1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

The Patagonian Andean foreland system includes several intermountain basins filled with a Miocene non‐marine record deposited under syn‐tectonic conditions related to the Andean uplift and a regional climate change triggered by a rain shadow effect. Many of those basins, such as the Collón Cura basin in Neuquén Province, Argentina, present a well‐preserved fluvial record (i.e. the Limay Chico Member of the Caleufú Formation). Sedimentological and palaeomagnetic studies have allowed the interpretation of coeval transverse distributary fan and axial mixed‐load fluvial systems deposited between 10.6 ± 0.2 and 12.8 Ma. The basin infill arrangement shows that, while the axial mixed‐load fluvial system exhibits an aggradational stacking pattern, the transverse distributary fluvial fan system denotes three different orders of stratigraphic patterns: (i) large‐scale progradation of the transverse fluvial fan system over a time scale of 106 year; (ii) intermediate‐scale progradational–retrogradational transverse intra‐basinal fluvial fan episodes over a time scale of 105 year; and (iii) small‐scale transverse lobe progradation over a time scale of 105–104 year. These patterns were interpreted as transverse sediment flux variations triggered by variable external forcings. To decouple those forcings, we estimated the Collón Cura basin equilibrium time at 3–5 × 105 year and compared it with the time scale over which different external forcings varied in the Patagonian Andean and foreland regions during Miocene times. Large‐scale progradation is linked to an increase in sediment flux triggered by a long‐term tectonically driven exhumation forcing associated with the Miocene Patagonian Andean contractional phase. Intermediate‐scale progradational–retrogradational episodes are linked to variations in sediment flux due to a mid‐term tectonic forcing associated with the western fault system activity. The small‐scale fan lobe progradation is related to increases in sediment flux triggered by indistinguishable short‐term autogenic processes and/or high‐frequency tectonic and climatic forcings. This contribution shows the applicability and limitations of the basin equilibrium time concept to decouple external forcings from the geological record, considering their magnitude, nature and time scale, as well as the basin characteristics.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12821
2024-01-12
2024-04-28
Loading full text...

Full text loading...

References

  1. Al‐Farraj, A., & Harvey, A. M. (2005). Morphometry and depositional style of Late Pleistocene alluvial fans: Wadi Al‐Bih, northern UAE and Oman. Harvey, A.M. & Stokes, M. (eds) Alluvial fans: Geomorphology, sedimentology, dynamics. Geological Society, London, Special Publications, 251, 85–94. https://doi.org/10.1144/GSL.SP.2005.251.01.07
    [Google Scholar]
  2. Allen, P. A. (2008). Time scales of tectonic landscapes and their sediment routing systems. Geological Society, London, Special Publications, 296(1), 7–28. https://doi.org/10.1144/SP296.2
    [Google Scholar]
  3. Allen, P. A., Armitage, J. J., Carter, A., Duller, R. A., Michael, N. A., Sinclair, H. D., Whitchurch, A. L., & Whittaker, A. C. (2013). The Qs problem: Sediment volumetric balance of proximal foreland basin systems. Sedimentology, 60(1), 102–130. https://doi.org/10.1111/sed.12015
    [Google Scholar]
  4. An, C., Cui, Y., Fu, X., & Parker, G. (2017). Gravel‐bed river evolution in earthquake‐prone regions subject to cycled hydrographs and repeated sediment pulses. Earth Surface Processes and Landforms, 42(14), 2426–2438. https://doi.org/10.1002/esp.4195
    [Google Scholar]
  5. Armitage, J. J., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2011). Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience, 4(4), 231–235. https://doi.org/10.1038/ngeo1087
    [Google Scholar]
  6. Bilmes, A., D'Elia, L., Franzese, J. R., Veiga, G. D., & Hernández, M. (2013). Miocene block uplift and basin formation in the Patagonian foreland: The Gastre Basin, Argentina. Tectonophysics, 601, 98–111. https://doi.org/10.1016/j.tecto.2013.05.001
    [Google Scholar]
  7. Bilmes, A., & Veiga, G. D. (2018). Linking mid‐scale distributive fluvial systems to drainage basin area: Geomorphological and sedimentological evidence from the endorheic Gastre Basin, Argentina. Geological Society, London, Special Publications, 440(1), 265–279. https://doi.org/10.1144/SP440.4
    [Google Scholar]
  8. Blair, T. C., & McPherson, J. G. (1994). Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. Journal of Sedimentary Research, 64(3a), 450–489. https://doi.org/10.1306/D4267DDE‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  9. Blisniuk, P. M., Stern, L. A., Chamberlain, C. P., Idleman, B., & Zeitler, P. K. (2005). Climatic and ecologic changes during Miocene surface uplift in the Southern Patagonian Andes. Earth and Planetary Science Letters, 230(1–2), 125–142. https://doi.org/10.1016/j.epsl.2004.11.015
    [Google Scholar]
  10. Branney, M. J., & Kokelaar, P. (2002). Pyroclastic density currents and the sedimentation of ignimbrites, London, UK. Geological Society, London, Memoirs, 27, 143.
