1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

Pre‐existing structures and their types of interaction with rift faults during the evolution of the northern South China Sea from a convergent to a divergent continental margin.

, Abstract

The northern South China Sea (SCS) margin evolved from the Mesozoic convergent to Cenozoic divergent continental margin, and thus, it developed on a heterogeneous crystalline basement with inherited Mesozoic structures. Pre‐existing structures and their interactions with rift faults have historically not been described or interpreted in the intensely stretched Baiyun sub‐basin. Large‐scale 3D seismic reflection data allow us to identify four types of Mesozoic tectonic fabrics within the basement and explain their genesis: (1) Thin, isolated and north‐dipping seismic reflections 1, interpreted as thrust faults representing orogenic processes. Tilted thick seismic reflections 2 are formed by reactivation of seismic reflections 1 during post‐orogenic extension, which are all related to the NW‐ward subduction of the palaeo‐Pacific plate. (2) Thin, isolated and shallowly dipping seismic reflections 3 and low‐amplitude, semi‐transparent and chaotic seismic reflections 4 represent the low‐angle thrust system and the associated nappe units, which are related to the shift from NW‐ to NNW‐ward subduction of the paleo‐Pacific plate. Subsequently, we investigate the structural interaction between Mesozoic intra‐basement and Cenozoic rift structures. Syn‐rift, post‐rift and long‐term faults are developed in Cenozoic strata, and quantitative statistical and qualitative analyses revealed two main types of structural interactions between them and underlying intra‐basement structures: (1) Rift faults develop with inheritance of intra‐basement structures, including fully and partially inherited faults. (2) Rift faults modify intra‐basement structures, although they are controlled by intra‐basement structures at an earlier stage. Finally, our results reveal the control of pre‐existing structures on the geometry of the Baiyun sub‐basin, especially the selective reactivation of NE‐trending shear zones (SR2), which are influenced by the regional stress field and the width and dip of the shear zones.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12822
2024-01-12
2024-04-28
Loading full text...

Full text loading...

References

  1. Baudon, C., & Cartwright, J. (2008a). Early stage evolution of growth faults: 3D seismic insights from the Levant Basin, eastern Mediterranean. Journal of Structural Geology, 30, 888–898. https://doi.org/10.1016/j.jsg.2008.02.019
    [Google Scholar]
  2. Baudon, C., & Cartwright, J. (2008b). The kinematics of reactivation of normal faults using high resolution throw mapping. Journal of Structural Geology, 30, 1072–1084. https://doi.org/10.1016/j.jsg.2008.04.008
    [Google Scholar]
  3. Baudon, C., & Cartwright, J. A. (2008c). 3D seismic characterisation of an array of blind normal faults in the Levant Basin, eastern Mediterranean. Journal of Structural Geology, 30, 746–760. https://doi.org/10.1016/j.jsg.2007.12.008
    [Google Scholar]
  4. Bird, P. C., Cartwright, J. A., & Davies, T. L. (2015). Basement reactivation in the development of rift basins: An example of reactivated Caledonide structures in the West Orkney Basin. Journal of the Geological Society, 172, 77–85. https://doi.org/10.1144/jgs2013‐098
    [Google Scholar]
  5. Brewer, J. A., Matthews, D. H., Warner, M. R., Hall, J., Smythe, D. K., & Whittington, R. J. (1983). BIRPS deep seismic reflection studies of the British Caledonides. Nature, 305, 206–210. https://doi.org/10.1038/305206a0
    [Google Scholar]
  6. Brun, J.‐P., Sokoutis, D., Tirel, C., Gueydan, F., Van Den Driessche, J., & Beslier, M.‐O. (2018). Crustal versus mantle core complexes. Tectonophysics, 746, 22–45.
    [Google Scholar]
  7. Brun, J. P., Sokoutis, D., & Van, D. D. J. (1994). Analogue modeling of detachment fault systems and core complexes. Geology, 22, 319–322. https://doi.org/10.1130/0091‐7613(1994)0222.3.CO;2
    [Google Scholar]
  8. Camanni, G., & Ye, Q. (2022). The significance of fault reactivation on the Wilson cycle undergone by the northern South China Sea area in the last 60 Myr. Earth‐Science Reviews, 225, 103893. https://doi.org/10.1016/j.earscirev.2021.103893
    [Google Scholar]
  9. Cameselle, A. L., Ranero, C. R., & Barckhausen, U. (2020). Understanding the 3D formation of a wide rift: The Central South China Sea rift system. Tectonics, 39, e2019TC006040. https://doi.org/10.1029/2019TC006040
    [Google Scholar]
  10. Chattopadhyay, A., & Chakra, M. (2013). Influence of pre‐existing pervasive fabrics on fault patterns during orthogonal and oblique rifting: An experimental approach. Marine and Petroleum Geology, 39, 74–91. https://doi.org/10.1016/j.marpetgeo.2012.09.009
    [Google Scholar]
  11. Chu, Y., Lin, W., Faure, M., Xue, Z., Ji, W., & Feng, Z. (2019). Cretaceous episodic extension in the South China Block, East Asia: Evidence from the Yuechengling Massif of Central South China. Tectonics, 38, 3675–3702.
