chiocci, F. L., Bialas, J., Papenberg, C., Cukur, D., Urlaub, M., & Micallef, A. (2016). The limits of seaward spreading and slope instability at the continental margin offshore Mt Etna, imaged by high‐resolution 2D seismic data. Tectonophysics, 667, 63–76. https://doi.org/10.1016/j.tecto.2015.11.011
    [Google Scholar]
  22. Gutscher, M.‐A., Dellong, D., Dominguez, S., Malavieille, J., Graindorge, D., & Klingelhoefer, F. (2019). Strike‐slip faulting in the Calabrian accretionary wedge: Using analog modeling to test the kinematic boundary conditions of geodynamic models. In Transform plate boundaries and fracture zones (pp. 321–337). Elsevier. https://doi.org/10.1016/B978‐0‐12‐812064‐4.00013‐X
    [Google Scholar]
  23. Gutscher, M.‐A., Dominguez, S., de Lepinay, B. M., Pinheiro, L., Gallais, F., Babonneau, N., Cattaneo, A., le Faou, Y., Barreca, G., Micallef, A., & Rovere, M. (2015). Tectonic expression of an active slab tear from high‐resolution seismic and bathymetric data offshore Sicily (Ionian Sea). Tectonics, 35, 39–54. https://doi.org/10.1002/2015TC003898
    [Google Scholar]
  24. Gutscher, M.‐A., Kopp, H., Krastel, S., Bohrmann, G., Garlan, T., Zaragosi, S., Klaucke, I., Wintersteller, P., Loubrieu, B., le Faou, Y., San Pedro, L., Dominguez, S., Rovere, M., Mercier de Lepinay, B., Ranero, C., & Sallares, V. (2017). Active tectonics of the Calabrian subduction revealed by new multi‐beam bathymetric data and high‐resolution seismic profiles in the Ionian Sea (Central Mediterranean). Earth and Planetary Science Letters, 461, 61–72. https://doi.org/10.1016/j.epsl.2016.12.020
    [Google Scholar]
  25. Hernández‐Molina, F. J., de Castro, S., de Weger, W., Duarte, D., Fonnesu, M., Glazkova, T., Kirby, A., Llave, E., Ng, Z. L., Mantilla Muñoz, O., Rodrigues, S., Rodríguez‐Tovar, F. J., Thieblemont, A., Viana, A. R., & Yin, S. (2022). Contourites and mixed depositional systems: A paradigm for Deepwater sedimentary environments. In Deepwater sedimentary systems (pp. 301–360). Elsevier. https://doi.org/10.1016/B978‐0‐323‐91918‐0.00004‐9
    [Google Scholar]
  26. Hsu, K. J., Montadert, L., Garrison, R. E., Fabricius, F. H., Mueller, C., Cita, M. B., Bizon, G., Wright, R. C., Erickson, A. J., Bernoulli, D., Meliere, F., Kidd, R. B., & Worstell, P. J. (1978). Site 374: Messina Abyssal Plain. In Initial Reports of the Deep Sea Drilling Project, 42 Pt. 1 (pp. 175–217). U.S. Government Printing Office. https://doi.org/10.2973/dsdp.proc.42‐1.105.1978
    [Google Scholar]
  27. Hudec, M. R., Jackson, M. P. A., & Schultz‐Ela, D. D. (2006). The paradox of minibasin subsidence into salt: Clues to the evolution of crustal basins. Geological Society of America Bulletin, 1, 1. https://doi.org/10.1130/B26275.1
    [Google Scholar]
  28. Jackson, M. P. A., & Hudec, M. R. (2017). Salt tectonics. Cambridge University Press. https://doi.org/10.1017/9781139003988
    [Google Scholar]
  29. Jackson, M. P. A., & Talbot, C. J. (1986). External shapes, strain rates, and dynamics of salt structures. Geological Society of America Bulletin, 97, 305. https://doi.org/10.1130/0016‐7606(1986)97<305:ESSRAD>2.0.CO;2
    [Google Scholar]
  30. Jones, I. F., & Davison, I. (2014). Seismic imaging in and around salt bodies. Interpretation, 2, SL1–SL20. https://doi.org/10.1190/INT‐2014‐0033.1
    [Google Scholar]
  31. Kokalj, Ž., & Hesse, R. (2017). Airborne laser scanning raster data visualization, Prostor, kraj, čas. ZRC SAZU, Založba ZRC. https://doi.org/10.3986/9789612549848
    [Google Scholar]
  32. Krastel, S. (2016). RV POSEIDON‐CRUISE POS496, Malaga – Catania, 24.03.2016–04.04.2016, Short Cruise Report: MAGOMET—Offshore flank movement of Mount Etna and associated landslide hazard in the Ionian Sea (Mediterranean Sea). Kiel. https://doi.org/10.3289/SCR_POS_496
  33. Krastel, S., Adami, C., Beier, J., Bialas, J., Bigella, S., Chiocci, F., Crutchley, G., Cukur, D., Frey, B., Fu, L., Gross, F., Gurcay, S., Hempelt, J., Koch, S., Lüttschwager, G., Maisto, F., Masi, L., Matthiesen, T., Micallef, A., … Winkelmann, D. (2012). Seismogenic faults, landslides, and associated tsunamis off southern Italy. Cruise No. M86/2. November 21, 2011 – January 17, 2012 – Cartagena (Spain) – Brindisi (Italy). https://doi.org/10.2312/cr_m86_2
  34. Lurton, X., & Lamarche, G. (2015). Backscatter measurements by seafloor‐mapping sonars Guidelines and Recommendations.
