1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

Rift basins typically comprise three main tectono‐stratigraphic stages; pre‐, syn‐ and post‐rift. The syn‐rift stage is often characterised by the deposition of asymmetric wedges of growth strata that record differential subsidence caused by active normal faulting. The subsequent post‐rift stage is defined by long‐wavelength subsidence driven by lithospheric cooling and is typified by the deposition of broadly tabular stratal packages that drape any rift‐related relief. The stratigraphic contact between syn‐ and post‐rift rocks is often thought to be represented by an erosional unconformity. However, the late syn‐rift to early post‐rift stratigraphic record is commonly far more complex since (i) the associated tectonic transition is not instantaneous; (ii) net subsidence may be punctuated by transient periods of uplift; and (iii) strain often migrates oceanward during rifting until continental breakup is achieved with crustal rupture. Previous publications on the Eastern Brazilian marginal basins have not historically used the tripartite scheme outlined above, with the post–pre‐rift interval instead being subdivided into rift, sag and passive margin tectono‐stratigraphic stages. In addition, the sag stage has been previously described as late syn‐rift, early post‐rift or as a transition between the two, with the passive margin stage being equivalent to the classically defined post‐rift, drift stage. Two (rather than one) erosional unconformities are also identified within the rift‐to‐sag succession. In this work, we use 2D and 3D seismic reflection and borehole data to discuss the expression of and controls on the syn‐ to post‐rift transition in the shallow and deep water domains of the south‐central Campos Basin, south‐east Brazil. We identified three seismic–stratigraphic sequences bounded by unconformities, named lower and upper pre‐salt and salt. The lower pre‐salt interval is characterised by wedge‐shaped packages of reflections that thicken towards graben and half‐graben‐bounding normal faults. This stage ends with the development of an angular unconformity, inferred to form as a result of the onset of the oceanward migration of deformation. The upper pre‐salt is typically defined by packages of subparallel and relatively continuous reflections that are broadly lenticular and thin towards fault‐bound basement highs, but that locally contain packages that thicken against faults. The pre‐salt to salt contact is defined by an erosional unconformity that is largely restricted to basement highs, and which is inferred to have formed due to base‐level fall and uplift associated with local fault reactivation, resulting in the formation of channels of possible fluvial origin. Based on its geometries and seismic facies, we conclude that the lower pre‐salt interval is syn‐rifting and , deposited during active continental extension and upper crustal faulting affecting the entire evolving margin, whereas the overlying upper pre‐salt is syn‐rifting and in the Campos Basin, deposited when extension and faulting had migrated seaward to the future location of the spreading centre. The results of our study support the arising notion that the syn‐rift sequence does not only display syn‐tectonic sedimentary packages, and thus the tripartite tectono‐stratigraphic model for rift development is too simplistic and cannot be applied when assessing rifts in the context of the regional development of continental margins.

,

Uninterpreted and seismic lines, with the mapped stratigraphic surfaces and tectono‐stratigraphic intervals. Some reflectors are traced in black to evidence syn‐, post‐ and syn‐ to post‐tectonic configurations (sensu Péron‐Pinvidic et al., 2007).

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12820
2024-01-11
2024-04-28
Loading full text...

Full text loading...

References

  1. Abrahão, D., & Warme, J. E. (1990). Lacustrine and associated deposits in a rifted continental margin e lower cretaceous Lagoa Feia formation, Campos Basin, offshore Brazil. In B. J.Katz (Ed.), Lacustrine Basin exploration: Case studies and modern analogs (Vol. 50, pp. 287–305). AAPG.
