1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

Examples of architectural styles observed in the study area and a comparison with proximal, medial, and distal areas of a modern fluvial fan. (a) Amalgamated channel fills and minor floodplain, interpreted as proximal fan deposits. The degree of channel amalgamation is highest in the most proximal sector where the fan area is smallest, and the aggradation rates and channel‐return frequency are highest. (b) Heterolithic channel fills and floodplain, interpreted as medial fan deposits. Increased spacing between channel deposits and decreased channel belt size are attributed to losses from infiltration and to the medial fan's larger area, allowing for greater preservation potential for mudrock‐prone floodplain deposits. (c) Isolated channel fills and dominant floodplain, interpreted as distal fan deposits. The more isolated channels are thought to result from a continued widening of the area covered by the fan and additional decreases in discharge due to losses from infiltration (d) Satellite image obtained from Google Earth of a 60‐km long fluvial fan in the Taklamakan Desert, Xinjiang, China with approximate locations of modern proximal, medial and distal fan annotated.

, Abstract

Basin‐scale outcrop analyses of fluvial architecture in the Palaeogene San Juan Basin, New Mexico, document lateral and vertical trends in channel, floodplain and palaeosol characteristics. Herein, the uppermost part of the Palaeocene Nacimiento Formation and lower Eocene Cuba Mesa and Regina Members of the San Jose Formation are identified as deposits of large fluvial fans based on trends observed across the basin. Stratigraphic trends suggest two packages originated by fluvial fan progradation. Progradation of the lower fan system provides a new explanation for the transitional nature of a disconformity at the Nacimiento–San Jose Formation contact, previously thought to be a low‐angle unconformity. The two fan systems are separated by a retrogradational interval that culminates in a depositional hiatus at the contact between the Cuba Mesa and Regina Members. This, combined with poor age constraints, indicates that the duration of the disconformity at the base of the Cuba Mesa Member may have been overestimated. Furthermore, the succession is interpreted as deposits of variable‐discharge rivers, based on the combined abundance of upper flow regime and high deposition rate sedimentary structures indicative of intense flooding events, preservation of in‐channel bioturbation and paedogenic modification indicating periods of prolonged dryness, lack of identifiable bar strata and alternations of poorly drained and well‐drained floodplain deposits with pedofacies indicating alternating wet–dry cycles. This dataset adds to a growing body of evidence linking the formation of large fluvial fans to discharge variability and thus to hydroclimates with significant inter‐ and intra‐annual precipitation variability and intense rainfall. A long‐term stratigraphic shift from poorly drained to well‐drained floodplain deposits across two progradational fan successions indicates that a predictive model suggesting downstream decreases in soil drainage conditions is not encompassing of all large fan systems, and instead suggests a transition to a more arid climate across the Palaeocene–Eocene boundary.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12823
2024-01-12
2024-04-28
Loading full text...

Full text loading...

References

  1. Abdullatif, O. M. (1989). Channel‐fill and sheet‐flood facies sequences in the ephemeral terminal River Gash, Kassala, Sudan. Sedimentary Geology, 63(1–2), 171–184. https://doi.org/10.1016/0037‐0738(89)90077‐8
    [Google Scholar]
  2. Alexander, J., Bridge, J. S., Cheel, R. J., & Leclair, S. F. (2001). Bedforms and associated sedimentary structures formed under supercritical water flows over aggrading sand beds. Sedimentology, 48, 133–152. https://doi.org/10.1046/j.1365‐3091.2001.00357.x
    [Google Scholar]
  3. Alexander, J., Fielding, C. R., & Pocock, G. D. (1999). Flood behaviour of the Burdekin River, tropical North Queensland, Australia. Geological Society, London, Special Publications, 163(1), 27–40. https://doi.org/10.1144/GSL.SP.1999.163.01.03
    [Google Scholar]
  4. Aliyuda, K., Howell, J., Usman, M. B., Bello, A. M., Maina, B., & Abubakar, U. (2019). Depositional variability of an ancient distributive fluvial system: The upper member of the lower cretaceous Bima formation, northern Benue trough, Nigeria. Journal of African Earth Sciences, 159, 1–9. https://doi.org/10.1016/j.jafrearsci.2019.103600
    [Google Scholar]
  5. Allen, J. P., Fielding, C. R., Gibling, M. R., & Rygel, M. C. (2014). Recognizing products of palaeoclimate fluctuation in the fluvial stratigraphic record: An example from the Pennsylvanian to lower Permian of Cape Breton Island, Nova Scotia. Sedimentology, 61, 1332–1381. https://doi.org/10.1111/sed.12102
    [Google Scholar]