  35. Maesano, F. E., Tiberti, M. M., & Basili, R. (2020). Deformation and fault propagation at the lateral termination of a subduction zone: The Alfeo fault system in the Calabrian Arc, Southern Italy. Frontiers in Earth Science, 8, 107. https://doi.org/10.3389/feart.2020.00107
    [Google Scholar]
  36. Marani, M., Argnani, A., Roveri, M., & Trincardi, F. (1993). Sediment drifts and erosional surfaces in the central Mediterranean: Seismic evidence of bottom‐current activity. Sedimentary Geology, 82, 207–220. https://doi.org/10.1016/0037‐0738(93)90122‐L
    [Google Scholar]
  37. Micallef, A., Camerlenghi, A., Garcia‐Castellanos, D., Cunarro Otero, D., Gutscher, M.‐A., Barreca, G., Spatola, D., Facchin, L., Geletti, R., Krastel, S., Gross, F., & Urlaub, M. (2018). Evidence of the Zanclean megaflood in the eastern Mediterranean Basin. Scientific Reports, 8, 1078. https://doi.org/10.1038/s41598‐018‐19446‐3
    [Google Scholar]
  38. Micallef, A., Krastel, S., & Savini, A. (2018). Submarine geomorphology, Springer Geology. Springer International Publishing. https://doi.org/10.1007/978‐3‐319‐57852‐1
    [Google Scholar]
  39. Micallef, A., Krastel, S., & Savini, A. (2022). Submarine geomorphology. Geological Society, London, Memoirs, 58, 379–394. https://doi.org/10.1144/M58‐2021‐2
    [Google Scholar]
  40. Millot, C., & Taupier‐Letage, I. (2005). Circulation in the Mediterranean Sea. In Life in the Mediterranean Sea: A look at habitat changes (pp. 29–66). Nova Science Publishers, Inc. https://doi.org/10.1007/b107143
    [Google Scholar]
  41. Pepe, F., di Donato, V., Insinga, D., Molisso, F., Faraci, C., Sacchi, M., Dera, R., Ferranti, L., & Passaro, S. (2018). Seismic stratigraphy of upper quaternary shallow‐water contourite drifts in the Gulf of Taranto (Ionian Sea, southern Italy). Marine Geology, 397, 79–92. https://doi.org/10.1016/j.margeo.2017.12.004
    [Google Scholar]
  42. Polonia, A., Torelli, L., Artoni, A., Carlini, M., Faccenna, C., Ferranti, L., Gasperini, L., Govers, R., Klaeschen, D., Monaco, C., Neri, G., Nijholt, N., Orecchio, B., & Wortel, R. (2016). The Ionian and Alfeo–Etna fault zones: New segments of an evolving plate boundary in the central Mediterranean Sea?Tectonophysics, 675, 69–90. https://doi.org/10.1016/j.tecto.2016.03.016
    [Google Scholar]
  43. Polonia, A., Torelli, L., Gasperini, L., Cocchi, L., Muccini, F., Bonatti, E., Hensen, C., Schmidt, M., Romano, S., Artoni, A., & Carlini, M. (2017). Lower plate serpentinite diapirism in the Calabrian Arc subduction complex. Nature Communications, 8, 2172. https://doi.org/10.1038/s41467‐017‐02273‐x
    [Google Scholar]
  44. Polonia, A., Torelli, L., Mussoni, P., Gasperini, L., Artoni, A., & Klaeschen, D. (2011). The Calabrian Arc subduction complex in the Ionian Sea: Regional architecture, active deformation, and seismic hazard. Tectonics, 30, TC5018. https://doi.org/10.1029/2010TC002821
    [Google Scholar]
  45. Posamentier, H. W., Paumard, V., & Lang, S. C. (2022). Principles of seismic stratigraphy and seismic geomorphology I: Extracting geologic insights from seismic data. Earth‐Science Reviews. Elsevier B.V., 228, 103963. https://doi.org/10.1016/j.earscirev.2022.103963
    [Google Scholar]
  46. Rebesco, M., Camerlenghi, A., Munari, V., Mosetti, R., Ford, J., Micallef, A., & Facchin, L. (2021). Bottom current‐controlled Quaternary sedimentation at the foot of the Malta Escarpment (Ionian Basin, Mediterranean). Marine Geology, 441, 106596. https://doi.org/10.1016/j.margeo.2021.106596
    [Google Scholar]
  47. Rebesco, M., Hernández‐Molina, F. J., van Rooij, D., & Wåhlin, A. (2014). Contourites and associated sediments controlled by deep‐water circulation processes: State‐of‐the‐art and future considerations. Marine Geology, 352, 111–154. https://doi.org/10.1016/j.margeo.2014.03.011
    [Google Scholar]