    [Google Scholar]
  11. Bridge, J. S. (2003). Rivers and floodplains: Forms, processes, and sedimentary record. Blackwell Science Publishing.
    [Google Scholar]
  12. Bucher, J., Milanese, F. N., López, M., García, M., D'Elia, L., Bilmes, A., Naipauer, M., Sato, A. M., Funes, D., Rapalini, A., Valencia, V. A., Ventura Santos, R., Hauser, N., Cruz Vieira, L., & Franzese, J. (2019). U‐PB geochronology and magnetostratigraphy of a North Patagonian syn‐orogenic Miocene succession: Tectono‐stratigraphic implications for the foreland system configuration. Tectonophysics, 766, 81–93. https://doi.org/10.1016/j.tecto.2019.05.021
    [Google Scholar]
  13. Bucher, J., Varela, A., D'Elia, L., Bilmes, A., López, M., García, M., & Franzese, J. (2020). Multiproxy paleosol evidence for a rain shadow effect linked to Miocene uplift of the North Patagonian Andes. Bulletin, 132(7–8), 1603–1614. https://doi.org/10.1130/B35331.1
    [Google Scholar]
  14. Bull, W. B. (1977). The alluvial‐fan environment. Progress in Physical Geography, 1(2), 222–270. https://doi.org/10.1177/030913337700100202
    [Google Scholar]
  15. Butler, K. L., Horton, B. K., Echaurren, A., Folguera, A., & Fuentes, F. (2020). Cretaceous‐Cenozoic growth of the Patagonian broken foreland basin, Argentina: Chronostratigraphic framework and provenance variations during transitions in Andean subduction dynamics. Journal of South American Earth Sciences, 97, 102242. https://doi.org/10.1016/j.jsames.2019.102242
    [Google Scholar]
  16. Butler, R. F. (2004). Paleomagnetism: Magnetic domains to geologic terranes. Electronic Edition.
    [Google Scholar]
  17. Cas, R. A. F., & Wright, J. V. (1987). Volcanic successions: Modern and ancient. A geological approach to processes, products and successions. Allen and Unwin.
    [Google Scholar]
  18. Castelltort, S., & Van Den Driessche, J. (2003). How plausible are high‐frequency sediment supply‐driven cycles in the stratigraphic record?Sedimentary Geology, 157(1–2), 3–13. https://doi.org/10.1016/S0037‐0738(03)00066‐6
    [Google Scholar]
  19. Cembrano, J., Hervé, F., & Lavenu, A. (1996). The Liquiñe Ofqui fault zone: A long‐lived intra‐arc fault system in southern Chile. Tectonophysics, 259(1–3), 55–66. https://doi.org/10.1016/0040‐1951(95)00066‐6
    [Google Scholar]
  20. Chadima, M., & Hrouda, F. (2006). Remasoft 3.0 a user‐friendly paleomagnetic data browser and analyzer. Travaux Géophysiques, 27, 20–21.