  6. Allen, J. R. L. (1984). Sedimentary structures: Their character and physical basis. Elsevier.
    [Google Scholar]
  7. Alroy, J., Koch, P. L., & Zachos, J. C. (2000). Global climate change and North American mammalian evolution. Paleobiology, 26(sp4), 259–288. https://doi.org/10.1666/0094‐8373(2000)26[259:GCCANA]2.0.CO;2
    [Google Scholar]
  8. Assine, M. L. (2005). River avulsions on the Taquari megafan, Pantanal wetland, Brazil. Tropical Rivers, 70(3), 357–371. https://doi.org/10.1016/j.geomorph.2005.02.013
    [Google Scholar]
  9. Assine, M. L., Corradini, F. A., Pupim, F. N., & McGlue, M. M. (2014). Channel arrangements and depositional styles in the São Lourenço fluvial megafan, Brazilian Pantanal wetland. Sedimentary Geology, 301, 172–184. https://doi.org/10.1016/j.sedgeo.2013.11.007
    [Google Scholar]
  10. Assine, M. L., & Silva, A. (2009). Contrasting fluvial styles of the Paraguay River in the northwestern border of the Pantanal wetland, Brazil. Geomorphology, 113(3–4), 189–199. https://doi.org/10.1016/j.geomorph.2009.03.012
    [Google Scholar]
  11. Baltz, E. H. (1967). Stratigraphy and regional tectonic implications of part of upper cretaceous and tertiary rocks, east‐Central San Juan Basin, New Mexico. U.S. Geological Survey, Professional Paper, 552, 101. https://doi.org/10.3133/pp552
    [Google Scholar]
  12. Barnes, H., Baltz, E., Jr., & Hayes, P. (1954). Geology and fuel resources of the red Mesa area, La Plata and Montezuma counties, Colorado [Oil and Gas Investigations Map OM‐149]. U.S. Geological Survey.
    [Google Scholar]
  13. Batezelli, A., Ladeira, F. S. B., do Nascimento, D. L., & da Silva, M. L. (2019). Facies and palaeosol analysis in a progradational distributive fluvial system from the Campanian–Maastrichtian Bauru Group, Brazil. Sedimentology, 66(2), 699–735. https://doi.org/10.1111/sed.12507
    [Google Scholar]
  14. Berendsen, H. J. A., & Stouthamer, E. (2001). Palaeogeographic development of the Rhine‐Meuse Delta, The Netherlands. Assen.
    [Google Scholar]
  15. Bigham, J. M., Fitzpatrick, R. W., & Schulze, D. G. (2002). Iron oxides. In J. B.Dixon & D. G.Schulze (Eds.), SSSA book series: Vol. 7. Soil mineralogy with environmental applications (pp. 323–366). Wiley. https://doi.org/10.2136/sssabookser7.c10
    [Google Scholar]
  16. Billi, P. (2007). Morphology and sediment dynamics of ephemeral stream terminal distributary systems in the Kobo Basin (northern Welo, Ethiopia). Drylands: Linking landscape processes to sedimentary. Environments, 85(1), 98–113. https://doi.org/10.1016/j.geomorph.2006.03.012
    [Google Scholar]
  17. Blair, T. C. (1987). Tectonic and hydrologic controls on cyclic alluvial fan, fluvial, and lacustrine rift‐basin sedimentation, Jurassic‐lowermost cretaceous Todos Santos formation, Chiapas, Mexico. Journal of Sedimentary Research, 57(5), 845–862. https://doi.org/10.1306/212F8C83‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  18. Blair, T. C., & McPherson, J. G. (1994). Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. Journal of Sedimentary Research, 64(3a), 450–489. https://doi.org/10.1306/D4267DDE‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  19. Bridge, J. S., & Leeder, M. R. (1979). A simulation model of alluvial stratigraphy. Sedimentology, 26(5), 617–644. https://doi.org/10.1111/j.1365‐3091.1979.tb00935.x
    [Google Scholar]
  20. Bryant, M., Falk, P., & Paola, C. (1995). Experimental study of avulsion frequency and rate of deposition. Geology, 23(4), 365–368. https://doi.org/10.1130/0091‐7613(1995)023<0365:ESOAFA>2.3.CO;2
    [Google Scholar]
  21. Burnham, B. S., & Hodgetts, D. (2018). Quantifying spatial and architectural relationships from fluvial outcrops. Geosphere, 15(1), 236–253. https://doi.org/10.1130/GES01574.1
    [Google Scholar]
  22. Butler, R. F., & Lindsay, E. H. (1985). Mineralogy of magnetic minerals and revised magnetic polarity stratigraphy of continental sediments, San Juan Basin, New Mexico. The Journal of Geology, 93(5), 535–554. https://doi.org/10.1086/628979
    [Google Scholar]
  23. Cain, S. A., & Mountney, N. P. (2009). Spatial and temporal evolution of a terminal fluvial fan system: The Permian organ rock formation, south‐East Utah, USA. Sedimentology, 56(6), 1774–1800. https://doi.org/10.1111/j.1365‐3091.2009.01057.x
    [Google Scholar]
  24. Carling, P. A., & Leclair, S. F. (2019). Alluvial stratification styles in a large, flash‐flood influenced dryland river: The Luni River, Thar Desert, north‐West India. Sedimentology, 66(1), 102–128. https://doi.org/10.1111/sed.12487
    [Google Scholar]
  25. Carraro, D., Ventra, D., & Moscariello, A. (2023). Anatomy of a fluvial paleo‐fan: Sedimentological and architectural trends of the Paleocene‐Eocene Wasatch‐Colton system (western Uinta Basin, Utah, U.S.A.). Journal of Sedimentary Research, 93, 370–412. https://doi.org/10.2110/jsr.2022.095
    [Google Scholar]
  26. Cartigny, M. J. B., Ventra, D., Postma, G., & van Den Berg, J. H. (2014). Morphodynamics and sedimentary structures of bedforms under supercritical‐flow conditions: New insights from flume experiments. Sedimentology, 61(3), 712–748. https://doi.org/10.1111/sed.12076
    [Google Scholar]
  27. Cather, S. M. (2004). Laramide orogeny in central and northern New Mexico and southern Colorado. In G. H.Mack & K. A.Giles (Eds.), The geology of New Mexico, a geologic history: New Mexico geological society special publication (Vol. 11, pp. 203–248). New Mexico Geologic Society.