    [Google Scholar]
  12. Clements, B., Burgess, P. M., Hall, R., & Cottam, M. A. (2011). Subsidence and uplift by slab‐related mantle dynamics: A driving mechanism for the late cretaceous and Cenozoic evolution of continental SE Asia?Geological Society, London, Special Publications, 355, 37–51. https://doi.org/10.1144/SP355.3
    [Google Scholar]
  13. Collanega, L., Siuda, K., A.‐L. Jackson, C., Bell, R. E., Coleman, A. J., Lenhart, A., Magee, C., & Breda, A. (2019). Normal fault growth influenced by basement fabrics: The importance of preferential nucleation from pre‐existing structures. Basin Research, 31, 659–687. https://doi.org/10.1111/bre.12327
    [Google Scholar]
  14. Cui, Y., Shao, L., Li, Z.‐X., Zhu, W., Qiao, P., & Zhang, X. (2021). A Mesozoic Andean‐type active continental margin along coastal South China: New geological records from the basement of the northern South China Sea. Gondwana Research, 99, 36–52. https://doi.org/10.1016/j.gr.2021.06.021
    [Google Scholar]
  15. Daly, M. C., Chorowicz, J., & Fairhead, J. D. (1989). Rift basin evolution in Africa: The influence of reactivated steep basement shear zones. Geological Society, London, Special Publications, 44, 309–334. https://doi.org/10.1144/GSL.SP.1989.044.01.17
    [Google Scholar]
  16. DeCelles, P. G. (2004). Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western U.S.A. American Journal of Science, 304, 105–168. https://doi.org/10.2475/ajs.304.2.105
    [Google Scholar]
  17. Deng, C., Fossen, H., Gawthorpe, R. L., Rotevatn, A., Jackson, C. A.‐L., & FazliKhani, H. (2017). Influence of fault reactivation during multiphase rifting: The Oseberg area, northern North Sea rift. Marine and Petroleum Geology, 86, 1252–1272. https://doi.org/10.1016/j.marpetgeo.2017.07.025
    [Google Scholar]
  18. Deng, C., Gawthorpe, R. L., Finch, E., & Fossen, H. (2017). Influence of a pre‐existing basement weakness on normal fault growth during oblique extension: Insights from discrete element modeling. Journal of Structural Geology, 105, 44–61. https://doi.org/10.1016/j.jsg.2017.11.005
    [Google Scholar]
  19. Deng, C., Zhu, R., Han, J., Shu, Y., Wu, Y., Hou, K., & Long, W. (2021). Impact of basement thrust faults on low‐angle normal faults and rift basin evolution: A case study in the Enping Sag, Pearl River Basin. Solid Earth, 12, 2327–2350. https://doi.org/10.5194/se‐12‐2327‐2021
    [Google Scholar]
  20. Deng, H., Ren, J., Pang, X., Rey, P. F., McClay, K. R., Watkinson, I. M., Zheng, J., & Luo, P. (2020). South China Sea documents the transition from wide continental rift to continental break up. Nature Communications, 11, 4583.
    [Google Scholar]
  21. Ding, W., Sun, Z., Mohn, G., Nirrengarten, M., Tugend, J., Manatschal, G., & Li, J. (2020). Lateral evolution of the rift‐to‐drift transition in the South China Sea: Evidence from multi‐channel seismic data and IODP expeditions 367&368 drilling results. Earth and Planetary Science Letters, 531, 115932.