    [Google Scholar]
  2. Allen, P. A., & Allen, J. R. (2005). Basin analysis: Principles and applications (2nd ed., p. 560). Wiley‐Blackwell.
    [Google Scholar]
  3. Alvarenga, R. S., Kuchle, J., Iacopini, D., Goldberg, K., Scherer, C. M. S., Pantopoulos, G., & Ene, P. L. (2021). Tectonic and stratigraphic evolution based on seismic sequence stratigraphy: Central rift section of the Campos Basin, Offshore Brazil. Geosciences, 11, 338. https://doi.org/10.3390/geosciences11080338
    [Google Scholar]
  4. Alves, T. M., Fetter, M., Lima, C., Cartwright, J. A., Cosgrove, J., Gangá, A., Queiroz, C. L., & Strugale, M. (2017). An incomplete correlation between pre‐salt topography, top reservoir erosion, and salt deformation in deep‐water Santos Basin (SE Brazil). Marine and Petroleum Geology, 79, 300–320. https://doi.org/10.1016/j.marpetgeo.2016.10.015
    [Google Scholar]
  5. Amarante, F. B., Jackson, C. A., Pichel, L. M., Scherer, C. M. S., & Kuchle, J. (2021). Pre‐salt rift morphology controls salt tectonics in the Campos Basin, offshore SE Brazil. Basin Research, 33(5), 2837–2861. https://doi.org/10.1111/bre.12588
    [Google Scholar]
  6. Araujo, M. N., Pérez‐Gussinyé, M., & Muldashev, I. (2022). Oceanward rift migration during formation of Santos–Benguela ultra‐wide rifted margins. Geological Society London Special Publications, 524(1), SP524‐2021‐123. https://doi.org/10.1144/sp524‐2021‐123
    [Google Scholar]
  7. Beglinger, S. E., Doust, H., & Cloetingh, S. (2012). Relating petroleum system and play development to basin evolution: West African South Atlantic basins. Marine and Petroleum Geology, 3, 1–25.
    [Google Scholar]
  8. Bosence, D. W. J. (1998). Stratigraphic and sedimentological models of rift basins. In B. H.Purser & D. W. J.Bosence (Eds.), Sedimentation and tectonics of rift basins: Red Sea, Gulf of Aden (pp. 9–25). Chapman and Hall.
    [Google Scholar]
  9. Bott, M. P. H. (1995). Rifted passive margins. In K. H.Olsen (Ed.), Continental rifts: Evolution, structure, tectonics (Vol. 25, pp. 409–426). Developments in Geotectonics.
    [Google Scholar]
  10. Braun, J., & Beaumont, C. (1989). A physical explanation of the relation between flank uplifts and the breakup unconformity at rifted continental margins. Geology, 17, 760–764.
    [Google Scholar]
  11. Brune, S., Heine, C., Pérez‐Gussinyé, M., & Sobolev, S. V. (2014). Rift migration explains continental margin asymmetry and crustal hyper‐extension. Nature Communications, 5, 4014.
    [Google Scholar]
  12. Cainelli, C., & Mohriak, W. U. (1999). Some remarks on the evolution of sedimentary basins along the eastern Brazilian continental margin. Episodes, 22(3), 206–216.
    [Google Scholar]
  13. Cartwright, J. (1991). The kinematic evolution of the Coffee Soil Fault. Geological Society, London, Special Publications, 56, 29–40.
    [Google Scholar]
  14. Chang, H. K., Kowsmann, R. O., Figueiredo, A. M. F., & Bender, A. (1992). Tectonics and stratigraphy of the East Brazil rift system: An overview. Tectonophysics, 213, 97–138.