    [Google Scholar]
  28. Cather, S. M., Heizler, M. T., & Williamson, T. E. (2019). Laramide fluvial evolution of the San Juan Basin, New Mexico and Colorado: Paleocurrent and detrital‐sanidine age constraints from the Paleocene Nacimiento and animas formations. Geosphere, 15(5), 1641–1664. https://doi.org/10.1130/GES02072.1
    [Google Scholar]
  29. Chakraborty, T., & Ghosh, P. (2010). The geomorphology and sedimentology of the Tista megafan, Darjeeling Himalaya: Implications for megafan building processes. Alluvial Fans: From Reconstructing Past Environments to Identifying Contemporary Hazards, 115(3), 252–266. https://doi.org/10.1016/j.geomorph.2009.06.035
    [Google Scholar]
  30. Chakraborty, T., Kar, R., Ghosh, P., & Basu, S. (2010). Kosi megafan: Historical records, geomorphology and the recent avulsion of the Kosi River. Shallow Sub‐Surface Stratigraphy of the Ganga Basin, India: Approaches and Implications for Fluvial Processes, Climate Change and Active Tectonics in the Late Quaternary, 227(2), 143–160. https://doi.org/10.1016/j.quaint.2009.12.002
    [Google Scholar]
  31. Chesley, J. T., & Leier, A. L. (2018). Sandstone‐body variability in the medial–distal part of an ancient distributive fluvial system, salt wash member of the Morrison formation, Utah, U.S.A. Journal of Sedimentary Research, 88(5), 568–582. https://doi.org/10.2110/jsr.2018.32
    [Google Scholar]
  32. Coleman, J. M. (1969). Brahmaputra river: Channel processes and sedimentation. Sedimentary Geology, 3(2–3), 129–239. https://doi.org/10.1016/0037‐0738(69)90010‐4
    [Google Scholar]
  33. Colombera, L., Mountney, N. P., & McCaffrey, W. D. (2015). A meta‐study of relationships between fluvial channel‐body stacking pattern and aggradation rate: Implications for sequence stratigraphy. Geology, 43(4), 283–286. https://doi.org/10.1130/G36385.1
    [Google Scholar]
  34. DeCelles, P. G., & Cavazza, W. (1999). A comparison of fluvial megafans in the cordilleran (upper cretaceous) and modern Himalayan foreland basin systems. GSA Bulletin, 111(9), 1315–1334. https://doi.org/10.1130/0016‐7606(1999)111<1315:ACOFMI>2.3.CO;2
    [Google Scholar]
  35. Dickinson, W. R., Klute, M. A., Hayes, M. J., Janecke, S. U., Lundin, E. R., McKittrick, M. A., & Olivares, M. D. (1988). Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region. Geological Society of America Bulletin, 100(7), 1023–1039. https://doi.org/10.1130/0016‐7606(1988)100<1023:PAPSOL>2.3.CO;2
    [Google Scholar]
  36. Donahue, M. M. (2016). Episodic uplift of the Rocky Mountains: Evidence from U‐Pb detrital zircon geochronology and low‐temperature thermochronology with a chapter on using mobile technology for geoscience education, (Ph.D. dissertation). University of New Mexico, Albuquerque. https://digitalrepository.unm.edu/eps_etds
    [Google Scholar]
  37. Farnham, T. M., & Kraus, M. J. (2002). The stratigraphic and climatic significance of Paleogene alluvial paleosols in synorogenic strata of the Denver Basin, Colorado. Rocky Mountain Geology, 37(2), 201–213. https://doi.org/10.2113/gsrocky.37.2.201
    [Google Scholar]
  38. Fassett, J., Heizler, M., & McIntosh, W. (2010). Geologic implications of an 40Ar/39Ar single‐crystal sanidine age for an altered volcanic ash bed in the Paleocene Nacimiento Formation in the southern San Juan Basin. Geology of the four corners country: New Mexico geological society 61st annual field conference guidebook (pp. 147–156).