    [Google Scholar]
  22. Engebretson, D. C., Cox, A., & Gordon, R. G. (1985). Relative motions between oceanic and continental plates in the Pacific Basin. Geological Society of America, 206, 1–60. https://doi.org/10.1130/SPE206‐p1
    [Google Scholar]
  23. Faure, M., Sun, Y., Shu, L., Monié, P., & Charvet, J. (1996). Extensional tectonics within a subduction‐type orogen. The case study of the Wugongshan dome (Jiangxi Province, southeastern China). Tectonophysics, 263, 77–106. https://doi.org/10.1016/S0040‐1951(97)81487‐4
    [Google Scholar]
  24. Fazlikhani, H., Aagotnes, S. S., Refvem, M. A., Hamilton‐Wright, J., Bell, R. E., Fossen, H., Gawthorpe, R. L., Jackson, C.A.‐L., & Rotevatn, A. (2021). Strain migration during multiphase extension, Stord Basin, northern North Sea rift. Basin Research, 33, 1474–1496. https://doi.org/10.1111/bre.12522
    [Google Scholar]
  25. Fazlikhani, H., Fossen, H., Gawthorpe, R. L., Faleide, J. I., & Bell, R. E. (2017). Basement structure and its influence on the structural configuration of the northern North Sea rift: Basement Shear Zones in the Northern North Sea. Tectonics, 36, 1151–1177. https://doi.org/10.1002/2017TC004514
    [Google Scholar]
  26. Franke, D., Savva, D., Pubellier, M., Steuer, S., Mouly, B., Auxietre, J.‐L., Meresse, F., & Chamot‐Rooke, N. (2014). The final rifting evolution in the South China Sea. Marine and Petroleum Geology, 58, 704–720. https://doi.org/10.1016/j.marpetgeo.2013.11.020
    [Google Scholar]
  27. Gao, J., Wu, S., McIntosh, K., Mi, L., Yao, B., Chen, Z., & Jia, L. (2015). The continent–ocean transition at the mid‐northern margin of the South China Sea. Tectonophysics, 654, 1–19.
    [Google Scholar]
  28. Giba, M., Walsh, J. J., & Nicol, A. (2012). Segmentation and growth of an obliquely reactivated normal fault. Journal of Structural Geology, 39, 253–267. https://doi.org/10.1016/j.jsg.2012.01.004
    [Google Scholar]
  29. Gibson, G. M., Totterdell, J. M., White, L. T., Mitchell, C. H., Stacey, A. R., Morse, M. P., & Whitaker, A. (2013). Pre‐existing basement structure and its influence on continental rifting and fracture zone development along Australia's southern rifted margin. Journal of the Geological Society, 170, 365–377. https://doi.org/10.1144/jgs2012‐040
    [Google Scholar]
  30. Gresseth, J. L. S., Osmundsen, P. T., & Péron‐Pinvidic, G. (2023). 3D evolution of detachment fault systems in necking domains: Insights from the Klakk Fault Complex and the Frøya high, mid‐Norwegian rifted margin. Tectonics, 42, e2022TC007600. https://doi.org/10.1029/2022TC007600
    [Google Scholar]
  31. Hall, R., & Breitfeld, H. T. (2017). Nature and demise of the proto‐South China Sea. Bulletin of the Geological Society of Malaysia, 63, 61–76.
    [Google Scholar]
  32. Hao, S., Mei, L., Pang, X., Gernigon, L., Paton, D., Zheng, J., Ye, Q., Zhou, Z., & Zhong, Y. (2022). Rifted margin with localized detachment and polyphase magmatism: A new model of the northern South China Sea. GSA Bulletin, 135, 1667–1687. https://doi.org/10.1130/B36264.1
    [Google Scholar]
  33. Harland, W. B. (1971). Tectonic transpression in Caledonian Spitsbergen. Geological Magazine, 108, 27–41. https://doi.org/10.1017/S0016756800050937
    [Google Scholar]
  34. Hayes, D. E., & Lewis, S. D. (1984). A geophysical study of the Manila Trench, Luzon, Philippines: 1. Crustal structure, gravity, and regional tectonic evolution. Journal of Geophysical Research, 89, 9171. https://doi.org/10.1029/JB089iB11p09171
    [Google Scholar]
  35. Huang, L., Liu, C., Zhao, J., & Zhang, D. (2020). Synrift basin inversion: Significant role of synchronous strike‐slip motion in a rift basin. GSA Bulletin, 132, 2572–2586. https://doi.org/10.1130/B35435.1
    [Google Scholar]
  36. Huyghe, P., & Mugnier, J.‐L. (1992). The influence of depth on reactivation in normal faulting. Journal of Structural Geology, 14, 991–998. https://doi.org/10.1016/0191‐8141(92)90030‐Z
    [Google Scholar]
  37. Jahn, B.‐M., Chen, P. Y., & Yen, T. P. (1976). Rb‐Sr ages of granitic rocks in southeastern China and their tectonic significance. Geological Society of America Bulletin, 87, 763. https://doi.org/10.1130/0016‐7606(1976)87<763:RAOGRI>2.0.CO;2
    [Google Scholar]
  38. Jolivet, L., Lecomte, E., Huet, B., Denèle, Y., Lacombe, O., Labrousse, L., Le Pourhiet, L., & Mehl, C. (2010). The north Cycladic detachment system. Earth and Planetary Science Letters, 289, 87–104. https://doi.org/10.1016/j.epsl.2009.10.032
    [Google Scholar]
  39. Kirkpatrick, J. D., Bezerra, F. H. R., Shipton, Z. K., Do Nascimento, A. F., Pytharouli, S. I., Lunn, R. J., & Soden, A. M. (2013). Scale‐dependent influence of pre‐existing basement shear zones on rift faulting: A case study from NE Brazil. Journal of the Geological Society, 170, 237–247. https://doi.org/10.1144/jgs2012‐043
    [Google Scholar]
  40. Larsen, H. C., Mohn, G., Nirrengarten, M., Sun, Z., Stock, J., Jian, Z., Klaus, A., Alvarez‐Zarikian, C. A., Boaga, J., Bowden, S. A., Briais, A., Chen, Y., Cukur, D., Dadd, K., Ding, W., Dorais, M., Ferré, E. C., Ferreira, F., Furusawa, A., … Zhong, L. (2018). Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience, 11, 782–789.