    [Google Scholar]
  21. Clevis, Q., De Boer, P. L., & Nijman, W. (2004). Differentiating the effect of episodic tectonism and eustatic sea‐level fluctuations in foreland basins filled by alluvial fans and axial deltaic systems: Insights from a three‐dimensional stratigraphic forward model. Sedimentology, 51(4), 809–835. https://doi.org/10.1111/j.1365‐3091.2004.00652.x
    [Google Scholar]
  22. Colombera, L., Mountney, N. P., & McCaffrey, W. D. (2015). A meta‐study of relationships between fluvial channel‐body stacking pattern and aggradation rate: Implications for sequence stratigraphy. Geology, 43(4), 283–286. https://doi.org/10.1130/G36385.1
    [Google Scholar]
  23. Connell, S. D., Kim, W., Paola, C., & Smith, G. A. (2012). Fluvial morphology and sediment‐flux steering of axial–transverse boundaries in an experimental basin. Journal of Sedimentary Research, 82(5), 310–325. https://doi.org/10.2110/jsr.2012.27
    [Google Scholar]
  24. Connell, S. D., Kim, W., Smith, G. A., & Paola, C. (2012). Stratigraphic architecture of an experimental basin with interacting drainages. Journal of Sedimentary Research, 82(5), 326–344. https://doi.org/10.2110/jsr.2012.28
    [Google Scholar]
  25. Covault, J. A., Romans, B. W., Fildani, A., McGann, M., & Graham, S. A. (2010). Rapid climatic signal propagation from source to sink in a southern California sediment‐routing system. The Journal of Geology, 118(3), 247–259. https://doi.org/10.1086/651539
    [Google Scholar]
  26. Cui, P., Chen, X. Q., Zhu, Y. Y., Su, F. H., Wei, F. Q., Han, Y. S., Liu, H. J., & Zhuang, J. Q. (2011). The Wenchuan earthquake (May 12, 2008), Sichuan Province, China, and resulting geohazards. Natural Hazards, 56(1), 19–36. https://doi.org/10.1007/s11069‐009‐9392‐1
    [Google Scholar]
  27. Dade, W. B., & Friend, P. F. (1998). Grain‐size, sediment‐transport regime, and channel slope in alluvial rivers. The Journal of Geology, 106(6), 661–676. https://doi.org/10.1086/516052
    [Google Scholar]
  28. Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J. C., Hsu, M. L., Lin, C. W., Horng, M.‐J., Chen, T. C., Milliman, J., & Stark, C. P. (2004). Earthquake‐triggered increase in sediment delivery from an active mountain belt. Geology, 32(8), 733–736. https://doi.org/10.1130/G20639.1
    [Google Scholar]
  29. Davidson, S. K., & Hartley, A. J. (2014). A quantitative approach to linking drainage area and distributive‐fluvial‐system area in modern and ancient endorheic basins. Journal of Sedimentary Research, 84(11), 1005–1020. https://doi.org/10.2110/jsr.2014.79
    [Google Scholar]
  30. D'Elia, L., Bilmes, A., Varela, A. N., Bucher, J., López, M., García, M., Ventura Santos, R., Hauser, N., Naipauer, M., Sato, A. M., & Franzese, J. R. (2020). Geochronology, sedimentology and paleosol analysis of a Miocene, syn‐orogenic, volcaniclastic succession (La Pava Formation) in the north Patagonian foreland: Tectonic, volcanic and paleoclimatic implications. Journal of South American Earth Sciences, 100, 102555. https://doi.org/10.1016/j.jsames.2020.102555
    [Google Scholar]
  31. Demarest, H. H., Jr. (1983). Error analysis for the determination of tectonic rotation from paleomagnetic data. Journal of Geophysical Research: Solid Earth, 88(B5), 4321–4328. https://doi.org/10.1029/JB088iB05p04321
    [Google Scholar]
  32. Dessanti, R. N. (1972). Andes patagónicos septentrionales. In Geología regional Argentina (pp. 655–697). Academia Nacional de Ciencias, Córdoba.