    [Google Scholar]
  15. Chenin, P., Manatschal, G., Ghienne, J., & Chao, P. (2021). The syn‐rift tectono‐stratigraphic record of rifted margins (Part II): A new model to break through the proximal/distal interpretation frontier. Basin Research, 34(2), 489–532. https://doi.org/10.1111/bre.12628
    [Google Scholar]
  16. Chenin, P., Manatschal, G., Lavier, L. L., & Erratt, D. (2015). Assessing the impact of orogenic inheritance on the architecture, timing and magmatic budget of the North Atlantic rift system: A mapping approach. Journal of the Geological Society of London, 172, 711–720. https://doi.org/10.1144/jgs2014‐139
    [Google Scholar]
  17. Davison, I. (2007). Geology and tectonics of the South Atlantic Brazilian salt basins. Geological Society, London, Special Publications, 272, 345–359. https://doi.org/10.1144/gsl.sp.2007.272.01.18
    [Google Scholar]
  18. Davison, I., Anderson, L., & Nuttall, P. (2012). Salt deposition, loading and gravity drainage in the Campos and Santos salt basins. Geological Society, London, Special Publications, 363, 159–174. https://doi.org/10.1144/sp363.8
    [Google Scholar]
  19. Dias, J. L., Oliveira, J. Q., & Vieira, J. C. (1988). Sedimentological and stratigraphyc analysis of the Lagoa Feia Formation, rift phase of Campos Basin, offshore Brazil. Revista Brasileira de Geociencias, 18(3), 252–260.
    [Google Scholar]
  20. Dooley, T. P., Hudec, M. R., Carruthers, D., Jackson, M. P. A., & Luo, G. (2017). The effects of base‐salt relief on salt flow and suprasalt deformation patterns—Part 1: Flow across simple steps in the base of salt. Interpretation, 5, SD1–SD23. https://doi.org/10.1190/int‐2016‐0087.1
    [Google Scholar]
  21. Falvey, D. (1974). The development of continental margins in plate tectonic theory. Journal of the Australian Petroleum Production & Exploration Association, 14, 95–106.
    [Google Scholar]
  22. Fetter, M. (2009). The role of basement tectonic reactivation on the structural evolution of Campos Basin, offshore Brazil: Evidence from 3D seismic analysis and section restoration. Marine and Petroleum Geology, 26, 873–886. https://doi.org/10.1016/j.marpetgeo.2008.06.005
    [Google Scholar]
  23. Fossen, H. (2016). Structural geology (2nd ed.). Cambridge University Press. https://doi.org/10.1017/9781107415096
    [Google Scholar]
  24. Franke, D. (2013). Rifting, lithosphere breakup and volcanism: Comparison of magma‐poor and volcanic rifted margins. Marine and Petroleum Geology. https://doi.org/10.1016/j.marpetgeo.2012.11.003
    [Google Scholar]
  25. Freitas, R. T. J. (2006). Ciclos deposicionais evaporiticos da bacia de Santos: una analise cicloestratigrafica a partir de dados de 2 poços e de traços de sísmica. Masters thesis, Instituto de Geociencias, Universidade Federal do Rio Grande do Sul, Brazil.
  26. Gamboa, L. A. P., Machado, M. A. P., Silviera, D. P., Freitas, J. T. R., & Silva, S. R. P. (2008). Evaporitos estratificados no Atlântico Sul: interpretação sísmica e controle tectono‐estratigráfico na Bacia de Santos. In W.Mohriak, P.Szatmari, & S. M. C.Anjos (Eds.), Sal: Geologia e Tectonica (pp. 340–359). Editora Beca.
    [Google Scholar]
  27. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12, 195–218.
    [Google Scholar]
  28. Goldberg, K., Kuchle, J., Scherer, C. M. S., Alvarenga, R. S., Ene, P. L., Armelenti, G., & De Ros, L. F. (2017). Re‐sedimented deposits in the rift section of the Campos Basin. Marine and Petroleum Geology, 80, 412–431.
    [Google Scholar]
  29. Guardado, L. R., Gamboa, L. A. P., & Lucchesi, C. F. (1989). Petroleum geology of Campos Basin, Brazil: A model for producing Atlantic type basin. In J. D.Edwards & P. A.Santagrossi (Eds.), Divergent/passive margins basins (Vol. 48, pp. 3–36). AAPG Memoir.
    [Google Scholar]
  30. Guardado, L. R., Spadini, A. R., Brandão, J. S. L., & Mello, M. R. (2000). Petroleum system of the Campos Basin, Brazil. In M. R.Mello & B. J.Katz (Eds.), Petroleum systems of South Atlantic margins (Vol. 73, pp. 317–324). AAPG Memoir.