    [Google Scholar]
  41. Li, J., Cawood, P. A., Ratschbacher, L., Zhang, Y., Dong, S., Xin, Y., Yang, H., & Zhang, P. (2020). Building Southeast China in the late Mesozoic: Insights from alternating episodes of shortening and extension along the Lianhuashan fault zone. Earth‐Science Reviews, 201, 103056.
    [Google Scholar]
  42. Li, G., Mei, L., Pang, X., Zheng, J., Ye, Q., & Hao, S. (2022). Magmatism within the northern margin of the South China Sea during the post‐rift stage: An overview, and new insights into the geodynamics. Earth‐Science Reviews, 225, 103917. https://doi.org/10.1016/j.earscirev.2022.103917
    [Google Scholar]
  43. Li, J., Shi, W., Zhang, Y., Dong, S., & Ma, Z. (2016). Thermal evolution of the Hengshan extensional dome in central South China and its tectonic implications: New insights into low‐angle detachment formation. Gondwana Research, 35, 425–441. https://doi.org/10.1016/j.gr.2015.06.008
    [Google Scholar]
  44. Li, F., Sun, Z., & Yang, H. (2018). Possible spatial distribution of the Mesozoic volcanic arc in the present‐day South China Sea continental margin and its tectonic implications. Journal of Geophysical Research: Solid Earth. 123, 6215–6235https://doi.org/10.1029/2017JB014861
    [Google Scholar]
  45. Li, F., Sun, Z., Yang, H., Lin, J., Stock, J. M., Zhao, Z., Xu, H., & Sun, L. (2020). Continental interior and edge breakup at convergent margins induced by subduction direction reversal: A numerical modeling study applied to the South China Sea margin. Tectonics, 39, e2020TC006409. https://doi.org/10.1029/2020TC006409
    [Google Scholar]
  46. Li, J., Zhang, Y., Dong, S., & Johnston, S. T. (2014). Cretaceous tectonic evolution of South China: A preliminary synthesis. Earth‐Science Reviews, 134, 98–136.
    [Google Scholar]
  47. Liotta, D., & Ranalli, G. (1999). Correlation between seismic reflectivity and rheology in extended lithosphere: Southern Tuscany, inner northern Apennines, Italy. Tectonophysics, 315, 109–122. https://doi.org/10.1016/S0040‐1951(99)00292‐9
    [Google Scholar]
  48. Lister, G. S., & Baldwin, S. L. (1993). Plutonism and the origin of metamorphic core complexes. Geology, 21, 607.
    [Google Scholar]
  49. Liu, X., Hou, M., Niu, C., Wang, Q., Zhang, X., Ye, T., Cui, P., & Hao, Y. (2021). Mesozoic–Cenozoic tectonic controls on the formation of large‐scale metamorphic rock buried‐hill reservoirs in Bozhong Sag, eastern China. Geological Journal, 56, 5109–5124. https://doi.org/10.1002/gj.4226
    [Google Scholar]
  50. Maruyama, S., Isozaki, Y., Kimura, G., & Terabayashi, M. (1997). Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. The Island Arc, 6, 121–142. https://doi.org/10.1111/j.1440‐1738.1997.tb00043.x
    [Google Scholar]
  51. Moore, G. F., Bangs, N. L., Taira, A., Kuramoto, S., Pangborn, E., & Tobin, H. J. (2007). Three‐dimensional splay fault geometry and implications for tsunami generation. Science, 318, 1128–1131.