  39. Fielding, C. R. (2006). Upper‐flow‐regime sheets, lenses and scour fills: Extending the range of architectural elements for fluvial sediment bodies. Sedimentary Geology, 190(1–4), 227–240. https://doi.org/10.1016/j.sedgeo.2006.05.009
    [Google Scholar]
  40. Fielding, C. R., Alexander, J., & Allen, J. P. (2018). The role of discharge variability in the formation and preservation of alluvial sediment bodies. Sedimentary Geology, 365, 1–20. https://doi.org/10.1016/j.sedgeo.2017.12.022
    [Google Scholar]
  41. Fielding, C. R., Allen, J. P., Alexander, J., & Gibling, M. R. (2009). Facies model for fluvial systems in the seasonal tropics and subtropics. Geology, 37(7), 623–626. https://doi.org/10.1130/G25727A.1
    [Google Scholar]
  42. Fielding, C. R., Allen, J. P., Gibling, M. R., & Rygel, M. C. (2011). Fluvial response to paleo‐equatorial climate fluctuations during the late Paleozoic ice age. GSA Bulletin, 123(7–8), 1524–1538. https://doi.org/10.1130/B30314.1
    [Google Scholar]
  43. Fielding, C. R., Ashworth, P. J., Best, J. L., Prokocki, E. W., & Smith, G. H. S. (2012). Tributary, distributary and other fluvial patterns: What really represents the norm in the continental rock record?Sedimentary Geology, 261–262, 15–32. https://doi.org/10.1016/j.sedgeo.2012.03.004
    [Google Scholar]
  44. Fisher, J. A., Nichols, G. J., & Waltham, D. A. (2007). Unconfined flow deposits in distal sectors of fluvial distributary systems: Examples from the Miocene Luna and Huesca systems, northern Spain. Sedimentary Geology, 195(1–2), 55–73. https://doi.org/10.1016/j.sedgeo.2006.07.005
    [Google Scholar]
  45. Flynn, A. G., Davis, A. J., Williamson, T. E., Heizler, M., Fenley, C. W., Leslie, C. E., Secord, R., Brusatte, S. L., & Peppe, D. J. (2020). Early Paleocene magnetostratigraphy and revised biostratigraphy of the Ojo Alamo sandstone and lower Nacimiento formation, San Juan Basin, New Mexico, USA. GSA Bulletin, 132(9–10), 2154–2174. https://doi.org/10.1130/B35481.1
    [Google Scholar]
  46. Fontana, A., Mozzi, P., & Marchetti, M. (2014). Alluvial fans and megafans along the southern side of the Alps. Sedimentary Geology, 301, 150–171. https://doi.org/10.1016/j.sedgeo.2013.09.003
    [Google Scholar]
  47. Fontana, A., Mozzi, P., & Bondesan, A. (2008). Alluvial megafans in the Venetian–Friulian Plain (north‐eastern Italy): Evidence of sedimentary and erosive phases during Late Pleistocene and Holocene. Quaternary International, 189(1), 71–90. https://doi.org/10.1016/j.quaint.2007.08.044
    [Google Scholar]
  48. Frostick, L., & Steel, R. (1993). Tectonic signatures in sedimentary basin fills. Tectonic controls in sedimentary successions. IAS Special Publication, 20, 1–9.
    [Google Scholar]
  49. Gibling, M. R., Tandon, S. K., Sinha, R., & Jain, M. (2005). Discontinuity‐bounded alluvial sequences of the southern Gangetic Plains, India: Aggradation and degradation in response to monsoonal strength. Journal of Sedimentary Research, 75(3), 369–385. https://doi.org/10.2110/jsr.2005.029
    [Google Scholar]
  50. Gohain, K., & Parkash, B. (1990). Morphology of the Kosi Megafan. In A. H.Rachocki & M.Church (Eds.), Alluvial fans—A field approach (pp. 151–178). Wiley.
    [Google Scholar]
  51. Goodbred, S. L. (2003). Response of the Ganges dispersal system to climate change: A source‐to‐sink view since the last interstade. Sedimentary Geology, 162(1–2), 83–104. https://doi.org/10.1016/S0037‐0738(03)00217‐3
    [Google Scholar]
  52. Gulliford, A. R., Flint, S. S., & Hodgson, D. M. (2014). Testing applicability of models of distributive fluvial systems or trunk rivers In ephemeral systems: Reconstructing 3‐D fluvial architecture in the Beaufort group, South Africa. Journal of Sedimentary Research, 84(12), 1147–1169. https://doi.org/10.2110/jsr.2014.882014
    [Google Scholar]
  53. Gulliford, A. R., Flint, S. S., & Hodgson, D. M. (2017). Crevasse splay processes and deposits in an ancient distributive fluvial system: The lower Beaufort Group, South Africa. Sedimentary Geology, 358, 1–18. https://doi.org/10.1016/j.sedgeo.2017.06.005
    [Google Scholar]
  54. Hajek, E. A., & Edmonds, D. A. (2014). Is river avulsion style controlled by floodplain morphodynamics?Geology, 42(3), 199–202. https://doi.org/10.1130/G35045.1
    [Google Scholar]
  55. Hajek, E. A., & Wolinsky, M. A. (2012). Simplified process modeling of river avulsion and alluvial architecture: Connecting models and field data. Sedimentary Geology, 257–260, 1–30. https://doi.org/10.1016/j.sedgeo.2011.09.005
    [Google Scholar]
  56. Hansford, M. R., & Plink‐Björklund, P. (2020). River discharge variability as the link between climate and fluvial fan formation. Geology, 48(10), 952–956. https://doi.org/10.1130/G47471.1
    [Google Scholar]
  57. Hartley, A. J., Weissmann, G. S., Bhattacharayya, P.,Nichols, G. J., Scuderi, L. A., Davidson, S. K., Leleu, S., Chakraborty, T.,Ghosh, P.,Mather, A. E. (2013). Soil development on modern distributive fluvial systems: Preliminary observations with implications for interpretation of paleosols in the rock record. In S. G.Driese, L. C.Nordt, & SEPM (Society for Sedimentary Geology) (Eds.), New frontiers in paleopedology and terrestrial paleoclimatology: Paleosols and soil surface analog systems (pp. 149–158). Society for Sedimentary Geology.