    [Google Scholar]
  31. Heine, C., Zoethout, J., & Müller, R. D. (2013). Kinematics of the South Atlantic rift. Solid Earth, 4(2), 215–253. https://doi.org/10.5194/se‐4‐215‐2013
    [Google Scholar]
  32. Hiscott, R. N., Wilson, R. C. L., Gradstein, F. M., Pujalte, V., Garcia‐Mondejar, J., Boudreau, R. R. D., & Wishart, H. A. (1990). Comparative stratigraphy and subsidence history of Mesozoic rift basins of North Atlantic. American Association of Petroleum Geologists Bulletin, 74, 60–76.
    [Google Scholar]
  33. Huismans, R. S., & Beaumont, C. (2011). Depth‐dependent extension, two‐stage breakup and cratonic underplating at rifted margins. Nature, 473, 74–78. https://doi.org/10.1038/nature09988
    [Google Scholar]
  34. Huismans, R. S., & Beaumont, C. (2014). Rifted continental margins: The case for depth‐dependent extension. Earth and Planetary Science Letters, 407, 148–162. https://doi.org/10.1016/j.epsl.2014.09.032
    [Google Scholar]
  35. Jagoutz, O., Müntener, O., Manatschal, G., Rubatto, D., Péron‐Pinvidic, G., Turrin, B. D., & Villa, I. M. (2007). The rift‐to‐drift transition in the North Atlantic: A stuttering start of the MORB machine?Geology, 35, 1087–1090.
    [Google Scholar]
  36. Karner, G. D., & Gamboa, L. A. P. (2007). Timing and origin of the South Atlantic pre‐salt sag basins and their capping evaporates. In B. C.Schreiber, S.Lugli, & M.Babel (Eds.), Evaporites through space and time (Vol. 285, pp. 15–35). Geological Society, London, Special Publications.
    [Google Scholar]
  37. Kuchle, J., & Scherer, C. M. S. (2010). Sismoestratigrafia de bacias rifte: técnicas, métodos e sua aplicação na Bacia do Recôncavo. Boletim de Ciências da Petrobrás, 18(2), 179–206.
    [Google Scholar]
  38. Kukla, P. A., Strozyk, F., & Mohriak, W. U. (2018). South Atlantic salt basins—Witnesses of complex passive margin evolution. Gondwana Research, 53, 41–57. https://doi.org/10.1016/j.gr.2017.03.012
    [Google Scholar]
  39. Lima, B. E. M., & De Ros, L. F. (2019). Deposition, diagenetic and hydrothermal processes in the Aptian pre‐salt lacustrine carbonate reservoirs of the northern Campos Basin, offshore Brazil. Sedimentary Geology, 383, 55–81. https://doi.org/10.1016/j.sedgeo.2019.01.006
    [Google Scholar]
  40. Masini, E., Manatschal, G., & Mohn, G. (2013). The Alpine Tethys rifted margins: Reconciling old and new ideas to understand the stratigraphic architecture of magma‐poor rifted margins. Sedimentology, 60, 174–196. https://doi.org/10.1111/sed.12017
    [Google Scholar]
  41. Mizusaki, A. M. P., Petrini, R., Bellieni, P., Comin‐Chiaramonti, P., Dias, J., De Min, A., & Piccirillo, E. M. (1992). Basalt magmatism along the passive continental margin of SE Brazil (Campos Basin). Contributions to Mineralogy and Petrology, 111, 143–160. https://doi.org/10.1007/BF00348948
    [Google Scholar]
  42. Mohn, G., Manatschal, G., Müntener, O., Beltrando, M., & Masini, E. (2010). Unravelling the interaction between tectonic and sedimentary processes during lithospheric thinning in the Alpine Tethys margins. International Journal of Earth Sciences, 99, 75–101.