    [Google Scholar]
  33. Diraison, M., Cobbold, P. R., Rossello, E. A., & Amos, A. J. (1998). Neogene dextral transpression due to oblique convergence across the Andes of northwestern Patagonia, Argentina. Journal of South American Earth Sciences, 11(6), 519–532. https://doi.org/10.1016/S0895‐9811(98)00032‐7
    [Google Scholar]
  34. Engelund, F., & Hansen, E. (1967). A monograph on sediment transport in alluvial streams. Technical University of Denmark. http://resolver.tudelft.nl/uuid:81101b08‐04b5‐4082‐9121‐861949c336c9
  35. Fanti, F., & Catuneanu, O. (2010). Fluvial sequence stratigraphy: The Wapiti Formation, west‐central Alberta, Canada. Journal of Sedimentary Research, 80(4), 320–338. https://doi.org/10.2110/jsr.2010.033
    [Google Scholar]
  36. Folguera, A., Bottesi, G., Duddy, I., Martín‐González, F., Orts, D., Sagripanti, L., Rojas Vera, E., & Ramos, V. A. (2015). Exhumation of the Neuquén Basin in the southern Central Andes (Malargüe fold and thrust belt) from field data and low‐temperature thermochronology. Journal of South American Earth Sciences, 64, 381–398. https://doi.org/10.1016/j.jsames.2015.08.003
    [Google Scholar]
  37. Folguera, A., Encinas, A., Echaurren, A., Gianni, G., Orts, D., Valencia, V., & Carrasco, G. (2018). Constraints on the Neogene growth of the central Patagonian Andes at the latitude of the Chile triple junction (45–47 S) using U/Pb geochronology in syn‐orogenic strata. Tectonophysics, 744, 134–154. https://doi.org/10.1016/j.tecto.2018.06.011
    [Google Scholar]
  38. Franzese, J. R., D'Elia, L., Bilmes, A., Bucher, J., García, M., López, M., Muravchik, M., & Hernández, M. (2018). Evolution of a patagonian Miocene intermontane basin and its relationship with the Andean foreland: Tectono‐stratigraphic evidences from the Catán Lil Basin, Argentina. Journal of South American Earth Sciences, 86, 162–175. https://doi.org/10.1016/j.jsames.2018.06.008
    [Google Scholar]
  39. García Morabito, E., Beltrán‐Triviño, A., Terrizzano, C. M., Bechis, F., Likerman, J., Von Quadt, A., & Ramos, V. A. (2021). The influence of climate on the dynamics of mountain building within the Northern Patagonian Andes. Tectonics, 40(2), e2020TC006374. https://doi.org/10.1029/2020TC006374
    [Google Scholar]
  40. García Morabito, E., & Ramos, V. A. (2012). Andean evolution of the Aluminé fold and thrust belt, Northern Patagonian Andes (38 30′–40 30′ S). Journal of South American Earth Sciences, 38, 13–30. https://doi.org/10.1016/j.jsames.2012.03.005
    [Google Scholar]
  41. Garcia‐Castellanos, D., & Larrasoaña, J. C. (2015). Quantifying the post‐tectonic topographic evolution of closed basins: The Ebro basin (Northeast Iberia). Geology, 43(8), 663–666. https://doi.org/10.1130/G36673.1
    [Google Scholar]
  42. Genge, M. C., Zattin, M., Savignano, E., Franchini, M., Gautheron, C., Ramos, V. A., & Mazzoli, S. (2021). The role of slab geometry in the exhumation of cordilleran‐type orogens and their forelands: Insights from northern Patagonia. Bulletin, 133(11–12), 2535–2548. https://doi.org/10.1130/B35767.1
    [Google Scholar]
  43. Gibling, M. R. (2006). Width and thickness of fluvial channel bodies and valley fills in the geological record: A literature compilation and classification. Journal of Sedimentary Research, 76(5), 731–770. https://doi.org/10.2110/jsr.2006.060
    [Google Scholar]
  44. Gibling, M. R., Fielding, C. R., Sinha, R., Davidson, S. K., Leleu, S., & North, C. P. (2011). Alluvial valleys and alluvial sequences: Towards a geomorphic assessment. From river to rock record: The preservation of fluvial sediments and their subsequent interpretation. SEPM Special Publication, 97, 423–447. https://doi.org/10.2110/sepmsp.097.423
    [Google Scholar]
  45. González Díaz, E. F., Riggi, J. C., & Fauque, L. (1986). Formacion Caleufu (Nov. Nom): reinterpretación de las Formaciones Rio Negro y Alicura en el área de Collon Cura, sur del Neuquén. Revista de la Asociación Geológica Argentina, 41(1–2), 81–105.