    [Google Scholar]
  52. Morley, C. K. (2010). Stress re‐orientation along zones of weak fabrics in rifts: An explanation for pure extension in ‘oblique’ rift segments?Earth and Planetary Science Letters, 297, 667–673. https://doi.org/10.1016/j.epsl.2010.07.022
    [Google Scholar]
  53. Morley, C. K. (2014). The widespread occurrence of low‐angle normal faults in a rift setting: Review of examples from Thailand, and implications for their origin and evolution. Earth‐Science Reviews, 133, 18–42. https://doi.org/10.1016/j.earscirev.2014.02.007
    [Google Scholar]
  54. Morley, C. K., Haranya, C., Phoosongsee, W., Pongwapee, S., Kornsawan, A., & Wonganan, N. (2004). Activation of rift oblique and rift parallel pre‐existing fabrics during extension and their effect on deformation style: Examples from the rifts of Thailand. Journal of Structural Geology, 26, 1803–1829.
    [Google Scholar]
  55. Odinsen, T., Reemst, P., Beek, P. V. D., Faleide, J. I., & Gabrielsen, R. H. (2000). Permo‐Triassic and Jurassic extension in the northern North Sea: Results from tectonostratigraphic forward modelling. Geological Society, London, Special Publications, 167, 83–103. https://doi.org/10.1144/GSL.SP.2000.167.01.05
    [Google Scholar]
  56. Osagiede, E. E., Rotevatn, A., Gawthorpe, R., Kristensen, T. B., Jackson, C. A.‐L., & Marsh, N. (2020). Pre‐existing intra‐basement shear zones influence growth and geometry of non‐colinear normal faults, western Utsira High–Heimdal Terrace, North Sea. Journal of Structural Geology, 130, 103908. https://doi.org/10.1016/j.jsg.2019.103908
    [Google Scholar]
  57. Pang, X., Zheng, J., Mei, L., Liu, B., Zhang, Z., Wu, Z., & Feng, X. (2021). Characteristics and origin of continental marginal fault depressions under the background of preexisting subduction continental margin, northern South China Sea, China. Petroleum Exploration and Development, 48, 1237–1250. https://doi.org/10.1016/S1876‐3804(21)60106‐4
    [Google Scholar]
  58. Paton, D. A., Mortimer, E. J., Hodgson, N., & Van Der Spuy, D. (2017). The missing piece of the South Atlantic jigsaw: When continental break‐up ignores crustal heterogeneity. Geological Society, London, Special Publications, 438, 195–210. https://doi.org/10.1144/SP438.8
    [Google Scholar]
  59. Peacock, D. C. P., & Banks, G. J. (2020). Basement highs: Definitions, characterisation and origins. Basin Research, 32, 1685–1710. https://doi.org/10.1111/bre.12448
    [Google Scholar]
  60. Phillips, T. B., Fazlikhani, H., Gawthorpe, R. L., Fossen, H., Jackson, C.A.‐L., Bell, R. E., Faleide, J. I., & Rotevatn, A. (2019). The influence of structural inheritance and multiphase extension on rift development, the Northern North Sea. Tectonics, 38, 4099–4126. https://doi.org/10.1029/2019TC005756
    [Google Scholar]
  61. Phillips, T. B., Jackson, C. A.‐L., Bell, R. E., Duffy, O. B., & Fossen, H. (2016). Reactivation of intrabasement structures during rifting: A case study from offshore southern Norway. Journal of Structural Geology, 91, 54–73. https://doi.org/10.1016/j.jsg.2016.08.008
    [Google Scholar]
  62. Reeve, M. T., Bell, R. E., Duffy, O. B., Jackson, C. A.‐L., & Sansom, E. (2015). The growth of non‐colinear normal fault systems; what can we learn from 3D seismic reflection data?Journal of Structural Geology, 70, 141–155. https://doi.org/10.1016/j.jsg.2014.11.007
    [Google Scholar]
  63. Reeve, M. T., Bell, R. E., & Jackson, C. A.‐L. (2014). Origin and significance of intra‐basement seismic reflections offshore western Norway. Journal of the Geological Society, 171, 1–4. https://doi.org/10.1144/jgs2013‐020
    [Google Scholar]
  64. Ren, J., Tamaki, K., Li, S., & Junxia, Z. (2002). Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas. Tectonophysics, 344, 175–205. https://doi.org/10.1016/S0040‐1951(01)00271‐2
    [Google Scholar]
  65. Reston, T. J., Leythaeuser, T., Booth‐Rea, G., Sawyer, D., Klaeschen, D., & Long, C. (2007). Movement along a low‐angle normal fault: The S reflector west of Spain: Low‐angle normal faults. Geochemistry, Geophysics, Geosystems, 8, Q06002.