  48. Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., Sierro, F. J., Bertini, A., Camerlenghi, A., De Lange, G., Govers, R., Hilgen, F. J., Hübscher, C., Meijer, P. T., & Stoica, M. (2014). The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences. Marine Geology, 352, 25–58. https://doi.org/10.1016/j.margeo.2014.02.002
    [Google Scholar]
  49. Ryan, W. B. F., & Heezen, B. C. (1965). Ionian Sea Submarine Canyons and the 1908 Messina turbidity current. GSA Bulletin, 76, 915–932. https://doi.org/10.1130/0016‐7606(1965)76[915:ISSCAT]2.0.CO;2
    [Google Scholar]
  50. Schambach, L., Grilli, S. T., Tappin, D. R., Gangemi, M. D., & Barbaro, G. (2020). New simulations and understanding of the 1908 Messina tsunami for a dual seismic and deep submarine mass failure source. Marine Geology, 421, 106093. https://doi.org/10.1016/j.margeo.2019.106093
    [Google Scholar]
  51. Schattner, U., Lobo, F. J., García, M., Kanari, M., Ramos, R. B., & de Mahiques, M. M. (2018). A detailed look at diapir piercement onto the ocean floor: New evidence from Santos Basin, offshore Brazil. Marine Geology, 406, 98–108. https://doi.org/10.1016/j.margeo.2018.09.014
    [Google Scholar]
  52. Skliris, N. (2014). Past, present and future patterns of the thermohaline circulation and characteristic water masses of the Mediterranean Sea. In S.Goffredo & Z.Dubinsky (Eds.), The Mediterranean Sea (pp. 29–48). Springer Netherlands. https://doi.org/10.1007/978‐94‐007‐6704‐1_3
    [Google Scholar]
  53. Solaro, G., Acocella, V., Pepe, S., Ruch, J., Neri, M., & Sansosti, E. (2010). Anatomy of an unstable volcano from InSAR: Multiple processes affecting flank instability at Mt. Etna, 1994–2008. Journal of Geophysical Research, 115, B10405. https://doi.org/10.1029/2009JB000820
    [Google Scholar]
  54. Sun, Q., Cartwright, J., Lüdmann, T., Wu, S., & Yao, G. (2017). Three‐dimensional seismic characterization of a complex sediment drift in the South China Sea: Evidence for unsteady flow regime. Sedimentology, 64, 832–853. https://doi.org/10.1111/sed.12330
    [Google Scholar]
  55. Urlaub, M., Geersen, J., Petersen, F., Gross, F., Bonforte, A., Krastel, S., & Kopp, H. (2022). The submarine boundaries of Mount Etna's unstable southeastern flank. Frontiers in Earth Science, 10, 810790. https://doi.org/10.3389/feart.2022.810790
    [Google Scholar]
  56. Varela, C. L., & Mohriak, W. U. (2013). Halokinetic rotating faults, salt intrusions, and seismic pitfalls in the petroleum exploration of divergent margins. American Association of Petroleum Geologists Bulletin, 97, 1421–1446. https://doi.org/10.1306/02261312164
    [Google Scholar]
  57. Vendeville, B. C., & Jackson, M. P. A. (1992). The rise of diapirs during thin‐skinned extension. Marine and Petroleum Geology, 9, 331–354. https://doi.org/10.1016/0264‐8172(92)90047‐I
    [Google Scholar]
  58. Walbridge, S., Slocum, N., Pobuda, M., & Wright, D. (2018). Unified geomorphological analysis workflows with Benthic Terrain Modeler. Geosciences (Basel), 8, 94. https://doi.org/10.3390/geosciences8030094
    [Google Scholar]
  59. Weiss, A. D. (2001). Topographic position and landforms analysis. The Nature Conservancy.
    [Google Scholar]
  60. Wynn, R. B., & Stow, D. A. V. (2002). Classification and characterisation of deep‐water sediment waves. Marine Geology, 192, 7–22. https://doi.org/10.1016/S0025‐3227(02)00547‐9
    [Google Scholar]
  61. Zakšek, K., Oštir, K., & Kokalj, Ž. (2011). Sky‐view factor as a relief visualization technique. Remote Sensing, 3, 398–415. https://doi.org/10.3390/rs3020398
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12819
Loading
/content/journals/10.1111/bre.12819
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): geomorphology; Ionian Basin; proxy; uplift

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error