    [Google Scholar]
  46. Guillaume, B., Gautheron, C., Simon‐Labric, T., Martinod, J., Roddaz, M., & Douville, E. (2013). Dynamic topography control on Patagonian relief evolution as inferred from low temperature thermochronology. Earth and Planetary Science Letters, 364, 157–167. https://doi.org/10.1016/j.epsl.2012.12.036
    [Google Scholar]
  47. Gupta, S. (1997). Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin. Geology, 25(1), 11–14. https://doi.org/10.1130/0091‐7613(1997)025<0011:HDPATO>2.3.CO;2
    [Google Scholar]
  48. Hartley, A. J., Weissmann, G. S., Nichols, G. J., & Warwick, G. L. (2010). Large distributive fluvial systems: Characteristics, distribution, and controls on development. Journal of Sedimentary Research, 80(2), 167–183. https://doi.org/10.2110/jsr.2010.016
    [Google Scholar]
  49. Heller, P. L., & Paola, C. (1992). The large‐scale dynamics of grain‐size variation in alluvial basins, 2: Application to syntectonic conglomerate. Basin Research, 4(2), 91–102. https://doi.org/10.1111/j.1365‐2117.1992.tb00146.x
    [Google Scholar]
  50. Hirst, J. P. P., & Nichols, G. J. (1986). Thrust tectonic controls on Miocene alluvial distribution patterns, southern Pyrenees. In Foreland basins, Special Publication of International Association of Sedimentologists (Vol. 8, pp. 247–258). Wiley. https://doi.org/10.1002/9781444303810.ch13
    [Google Scholar]
  51. Huerta, P., Armenteros, I., & Silva, P. G. (2011). Large‐scale architecture in non‐marine basins: The response to the interplay between accommodation space and sediment supply. Sedimentology, 58(7), 1716–1736. https://doi.org/10.1111/j.1365‐3091.2011.01231.x
    [Google Scholar]
  52. Ichiyanagi, K., Imatsu, M., Ide, K., & Shimada, J. (2020). Effects on fluvial discharges of the 2016 Kumamoto earthquakes, Japan. Journal of Hydrology, 583, 124600. https://doi.org/10.1016/j.jhydrol.2020.124600
    [Google Scholar]
  53. Jerolmack, D. J., & Paola, C. (2010). Shredding of environmental signals by sediment transport. Geophysical Research Letters, 37(19), L19401. https://doi.org/10.1029/2010GL044638
    [Google Scholar]
  54. Jones, C. H. (2002). User‐driven integrated software lives: “Paleomag” paleomagnetics analysis on the Macintosh. Computers & Geosciences, 28(10), 1145–1151. https://doi.org/10.1016/S0098‐3004(02)00032‐8
    [Google Scholar]
  55. Kim, W., Connell, S. D., Steel, E., Smith, G. A., & Paola, C. (2011). Mass‐balance control on the interaction of axial and transverse channel systems. Geology, 39(7), 611–614. https://doi.org/10.1130/G31896.1
    [Google Scholar]
  56. Kim, W., & Jerolmack, D. J. (2008). The pulse of calm fan deltas. The Journal of Geology, 116(4), 315–330. https://doi.org/10.1086/588830
    [Google Scholar]
  57. Kim, W., & Paola, C. (2007). Long‐period cyclic sedimentation with constant tectonic forcing in an experimental relay ramp. Geology, 35(4), 331–334. https://doi.org/10.1130/G23194A.1
    [Google Scholar]
  58. Kirschvink, J. L. (1980). The least‐squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal International, 62(3), 699–718. https://doi.org/10.1111/j.1365‐246X.1980.tb02601.x
    [Google Scholar]
  59. Koshnaw, R. I., Horton, B. K., Stockli, D. F., Barber, D. E., & Tamar‐Agha, M. Y. (2020). Sediment routing in the Zagros foreland basin: Drainage reorganization and a shift from axial to transverse sediment dispersal in the Kurdistan region of Iraq. Basin Research, 32(4), 688–715. https://doi.org/10.1111/bre.12391