    [Google Scholar]
  58. Hartley, A. J., Weissmann, G. S., Nichols, G. J., & Warwick, G. L. (2010). Large distributive fluvial systems: Characteristics, distribution, and controls on development. Journal of Sedimentary Research, 80(2), 167–183. https://doi.org/10.2110/jsr.2010.016
    [Google Scholar]
  59. Harvey, A. M., Mather, A. E., & Stokes, M. (2005). Alluvial fans: Geomorphology, sedimentology, dynamics – Introduction. A review of alluvial‐fan research. Geological Society, London, Special Publications, 251(1), 1–7. https://doi.org/10.1144/GSL.SP.2005.251.01.01
    [Google Scholar]
  60. Hasiotis, S. T., Kraus, M. J., & Demko, T. M. (2007). Climatic controls on continental trace fossils. In W.Miller (Ed.), Trace fossils (pp. 172–195). Elsevier. https://doi.org/10.1016/B978‐044452949‐7/50137‐6
    [Google Scholar]
  61. Heller, P. L., & Liu, L. (2016). Dynamic topography and vertical motion of the U.S. Rocky Mountain region prior to and during the Laramide orogeny. Geological Society of America Bulletin, 128(5/6), 973–988. https://doi.org/10.1130/B31431.1
    [Google Scholar]
  62. Henck, A. C., Montgomery, D. R., Huntington, K. W., & Liang, C. (2010). Monsoon control of effective discharge, Yunnan and Tibet. Geology, 38(11), 975–978. https://doi.org/10.1130/G31444.1
    [Google Scholar]
  63. Hirst, J. P. P., & Nichols, G. J. (2009). Thrust tectonic controls on Miocene alluvial distribution patterns, southern Pyrenees. In Foreland basins (pp. 247–258). Wiley. https://doi.org/10.1002/9781444303810.ch13
    [Google Scholar]
  64. Hobbs, K. M. (2016). Sedimentation, pedogenesis, and paleoclimate conditions in the Paleocene San Juan Basin, New Mexico, U.S.A. (Ph.D. dissertation). University of New Mexico, Albuquerque.
    [Google Scholar]
  65. Hobbs, K. M., & Fawcett, P. J. (2021). A physical and chemical sedimentary record of Laramide tectonic shifts in the cretaceous‐Paleogene San Juan Basin, New Mexico, USA. Geosphere, 17(3), 854–875. https://doi.org/10.1130/GES02324.1
    [Google Scholar]
  66. Hobbs, K. M., & Fawcett, P. J. (2022). Nonclimatic and extrabasinal processes controlled pedogenesis in paleosols of the Paleocene Nacimiento formation, New Mexico, USA. GSA Bulletin, 134(5–6), 1202–1216. https://doi.org/10.1130/B35803.1
    [Google Scholar]
  67. Horton, B. K., & DeCelles, P. G. (2001). Modern and ancient fluvial megafans in the foreland basin system of the Central Andes, southern Bolivia: Implications for drainage network evolution in fold‐thrust belts. Basin Research, 13(1), 43–63. https://doi.org/10.1046/j.1365‐2117.2001.00137.x
    [Google Scholar]
  68. Jerolmack, D. J., & Mohrig, D. (2007). Conditions for branching in depositional rivers. Geology, 35(5), 463–466. https://doi.org/10.1130/G23308A.1
    [Google Scholar]
  69. Jones, C. M. (1977). Effects of varying discharge regimes on bed‐form sedimentary structures in modern rivers. Geology, 5(9), 567–570. https://doi.org/10.1130/0091‐7613(1977)5<567:EOVDRO>2.0.CO;2
    [Google Scholar]
  70. Jones, H. L., & Hajek, E. A. (2007). Characterizing avulsion stratigraphy in ancient alluvial deposits. Sedimentary Geology, 202(1–2), 124–137. https://doi.org/10.1016/j.sedgeo.2007.02.003
    [Google Scholar]
  71. Jones, L. S., & Schumm, S. A. (1999). Causes of avulsion: An overview. In N. D.Smith & J.Rogers (Eds.), Fluvial sedimentology VI (pp. 171–178). Blackwell Science.
    [Google Scholar]
  72. Jones, S. J. (2002). Transverse rivers draining the Spanish Pyrenees: Large scale patterns of sediment erosion and deposition. Geological Society, London, Special Publications, 191(1), 171–185. https://doi.org/10.1144/GSL.SP.2002.191.01.12
    [Google Scholar]
  73. Jones, S. J. (2004). Tectonic controls on drainage evolution and development of terminal alluvial fans, southern Pyrenees, Spain. Terra Nova, 16(3), 121–127. https://doi.org/10.1111/j.1365‐3121.2004.00539.x
    [Google Scholar]
  74. Klute, M. A. (1986). Sedimentology and sandstone petrography of the upper Kirtland shale and Ojo Alamo sandstone, cretaceous‐tertiary boundary, western and southern San Juan Basin, New Mexico. American Journal of Science, 286(6), 463–488. https://doi.org/10.2475/ajs.286.6.463
    [Google Scholar]
  75. Kraus, M. J., & Hasiotis, S. T. (2006). Significance of different modes of Rhizolith preservation to interpreting Paleoenvironmental and Paleohydrologic settings: Examples from Paleogene Paleosols, Bighorn Basin, Wyoming, U.S.A. Journal of Sedimentary Research, 76(4), 633–646. https://doi.org/10.2110/jsr.2006.052
    [Google Scholar]
  76. Kraus, M. J. (1999). Paleosols in clastic sedimentary rocks: Their geologic applications. Earth‐Science Reviews, 47(1–2), 41–70. https://doi.org/10.1016/S0012‐8252(99)00026‐4
    [Google Scholar]