    [Google Scholar]
  43. Mohriak, W., Nemčok, M., & Enciso, G. (2008). South Atlantic divergent margin evolution: Rift‐border uplift and salt tectonics in the basins of SE Brazil. Geological Society, London, Special Publications, 294, 365–398. https://doi.org/10.1144/sp294.19
    [Google Scholar]
  44. Mohriak, W. U., Mello, M. R., Karner, G. D., Dewey, J. F., & Maxwell, J. R. (1989). Structural and stratigraphic evolution of the Campos Basin, offshore Brazil. In A. J.Tankard & H. R.Balkwill (Eds.), Extensional Tectonics and Stratigraphy of the North Atlantic Margins (Vol. 46, pp. 577–598). AAPG Memoir.
    [Google Scholar]
  45. Moreira, J. L. P., Madeira, C. V., Gil, J. A., & Machado, M. A. P. (2007). Bacia de Santos. Boletim da Geociências da Petrobras, Rio de Janeiro, 15, 531–549.
    [Google Scholar]
  46. Morley, C. K. (2002). Evolution of large normal faults: Evidence from seismic reflection data. AAPG Bulletin, 86(6), 961–978.
    [Google Scholar]
  47. Moulin, M., Aslanian, D., Rabineau, M., Patriat, M., & Matias, L. (2013). Kinematic keys of the Santos–Namibe basins. Geological Society, London, Special Publications, 369, 91–107. https://doi.org/10.1144/sp369.3
    [Google Scholar]
  48. Moulin, M., Aslanian, D., & Unternehr, P. (2010). A new starting point for the south and equatorial Atlantic Ocean. Earth‐Science Reviews, 98, 1–37.
    [Google Scholar]
  49. Nottvedt, A., Gabrielsen, R. H., & Steel, R. J. (1995). Tectonostratigraphy and sedimentary architecture of rift basins, with reference to the northern North Sea. Marine and Petroleum Geology, 12(8), 881–901. https://doi.org/10.1016/0264‐8172(95)98853‐w
    [Google Scholar]
  50. Pérez‐Gussinyé, M., Andrés‐Martínez, M., Araújo, M., Xin, Y., Armitage, J., & Morgan, J. P. (2020). Lithospheric strength and rift migration controls on synrift stratigraphy and breakup unconformities at rifted margins: Examples from numerical models, the Atlantic and South China Sea margins. Tectonics, 39, e2020TC006255. https://doi.org/10.1029/2020TC006255
    [Google Scholar]
  51. Péron‐Pinvidic, G., & Manatschal, G. (2009). The final rifting evolution at deep magma‐poor passive margins from Iberia–Newfoundland: A new point of view. International Journal of Earth Sciences, 98, 1581–1597.
    [Google Scholar]
  52. Peron‐Pinvidic, G., & Manatschal, G. (2019). Rifted margins: State of the art and future challenges. Frontiers in Earth Sciences, 7, 218. https://doi.org/10.3389/feart.2019.00218
    [Google Scholar]
  53. Péron‐Pinvidic, G., Manatschal, G., Minshull, T. A., & Sawyer, D. S. (2007). Tectonosedimentary evolution of the deep Iberia‐Newfoundland margins: Evidence for a complex breakup history. Tectonics, 26(2), TC2011.
    [Google Scholar]
  54. Péron‐Pinvidic, G., Manatschal, G., & Osmundsen, P. T. (2013). Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts. Marine and Petroleum Geology, 43, 21–47. https://doi.org/10.1016/j.marpetgeo.2013.02.002
    [Google Scholar]
  55. Prosser, S. (1993). Rift‐related linked depositional systems and their seismic expression. In G. D.Williams & A.Dobb (Eds.), Tectonics and seismic sequence stratigraphy (Vol. 71, pp. 35–66). Geological Society, London, Special Publication.