    [Google Scholar]
  60. Larrea, M. L., Castro, S. M., & Bjerg, E. A. (2014). A software solution for point counting. Petrographic thin section analysis as a case study. Arabian Journal of Geosciences, 7(8), 2981–2989. https://doi.org/10.1007/s12517‐013‐1032‐0
    [Google Scholar]
  61. Leeder, M. R. (2011). Tectonic sedimentology: Sediment systems deciphering global to local tectonics. Sedimentology, 58(1), 2–56. https://doi.org/10.1111/j.1365‐3091.2010.01207.x
    [Google Scholar]
  62. Leier, A. L., DeCelles, P. G., & Pelletier, J. D. (2005). Mountains, monsoons, and megafans. Geology, 33(4), 289–292. https://doi.org/10.1130/G21228.1
    [Google Scholar]
  63. Li, Q., Gasparini, N. M., & Straub, K. M. (2018). Some signals are not the same as they appear: How do erosional landscapes transform tectonic history into sediment flux records?Geology, 46(5), 407–410. https://doi.org/10.1130/G40026.1
    [Google Scholar]
  64. López, M., García, M., Bucher, J., Funes, D. S., D'Elia, L., Bilmes, A., Naipauer, M., Sato, A. M., Valencia, V. A., & Franzese, J. R. (2019). Structural evolution of The Collón Cura basin: Tectonic implications for the north Patagonian Broken Foreland. Journal of South American Earth Sciences, 93, 424–438. https://doi.org/10.1016/j.jsames.2019.04.021
    [Google Scholar]
  65. McFadden, P. L., & McElhinny, M. W. (1988). The combined analysis of remagnetization circles and direct observations in palaeomagnetism. Earth and Planetary Science Letters, 87(1–2), 161–172. https://doi.org/10.1016/0012‐821X(88)90072‐6
    [Google Scholar]
  66. McFadden, P. L., & McElhinny, M. W. (1990). Classification of the reversal test in palaeomagnetism. Geophysical Journal International, 103(3), 725–729. https://doi.org/10.1111/j.1365‐246X.1990.tb05683.x
    [Google Scholar]
  67. Miall, A. (1996). The geology of fluvial deposits: Sedimentary facies, basin analysis and petroleum geology. Springer.
    [Google Scholar]
  68. Miall, A. D. (2014). Fluvial depositional systems (Vol. 14, p. 316). Springer International Publishing.
    [Google Scholar]
  69. Mjøs, R., Walderhaug, O., Prestholm, E., Marzo, M., & Puigdefabregas, C. (1993). Alluvial sedimentation, Special Publication of International Association of Sedimentologists (Vol. 17, pp. 167–184). Wiley.
    [Google Scholar]
  70. Moscariello, A. (2005). Exploration potential of the mature Southern North Sea basin margins: Some unconventional plays based on alluvial and fluvial fan sedimentation models. Geological Society of London, Petroleum Geology Conference Series, 6(1), 595–605. https://doi.org/10.1144/0060595
    [Google Scholar]
  71. Moscariello, A. (2018). Alluvial fans and fluvial fans at the margins of continental sedimentary basins: Geomorphic and sedimentological distinction for geo‐energy exploration and development. Geological Society, London, Special Publications, 440(1), 215–243. https://doi.org/10.1144/SP440.11
    [Google Scholar]
  72. Nichols, G. (2018). High‐resolution estimates of rates of depositional processes from an alluvial fan succession in the Miocene of the Ebro Basin, northern Spain. Geological Society, London, Special Publications, 440(1), 159–173. https://doi.org/10.1144/SP440.12
    [Google Scholar]
  73. Nichols, G. J., & Fisher, J. A. (2007). Processes, facies and architecture of fluvial distributary system deposits. Sedimentary Geology, 195(1–2), 75–90. https://doi.org/10.1016/j.sedgeo.2006.07.004
    [Google Scholar]