  77. Kraus, M. J., McInerney, F. A., Wing, S. L., Secord, R., Baczynski, A. A., & Bloch, J. I. (2013). Paleohydrologic response to continental warming during the Paleocene–Eocene Thermal Maximum, Bighorn Basin, Wyoming. Palaeogeography, Palaeoclimatology, Palaeoecology, 370, 196–208. https://doi.org/10.1016/j.palaeo.2012.12.008
    [Google Scholar]
  78. Kraus, M. J., & Riggins, S. (2007). Transient drying during the Paleocene–Eocene Thermal Maximum (PETM): Analysis of paleosols in the bighorn basin, Wyoming. Palaeogeography, Palaeoclimatology, Palaeoecology, 245(3–4), 444–461. https://doi.org/10.1016/j.palaeo.2006.09.011
    [Google Scholar]
  79. Kukulski, R. B., Hubbard, S. M., Moslow, T. F., & Raines, M. K. (2013). Basin‐scale stratigraphic architecture of upstream fluvial deposits: Jurassic‐cretaceous Foredeep, Alberta Basin, Canada. Journal of Sedimentary Research, 83(8), 704–722. https://doi.org/10.2110/jsr.2013.53
    [Google Scholar]
  80. Latrubesse, E. M., Stevaux, J. C., & Sinha, R. (2005). Tropical rivers. Tropical. Rivers, 70(3), 187–206. https://doi.org/10.1016/j.geomorph.2005.02.005
    [Google Scholar]
  81. Latrubesse, E. M. (2015). Large rivers, megafans and other quaternary avulsive fluvial systems: A potential “who's who” in the geological record. Earth‐Science Reviews, 146, 1–30. https://doi.org/10.1016/j.earscirev.2015.03.004
    [Google Scholar]
  82. Latrubesse, E. M., & Franzinelli, E. (2005). The late quaternary evolution of the Negro River, Amazon, Brazil: Implications for Island and floodplain formation in large anabranching tropical systems. Geomorphology, 70(3–4), 372–397. https://doi.org/10.1016/j.geomorph.2005.02.014
    [Google Scholar]
  83. Latrubesse, E. M., & Kalicki, T. (2002). Late quaternary palaeohydrological changes in the upper Purus basin, southwestern Amazonia, Brazil. In E. Gupta, J. Mossa, & E. M. Latrubesse (Eds.), South and Central American Rivers (Zeitschrift für Geomorphologie, 129, 41‐59). Schweizerbart Science Publishers.
    [Google Scholar]
  84. Latrubesse, E. M., Stevaux, J. C., Cremon, E. H., May, J.‐H., Tatumi, S. H., Hurtado, M. A., … Argollo, J. B. (2012). Late quaternary megafans, fans and fluvio‐aeolian interactions in the Bolivian Chaco, tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 356–357, 75–88. https://doi.org/10.1016/j.palaeo.2012.04.003
    [Google Scholar]
  85. Latrubessee, E. M. (2003). The late‐quaternary palaeohydrology of large south American fluvial systems. In G.Benito & K. J.Gregory (Eds.), Palaeohydrology: Understanding global change (pp. 193–212). Wiley.
    [Google Scholar]
  86. Lawton, T. F., Schellenbach, W. L., & Nugent, A. E. (2014). Late cretaceous fluvial‐Megafan and Axial‐River systems In the southern cordilleran Foreland Basin: Drip tank member of straight cliffs formation and adjacent strata, southern Utah, U.S.A. Journal of Sedimentary Research, 84(5), 407–434. https://doi.org/10.2110/jsr.2014.33
    [Google Scholar]
  87. Lawton, T. F. (2008). Laramide Sedimentary Basins. In The sedimentary basins of the United States and Canada (pp. 429–450). https://doi.org/10.1016/s1874‐5997(08)00012‐9
    [Google Scholar]
  88. Leary, R., DeCelles, P., Gehrels, G., & Morriss, M. (2015). Fluvial deposition during transition from flexural to dynamic subsidence in the cordilleran foreland basin: Ericson formation, Western Wyoming, USA. Basin Research, 27, 495–516. https://doi.org/10.1111/bre.12085
    [Google Scholar]
  89. Leier, A. L., DeCelles, P. G., & Pelletier, J. D. (2005). Mountains, monsoons, and megafans. Geology, 33(4), 289–292. https://doi.org/10.1130/G21228.1
    [Google Scholar]
  90. Leslie, C., Peppe, D., Williamson, T., Bilardello, D., Heizler, M., Secord, R., & Leggett, T. (2018). High‐resolution magnetostratigraphy of the upper Nacimiento formation, San Juan Basin, New Mexico, USA: Implications for basin evolution and mammalian turnover. American Journal of Science, 318(3), 300–334. https://doi.org/10.2475/03.2018.02
    [Google Scholar]
  91. Lindsay, E. H., Butler, R. F., & Johnson, N. M. (1981). Magnetic polarity zonation and biostratigraphy of late cretaceous and Paleocene continental deposits, San Juan Basin, New Mexico. American Journal of Science, 281(4), 390–435. https://doi.org/10.2475/ajs.281.4.390
    [Google Scholar]
  92. Lowe, D. R. (1982). Sediment gravity flows; II, depositional models with special reference to the deposits of high‐density turbidity currents. Journal of Sedimentary Research, 52(1), 279–297. https://doi.org/10.1306/212F7F31‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  93. Lucas, S. G., Manning, E., & Tsentas, C. (1981). The Eocene biostratigraphy of New Mexico. GSA Bulletin, 92(12), 951–967. https://doi.org/10.1130/0016‐7606(1981)92<951:TEBONM>2.0.CO;2
    [Google Scholar]
  94. Lucas, S. G., & Williamson, T. E. (1992). Fossil mammals and the early Eocene age of the San Jose formation, San Juan Basin, New Mexico. San Juan Basin IV: New Mexico geological society guidebook, 43rd field conference (pp. 311–316).