    [Google Scholar]
  56. Ranero, C. R., & Pérez‐Gussinyé, M. (2010). Sequential faulting explains the asymmetry and extension discrepancy of conjugate margins. Nature, 468, 294–299. https://doi.org/10.1038/nature09520
    [Google Scholar]
  57. Rangel, H. D., Martins, F. A. L., Esteves, F. R., & Feijó, F. J. (1994). Bacia de Campos. Boletim de Geociências da Petrobras, 8(1), 203–218.
    [Google Scholar]
  58. Roberts, A. M., & Yielding, G. (1991). Deformation around basin‐margin faults in the North Sea/mid‐Norway rift. Geological Society, London, Special Publications, 56, 61–78. https://doi.org/10.1144/gsl.sp.1991.056.01.05
    [Google Scholar]
  59. Rowan, M. G., Peel, F. J., & Vendeville, B. C. (2004). Gravity‐driven fold belts on passive margins. In K. K.McClay (Ed.), Thrust tectonics and hydrocarbon systems (Vol. 82, pp. 157–182). AAPG Memoir.
    [Google Scholar]
  60. Sarkarinejad, K., Sarshar, M. A., & Adineh, S. (2018). Structural, micro‐structural and kinematic analyses of channel flow in the Karmostaj salt diapir in the Zagros foreland folded belt, Fars province, Iran. Journal of Structural Geology, 107, 109–131. https://doi.org/10.1016/j.jsg.2017.12.005
    [Google Scholar]
  61. Sibuet, J. C., Srivastava, S., & Manatschal, G. (2007). Exhumed mantle‐forming transitional crust in the Newfoundland‐Iberia rift and associated magnetic anomalies. Journal of Geophysical Research, 112, B06105.
    [Google Scholar]
  62. Stanton, N., Kusznir, N., Gordon, A., & Schmitt, R. (2019). Architecture and Tectono‐magmatic evolution of the Campos rifted margin: Control of OCT structure by basement inheritance. Marine and Petroleum Geology, 100, 43–59.
    [Google Scholar]
  63. Strugale, M., & Cartwright, J. (2022). Tectono‐stratigraphic evolution of the rift and post‐rift systems in the northern Campos Basin, offshore Brazil. Basin Research, 00, 1–33. https://doi.org/10.1111/bre.12674
    [Google Scholar]
  64. Szatmari, P. (2000). Habitat of petroleum along the South Atlantic margins. In M. R.Mello & B. J.Katz (Eds.), Petroleum systems of South Atlantic margins (Vol. 73, pp. 69–75). AAPG Memoir.
    [Google Scholar]
  65. Szatmari, P., de Lima, C. M., Fontaneta, G., de Melo Lima, N., Zambonato, E., Menezes, M. R., Bahniuk, J., Coelho, S. L., Figueiredo, M., & Florencio, C. P. (2021). Petrography, geochemistry and origin of South Atlantic evaporites: The Brazilian side. Marine and Petroleum Geology, 127, 104805. https://doi.org/10.1016/j.marpetgeo.2020.104805
    [Google Scholar]
  66. Tedeschi, L. R., Jenkyns, H. C., Robinson, S. A., Lana, C. C., Menezes Santos, M. R. F., & Tognoli, F. M. W. (2019). Aptian carbon‐isotope record from the Sergipe‐Alagoas Basin: New insights into oceanic anoxic event 1a and the timing of seawater entry into the South Atlantic. Newsletters on Stratigraphy, 53, 529. https://doi.org/10.1127/nos/2019/0529
    [Google Scholar]
  67. Torsvik, T. H., Rousse, S., Labails, C., & Smethurst, M. A. (2009). A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophysical Journal International, 177, 1315–1333.
    [Google Scholar]
  68. Weijermars, R., Jackson, M. P. A., & Dooley, T. P. (2014). Quantifying drag on wellbore casings in moving salt sheets. Geophysical Journal International, 198, 965–977.
    [Google Scholar]
  69. Winter, W. R., Jahnert, R. J., & França, A. B. (2007). Bacia de Campos. Boletim de Geociências da Petrobras, 15(2), 511–529.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12820
Loading
/content/journals/10.1111/bre.12820
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error