  74. Ogg, J. G., Ogg, G. M., & Gradstein, F. M. (2016). A concise geologic time scale: 2016. Elsevier.
    [Google Scholar]
  75. Ortiz‐Jaureguizar, E., & Cladera, G. A. (2006). Paleoenvironmental evolution of southern South America during the Cenozoic. Journal of Arid Environments, 66(3), 498–532. https://doi.org/10.1016/j.jaridenv.2006.01.007
    [Google Scholar]
  76. Orts, D. L., Folguera, A., Encinas, A., Ramos, M., Tobal, J., & Ramos, V. A. (2012). Tectonic development of the North Patagonian Andes and their related Miocene foreland basin (41 30′–43 S). Tectonics, 31, TC3012. https://doi.org/10.1029/2011TC003084
    [Google Scholar]
  77. Palazzesi, L., Barreda, V. D., Cuitiño, J. I., Guler, M. V., Tellería, M. C., & Santos, R. V. (2014). Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift. Nature Communications, 5(1), 1–8. https://doi.org/10.1038/ncomms4558
    [Google Scholar]
  78. Paola, C. (2000). Quantitative models of sedimentary basin filling. Sedimentology, 47, 121–178. https://doi.org/10.1046/j.1365‐3091.2000.00006.x
    [Google Scholar]
  79. Paola, C. (2016). A mind of their own: recent advances in autogenic dynamics in rivers and deltas. https://doi.org/10.2110/sepmsp.106.04
  80. Paola, C., Ganti, V., Mohrig, D., Runkel, A. C., & Straub, K. M. (2018). Time not our time: Physical controls on the preservation and measurement of geologic time. Annual Review of Earth and Planetary Sciences, 46, 409–438. https://doi.org/10.1146/annurev‐earth‐082517‐010129
    [Google Scholar]
  81. Paola, C., Heller, P. L., & Angevine, C. L. (1992). The large‐scale dynamics of grain‐size variation in alluvial basins, 1: Theory. Basin Research, 4(2), 73–90. https://doi.org/10.1111/j.1365‐2117.1992.tb00145.x
    [Google Scholar]
  82. Ramos, M. E., Folguera, A., Fennell, L., Giménez, M., Litvak, V. D., Dzierma, Y., & Ramos, V. A. (2014). Tectonic evolution of the North Patagonian Andes from field and gravity data (39–40 S). Journal of South American Earth Sciences, 51, 59–75. https://doi.org/10.1016/j.jsames.2013.12.010
    [Google Scholar]
  83. Retallack, G. J. (2001). Soils of the past: An introduction to paleopedology (404 p.). Blackwell Science Ltd. https://doi.org/10.1002/9780470698716
    [Google Scholar]
  84. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. P. (2016). Environmental signal propagation in sedimentary systems across timescales. Earth‐Science Reviews, 153, 7–29. https://doi.org/10.1016/j.earscirev.2015.07.012
    [Google Scholar]
  85. Rosenau, M., Melnick, D., & Echtler, H. (2006). Kinematic constraints on intra‐arc shear and strain partitioning in the southern Andes between 38 S and 42 S latitude. Tectonics, 25, TC4013. https://doi.org/10.1029/2005TC001943
    [Google Scholar]
  86. Savignano, E., Mazzoli, S., Arce, M., Franchini, M., Gautheron, C., Paolini, M., & Zattin, M. (2016). (Un) Coupled thrust belt‐foreland deformation in the northern Patagonian Andes: New insights from the Esquel‐Gastre sector (41° 30′–43° S). Tectonics, 35(11), 2636–2656. https://doi.org/10.1002/2016TC004225
    [Google Scholar]
  87. Schumm, S. A. (1963). The disparity between present rates of denudation and orogeny. USGS Professional Paper, 454‐H, H1–H13.
    [Google Scholar]
  88. Sharman, G. R., Sylvester, Z., & Covault, J. A. (2019). Conversion of tectonic and climatic forcings into records of sediment supply and provenance. Scientific Reports, 9(1), 1–7. https://doi.org/10.1038/s41598‐019‐39754‐6
    [Google Scholar]
  89. Smith, G. A. (1986). Coarse‐grained nonmarine volcaniclastic sediment: Terminology and depositional process. Geological Society of America Bulletin, 97(1), 1–10. https://doi.org/10.1130/0016‐7606(1986)97<1:CNVSTA>2.0.CO;2
    [Google Scholar]
  90. Smith, G. A., & Lowe, D. R. (1991). Lahars: Volcano hydrologic‐events and deposition in the debris flow—Hyperconcentrated flow continuum.