    [Google Scholar]
  66. Reston, T. J., & McDermott, K. G. (2011). Successive detachment faults and mantle unroofing at magma‐poor rifted margins. Geology, 39, 1071–1074.
    [Google Scholar]
  67. Reston, T. J., & Ranero, C. R. (2011). The 3‐D geometry of detachment faulting at mid‐ocean ridges: Detachment faulting at mid‐ocean ridges. Geochemistry, Geophysics, Geosystems, 12, Q0AG05.
    [Google Scholar]
  68. Robin, P.‐Y. F. (1979). Theory of metamorphic segregation and related processes. Geochimica et Cosmochimica Acta, 43, 1587–1600. https://doi.org/10.1016/0016‐7037(79)90179‐0
    [Google Scholar]
  69. Salomon, E., Koehn, D., & Passchier, C. (2015). Brittle reactivation of ductile shear zones in NW Namibia in relation to South Atlantic rifting: Brittle shear zone reactivation. Tectonics, 34, 70–85. https://doi.org/10.1002/2014TC003728
    [Google Scholar]
  70. Savva, D., Pubellier, M., Franke, D., Chamot‐Rooke, N., Meresse, F., Steuer, S., & Auxietre, J. L. (2014). Different expressions of rifting on the South China Sea margins. Marine and Petroleum Geology, 58, 579–598. https://doi.org/10.1016/j.marpetgeo.2014.05.023
    [Google Scholar]
  71. Schiffer, C., Doré, A. G., Foulger, G. R., Franke, D., Geoffroy, L., Gernigon, L., Holdsworth, B., Kusznir, N., Lundin, E., McCaffrey, K., Peace, A. L., Petersen, K. D., Phillips, T. B., Stephenson, R., Stoker, M. S., & Welford, J. K. (2020). Structural inheritance in the North Atlantic. Earth‐Science Reviews, 206, 102975. https://doi.org/10.1016/j.earscirev.2019.102975
    [Google Scholar]
  72. Schlische, R. W., Young, S. S., Ackermann, R. V., & Gupta, A. (1996). Geometry and scaling relations of a population of very small rift‐related normal faults. Geology, 24, 683. https://doi.org/10.1130/0091‐7613(1996)024<0683:GASROA>2.3.CO;2
    [Google Scholar]
  73. Shu, L. S., Zhou, X. M., Deng, P., Wang, B., Jiang, S. Y., Yu, J. H., & Zhao, X. X. (2009). Mesozoic tectonic evolution of the Southeast China Block: New insights from basin analysis. Journal of Asian Earth Sciences, 34, 376–391. https://doi.org/10.1016/j.jseaes.2008.06.004
    [Google Scholar]
  74. Strugale, M., Schmitt, R. d. S., & Cartwright, J. (2021). Basement geology and its controls on the nucleation and growth of rift faults in the northern Campos Basin, offshore Brazil. Basin Research, 33, 1906–1933. https://doi.org/10.1111/bre.12540
    [Google Scholar]
  75. Sun, L., Ling, H., Zhao, K., Chen, P., Chen, W., Sun, T., Shen, W., & Huang, G. (2017). Petrogenesis of Early Cretaceous adakitic granodiorite: Implication for a crust thickening event within the Cathaysia Block, South China. Science China Earth Sciences, 60, 1237–1255. https://doi.org/10.1007/s11430‐016‐5200‐y
    [Google Scholar]
  76. Sun, Z., Lin, J., Qiu, N., Jian, Z., Wang, P., Pang, X., Zheng, J., & Zhu, B. (2019). The role of magmatism in the thinning and breakup of the South China Sea continental margin. National Science Review, 6, 871–876. https://doi.org/10.1093/nsr/nwz116
    [Google Scholar]
  77. Suo, Y., Li, S., Peng, G., du, X., Zhou, J., Wang, P., Wang, G., Somerville, I., Diao, Y., Liu, Z., Fu, X., Liu, B., & Cao, X. (2022). Cenozoic basement‐involved rifting of the northern South China Sea margin. Gondwana Research, 120, 20–30. https://doi.org/10.1016/j.gr.2022.02.017
    [Google Scholar]
  78. Tong, H., & Yin, A. (2011). Reactivation tendency analysis: A theory for predicting the temporal evolution of preexisting weakness under uniform stress state. Tectonophysics, 503, 195–200. https://doi.org/10.1016/j.tecto.2011.02.012
    [Google Scholar]
  79. Trice, R. (2014). Basement exploration, west of Shetlands: Progress in opening a new play on the UKCS. Geological Society, London, Special Publications, 397, 81–105. https://doi.org/10.1144/SP397.3
    [Google Scholar]
  80. Wang, C.‐Y., Okaya, D. A., Ruppert, C., Davis, G. A., Guo, T.‐S., Zhong, Z., & Wenk, H.‐R. (1989). Seismic reflectivity of the Whipple Mountain shear zone in southern California. Journal of Geophysical Research: Solid Earth, 94, 2989–3005. https://doi.org/10.1029/JB094iB03p02989
    [Google Scholar]
  81. Wang, J., Pang, X., Liu, B., Zheng, J., & Wang, H. (2018). The Baiyun and Liwan Sags: Two supradetachment basins on the passive continental margin of the northern South China Sea. Marine and Petroleum Geology, 95, 206–218.