  95. Luzón, A. (2005). Oligocene–Miocene alluvial sedimentation in the northern Ebro Basin, NE Spain: Tectonic control and palaeogeographical evolution. Sedimentary Geology, 177(1), 19–39. https://doi.org/10.1016/j.sedgeo.2005.01.013
    [Google Scholar]
  96. Mack, G. H., James, W. C., & Monger, H. C. (1993). Classification of paleosols. Geological Society of America Bulletin, 105(2), 129–136. https://doi.org/10.1130/0016‐7606(1993)105<0129:COP>2.3.CO;2
    [Google Scholar]
  97. Mack, G. H., & Leeder, M. R. (1999). Climatic and tectonic controls on alluvial‐fan and axial‐fluvial sedimentation in the Plio‐Pleistocene Palomas half graben, southern Rio Grande rift. Journal of Sedimentary Research, 69(3), 635–652. https://doi.org/10.2110/jsr.69.635
    [Google Scholar]
  98. Makaske, B. (2001). Anastomosing rivers: A review of their classification, origin and sedimentary products. Earth‐Science Reviews, 53(3–4), 149–196. https://doi.org/10.1016/S0012‐8252(00)00038‐6
    [Google Scholar]
  99. Manley, K., Scott, G. R., & Wobus, R. A. (1987). Geologic map of the Aztec quadrangle, northwestern New Mexico and southern Colorado [miscellaneous investigations map I‐1730]. U.S. Geological Survey.
    [Google Scholar]
  100. Marriott, S. B., & Wright, P. V. (1993). The sequence stratigraphy of fluvial depositional systems: The role of floodplain sediment storage. Sedimentary Geology, 86(3–4), 203–210. https://doi.org/10.1016/0037‐0738(93)90022‐W
    [Google Scholar]
  101. Martin, B., Owen, A., Nichols, G. J., Hartley, A. J., & Williams, R. D. (2021). Quantifying downstream, vertical and lateral variation in fluvial deposits: Implications from the Huesca distributive fluvial system. Frontiers in Earth Science, 8, 1–19. https://doi.org/10.3389/feart.2020.564017
    [Google Scholar]
  102. McKee, E. D., Crosby, E. J., & Berryhill, H. L. (1967). Flood deposits, Bijou Creek, Colorado. Journal of Sedimentary Research, 37(3), 829–851. https://doi.org/10.1306/74D717B2‐2B21‐11D7‐8648000102C1865D
    [Google Scholar]
  103. Mills, P. C. (1983). Genesis and diagnostic value of soft‐sediment deformation structures – A review. Sedimentary Geology, 35(2), 83–104. https://doi.org/10.1016/0037‐0738(83)90046‐5
    [Google Scholar]
  104. Mohrig, D., Heller, P. L., Paola, C., & Lyons, W. J. (2000). Interpreting avulsion process from ancient alluvial sequences: Guadalope‐Matarranya system (northern Spain) and Wasatch formation (western Colorado). Geological Society of America Bulletin, 112(12), 1787–1803. https://doi.org/10.1130/0016‐7606(2000)112<1787:IAPFAA>2.0.CO;2
    [Google Scholar]
  105. Moscariello, A. (2018). Alluvial fans and fluvial fans at the margins of continental sedimentary basins: Geomorphic and sedimentological distinction for geo‐energy exploration and development. Geological Society, London, Special Publications, 440(1), 215–243. https://doi.org/10.1144/SP440.11
    [Google Scholar]
  106. Mytton, J. W. (1983). Geologic map of Chaco canyon 30′ x 60′ quadrangle showing coal zones of Fruitland formation, San Juan, Rio Arriba, and Sandoval counties, New Mexico [Coal Investigations Map C‐92‐A]. U.S. Geological Survey.
    [Google Scholar]
  107. Nakayama, K., & Ulak, P. D. (1999). Evolution of fluvial style in the Siwalik group in the foothills of the Nepal Himalaya. Sedimentary Geology, 125(3), 205–224. https://doi.org/10.1016/S0037‐0738(99)00012‐3
    [Google Scholar]
  108. Nichols, G. J., & Fisher, J. A. (2007). Processes, facies and architecture of fluvial distributary system deposits. Sedimentary Geology, 195(1–2), 75–90. https://doi.org/10.1016/j.sedgeo.2006.07.004
    [Google Scholar]
  109. North, C. P., & Taylor, K. S. (1996). Ephemeral‐fluvial deposits: Integrated outcrop and simulation studies reveal complexity. AAPG Bulletin, 80, 811–830. https://doi.org/10.1306/64ED88D6‐1724‐11D7‐8645000102C1865D
    [Google Scholar]
  110. North, C. P., & Warwick, G. L. (2007). Fluvial fans: Myths, misconceptions, and the end of the terminal‐fan model. Journal of Sedimentary Research, 77(9), 693–701. https://doi.org/10.2110/jsr.2007.072
    [Google Scholar]
  111. Ogg, J. G. (2012). Geomagnetic polarity time scale. In F. M.Gradstein, J. G.Ogg, M. D.Schmitz, & G. M.Ogg (Eds.), The geologic time scale 2012 (1st ed., pp. 85–113). Elsevier.