  91. Straub, K. M., Duller, R. A., Foreman, B. Z., & Hajek, E. A. (2020). Buffered, incomplete, and shredded: The challenges of reading an imperfect stratigraphic record. Journal of Geophysical Research: Earth Surface, 125, E2019JF005079. https://doi.org/10.1029/2019JF005079
    [Google Scholar]
  92. Streck, M. J., & Grunder, A. L. (1995). Crystallization and welding variations in a widespread ignimbrite sheet; the Rattlesnake Tuff, eastern Oregon, USA. Bulletin of Volcanology, 57(3), 151–169. https://doi.org/10.1007/BF00265035
    [Google Scholar]
  93. Thomson, S. N., Brandon, M. T., Tomkin, J. H., Reiners, P. W., Vásquez, C., & Wilson, N. J. (2010). Glaciation as a destructive and constructive control on mountain building. Nature, 467(7313), 313–317. https://doi.org/10.1038/nature09365
    [Google Scholar]
  94. Torsvik, T. H., Van der Voo, R., Preeden, U., Niocaill, C. M., Steinberger, B., Doubrovine, P. V., van Hinsbergen, D. J. J., Domeier, M., Gaina, C., Tohver, E., Meert, J. G., McCausland, P. J. A., & Cocks, L. R. M. (2012). Phanerozoic polar wander, palaeogeography and dynamics. Earth‐Science Reviews, 114, 325–368. https://doi.org/10.1016/j.earscirev.2012.06.002
    [Google Scholar]
  95. Valero, L., Garcés, M., Cabrera, L., Costa, E., & Sáez, A. (2014). 20 Myr of eccentricity paced lacustrine cycles in the Cenozoic Ebro Basin. Earth and Planetary Science Letters, 408, 183–193. https://doi.org/10.1016/j.epsl.2014.10.007
    [Google Scholar]
  96. Valero, L., Huerta, P., Garcés, M., Armenteros, I., Beamud, E., & Gómez‐Paccard, M. (2017). Linking sedimentation rates and large‐scale architecture for facies prediction in nonmarine basins (Paleogene, Almazán Basin, Spain). Basin Research, 29, 213–232. https://doi.org/10.1111/bre.12145
    [Google Scholar]
  97. Ventra, D., & Clarke, L. E. (2018). Geology and geomorphology of alluvial and fluvial fans: Current progress and research perspectives. Geological Society, London, Special Publications, 440(1), 1–21. https://doi.org/10.1144/SP440.16
    [Google Scholar]
  98. Viseras, C., Calvache, M. L., Soria, J. M., & Fernández, J. (2003). Differential features of alluvial fans controlled by tectonic or eustatic accommodation space. Examples from the Betic Cordillera, Spain. Geomorphology, 50, 181–202. https://doi.org/10.1016/S0169‐555X(02)00214‐3
    [Google Scholar]
  99. Weissmann, G. S., Bennett, G. L., & Lansdale, A. L. (2005). Factors controlling sequence development on Quaternary fluvial fans, San Joaquin Basin, California, USA. Harvey, A.M. & Stokes, M. (eds) Alluvial fans: Geomorphology, sedimentology, dynamics. Geological Society, London, Special Publications, 251, 169–186. https://doi.org/10.1144/GSL.SP.2005.251.01.12
    [Google Scholar]
  100. Whipple, K. X. (2009). The influence of climate on the tectonic evolution of mountain belts. Nature Geoscience, 2(2), 97–104. https://doi.org/10.1038/ngeo413
    [Google Scholar]
  101. Whittaker, A. C. (2012). How do landscapes record tectonics and climate?Lithosphere, 4(2), 160–164. https://doi.org/10.1130/RF.L003.1
    [Google Scholar]
  102. Willett, S. D., McCoy, S. W., Perron, J. T., Goren, L., & Chen, C.‐Y. (2014). Dynamic reorganization of river basins. Science, 343, 1248765. https://doi.org/10.1126/science.1248765
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12821
Loading
/content/journals/10.1111/bre.12821
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error