    [Google Scholar]
  82. Wei, D., Jiang, S., Liu, J., Li, S., Guo, L., Somerville, I., Guan, X., Liu, Y., & Chen, Y. (2022). Mesozoic magmatic arc in east Asian continental margin triggered by paleo‐Pacific plate subduction: Constraints from gravity and magnetic anomalies. Tectonophysics, 844, 229625. https://doi.org/10.1016/j.tecto.2022.229625
    [Google Scholar]
  83. Wiest, J. D., Wrona, T., Bauck, M. S., Fossen, H., Gawthorpe, R. L., Osmundsen, P. T., & Faleide, J. I. (2020). From Caledonian collapse to North Sea Rift: The extended history of a metamorphic Core complex. Tectonics, 39, e2020TC006178. https://doi.org/10.1029/2020TC006178
    [Google Scholar]
  84. Wilson, R. W., Houseman, G. A., Buiter, S. J. H., McCaffrey, K. J. W., & Doré, A. G. (2019). Fifty years of the Wilson Cycle concept in plate tectonics: An overview. Geological Society, London, Special Publications, 470, 1–17. https://doi.org/10.1144/SP470‐2019‐58
    [Google Scholar]
  85. Woodcock, N. H. (1990). Transpressive Acadian deformation across the Central Wales lineament. Journal of Structural Geology, 12, 329–337. https://doi.org/10.1016/0191‐8141(90)90017‐S
    [Google Scholar]
  86. Wu, L., Mei, L., Paton, D. A., Liu, Y., Shen, C., Liu, Z., Luo, J., Min, C., Li, M., & Wen, H. (2020). Basement structures have crucial influence on rift development: Insights from the Jianghan Basin, Central China. Tectonics, 39, e2019TC005671. https://doi.org/10.1029/2019TC005671
    [Google Scholar]
  87. Xu, C., Zhang, L., Shi, H., Brix, M. R., Huhma, H., Chen, L., Zhang, M., & Zhou, Z. (2017). Tracing an Early Jurassic magmatic arc from South to East China seas: Early Jurassic magmatic arc in SE China. Tectonics, 36, 466–492. https://doi.org/10.1002/2016TC004446
    [Google Scholar]
  88. Xu, G.‐Q., Wu, S.‐H., Zhang, L., Li, X.‐G., Yi, H., Lei, L., & Xu, X. (2013). Stratigraphic division and depositional processes for the Mesozoic basin in Northern South China Sea. Marine Geophysical Research, 34, 175–194. https://doi.org/10.1007/s11001‐013‐9201‐9
    [Google Scholar]
  89. Yan, P., Wang, L., & Wang, Y. (2014). Late Mesozoic compressional folds in Dongsha Waters, the northern margin of the South China Sea. Tectonophysics, 615–616, 213–223. https://doi.org/10.1016/j.tecto.2014.01.009
    [Google Scholar]
  90. Ye, Q., Mei, L., Jiang, D., Xu, X., Delogkos, E., Zhang, L., & Camanni, G. (2022). 3‐D structure and development of a metamorphic core complex in the northern South China Sea rifted margin. Journal of Geophysical Research Solid Earth, 127, e2021JB022595. https://doi.org/10.1029/2021JB022595
    [Google Scholar]
  91. Ye, Q., Mei, L., Shi, H., Camanni, G., Shu, Y., Wu, J., Yu, L., Deng, P., & Li, G. (2018). The late cretaceous tectonic evolution of the South China Sea area: An overview, and new perspectives from 3D seismic reflection data. Earth‐Science Reviews, 187, 186–204. https://doi.org/10.1016/j.earscirev.2018.09.013
    [Google Scholar]
  92. Ye, Q., Mei, L., Shi, H., Du, J., Deng, P., Shu, Y., & Camanni, G. (2020). The influence of pre‐existing basement faults on the Cenozoic structure and evolution of the proximal domain, northern South China Sea rifted margin. Tectonics, 39, e2019TC005845. https://doi.org/10.1029/2019TC005845
    [Google Scholar]
  93. Ye, Q., Mei, L., Shi, H., Shu, Y., Camanni, G., & Wu, J. (2018). A low‐angle normal fault and basement structures within the Enping sag, Pearl River Mouth Basin: Insights into Late Mesozoic to Early Cenozoic tectonic evolution of the South China Sea area. Tectonophysics, 731–732, 1–16. https://doi.org/10.1016/j.tecto.2018.03.003
    [Google Scholar]
  94. Zeng, Z., Zhu, H., Yang, X., Zhang, G., & Zeng, H. (2019). Three‐dimensional imaging of Miocene volcanic effusive and conduit facies: Implications for the magmatism and seafloor spreading of the South China Sea. Marine and Petroleum Geology, 109, 193–207. https://doi.org/10.1016/j.marpetgeo.2019.06.024
    [Google Scholar]
  95. Zhang, C., Sun, Z., Manatschal, G., Pang, X., Qiu, N., Su, M., Zheng, J., Li, H., Gu, Y., Zhang, J., & Zhao, Y. (2021). Syn‐rift magmatic characteristics and evolution at a sediment‐rich margin: Insights from high‐resolution seismic data from the South China Sea. Gondwana Research, 91, 81–96.
    [Google Scholar]
  96. Zhang, Y., Qiu, E., Dong, S., Li, J., & Shi, W. (2022). Late Mesozoic intracontinental deformation and magmatism in north and NE China in response to multi‐plate convergence in NE Asia: An overview and new view. Tectonophysics, 835, 229377. https://doi.org/10.1016/j.tecto.2022.229377
    [Google Scholar]
  97. Zhao, F., Alves, T. M., Wu, S., Li, W., Huuse, M., Mi, L., Sun, Q., & Ma, B. (2016). Prolonged post‐rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea). Earth and Planetary Science Letters, 445, 79–91. https://doi.org/10.1016/j.epsl.2016.04.001
    [Google Scholar]
  98. Zhao, F., Alves, T. M., Xia, S., Li, W., Wang, L., Mi, L., Wu, S., Cao, J., & Fan, C. (2020). Along‐strike segmentation of the South China Sea margin imposed by inherited pre‐rift basement structures. Earth and Planetary Science Letters, 530, 115862. https://doi.org/10.1016/j.epsl.2019.115862
    [Google Scholar]
  99. Zhao, X., Jin, F., Wang, Q., & Bai, G. (2015). Buried‐hill play, Jizhong subbasin, Bohai Bay basin: A review and future propespectivity. AAPG Bulletin, 99, 1–26.
    [Google Scholar]
  100. Zhao, Y., Ren, J., Pang, X., Yang, L., & Zheng, J. (2018). Structural style, formation of low angle normal fault and its controls on the evolution of Baiyun Rift, northern margin of the South China Sea. Marine and Petroleum Geology, 89, 687–700. https://doi.org/10.1016/j.marpetgeo.2017.11.001
    [Google Scholar]
  101. Zhao, Z., Sun, Z., Qiu, N., Zhao, M., Zhang, J., Li, F., Lin, J., & Young Lee, E. (2022). The paleo‐lithospheric structure and rifting‐magmatic processes of the northern South China Sea passive margin. Gondwana Research, 120, 162–174. https://doi.org/10.1016/j.gr.2022.06.015
    [Google Scholar]
  102. Zhou, D., Wang, W., Wang, J., Pang, X., Cai, D., & Sun, Z. (2006). Mesozoic subduction‐accretion zone in northeastern South China Sea inferred from geophysical interpretations. Science in China Series D, 49, 471–482. https://doi.org/10.1007/s11430‐006‐0471‐9
    [Google Scholar]
  103. Zhou, J., Li, S., Suo, Y., Zhang, L., Du, X., Cao, X., Wang, G., Li, F., Liu, Z., Liu, J., Wang, P., & Somerville, I. (2022). NE‐trending transtensional faulting in the Pearl River mouth basin of the northern South China Sea margin. Gondwana Research, 120, 4–19. https://doi.org/10.1016/j.gr.2022.02.016
    [Google Scholar]
  104. Zhou, Z., Mei, L., Liu, J., Zheng, J., Chen, L., & Hao, S. (2018). Continentward‐dipping detachment fault system and asymmetric rift structure of the Baiyun Sag, northern South China Sea. Tectonophysics, 726, 121–136. https://doi.org/10.1016/j.tecto.2018.02.002
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12822
Loading
/content/journals/10.1111/bre.12822
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error