    [Google Scholar]
  112. Ono, K., Plink‐Björklund, P., Eggenhuisen, J. T., & Cartigny, J. B. (2021). Froude supercritical flow processes and sedimentary structures: New insights from experiments with a wide range of grain sizes. Sedimentology, 68(4), 1328–1357. https://doi.org/10.1111/sed.12682
    [Google Scholar]
  113. Owen, A., Nichols, G. J., Hartley, A. J., & Weissmann, G. S. (2017). Vertical trends within the prograding salt wash distributive fluvial system, SW United States. Basin Research, 29(1), 64–80. https://doi.org/10.1111/bre.12165
    [Google Scholar]
  114. Owen, A., Nichols, G. J., Hartley, A. J., Weissmann, G. S., & Scuderi, L. A. (2015). Quantification of a distributive fluvial system: The salt wash DFS of the Morrison formation, SW U.S.A. Journal of Sedimentary Research, 85(5), 544–561. https://doi.org/10.2110/jsr.2015.35
    [Google Scholar]
  115. Plink‐Björklund, P. (2015). Morphodynamics of rivers strongly affected by monsoon precipitation: Review of depositional style and forcing factors. Sedimentary Geology, 323, 110–147. https://doi.org/10.1016/j.sedgeo.2015.04.004
    [Google Scholar]
  116. Plink‐Björklund, P. (2019). Latitudinal controls on river systems: Implications of precipitation variability. In P.Fraticelli (Ed.), Latitudinal controls on stratigraphic models and sedimentary concepts (pp. 59–81). SEPM Special Publication.
    [Google Scholar]
  117. Plink‐Björklund, P. (2021). Distributive fluvial systems: Fluvial and alluvial fans. In D.Alderton & S. A.Elias (Eds.), Encyclopedia of geology (2nd ed., pp. 745–758). Academic Press.
    [Google Scholar]
  118. Pope, R. J. J., & Wilkinson, K. N. (2005). Reconciling the roles of climate and tectonics in late quaternary fan development on the Spartan piedmont, Greece. Geological Society, London, Special Publications, 251(1), 133–152. https://doi.org/10.1144/GSL.SP.2005.251.01.10
    [Google Scholar]
  119. Postma, G., & Cartigny, M. J. B. (2014). Supercritical and subcritical turbidity currents and their deposits—A synthesis. Geology, 42(11), 987–990. https://doi.org/10.1130/G35957.1
    [Google Scholar]
  120. Quigley, M., Sandiford, M., Fifield, K., & Alimanovic, A. (2007). Bedrock erosion and relief production in the northern Flinders ranges, Australia. Earth Surface Processes and Landforms, 32(6), 929–944. https://doi.org/10.1002/esp.1459
    [Google Scholar]
  121. Retallack, G. (1988). Field recognition of paleosols. In J.Reinhardt & W. R.Sigleo (Eds.), Paleosols and weathering through geologic time: Principals and applications (pp. 1–20). Geological Society of America. https://doi.org/10.1130/SPE216‐p1
    [Google Scholar]
  122. Roy, N. G., Sinha, R., & Gibling, M. R. (2012). Aggradation, incision and interfluve flooding in the Ganga Valley over the past 100,000 years: Testing the influence of monsoonal precipitation. Palaeogeography, Palaeoclimatology, Palaeoecology, 356–357, 38–53. https://doi.org/10.1016/j.palaeo.2011.08.012
    [Google Scholar]
  123. Schneider, J. W., Körner, F., Roscher, M., & Kroner, U. (2006). Permian climate development in the northern peri‐Tethys area – The Lodève basin, French Massif Central, compared in a European and global context. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(1–2), 161–183. https://doi.org/10.1016/j.palaeo.2006.03.057
    [Google Scholar]
  124. Shanley, K. W., & McCabe, P. J. (1994). Perspectives on the sequence stratigraphy of continental strata. AAPG Bulletin, 78(4), 544–568. https://doi.org/10.1306/BDFF9258‐1718‐11D7‐8645000102C1865D
    [Google Scholar]
  125. Shukla, U. K., Singh, I. B., Sharma, M., & Sharma, S. (2001). A model of alluvial megafan sedimentation: Ganga Megafan. Sedimentary Geology, 144(3), 243–262. https://doi.org/10.1016/S0037‐0738(01)00060‐4
    [Google Scholar]
  126. Sikkink, P. G. L. (1987). Lithofacies relationships and depositional environment of the tertiary Ojo Alamo sandstone and related strata, San Juan Basin, New Mexico and Colorado. Geological Society of America, Special Papers, 209, 81–104. https://doi.org/10.1130/SPE209‐p81
    [Google Scholar]
  127. Simons, D. B., Richardson, E. V., & Nordin, C. F. (1965). Sedimentary structures generated by flow in alluvial channels. In G. V.Middleton (Ed.), Primary sedimentary structures and their hydrodynamic interpretation (pp. 34–52). SEPM, Special Publications.
    [Google Scholar]
  128. Simpson, G. G. (1948). The Eocene of the San Juan Basin, New Mexico. Part 1. American Journal of Science, 246(5), 257–282. https://doi.org/10.2475/ajs.246.5.257
    [Google Scholar]
  129. Singh, H., Parkash, B., & Gohain, K. (1993). Facies analysis of the Kosi megafan deposits. Sedimentary Geology, 85(1), 87–113. https://doi.org/10.1016/0037‐0738(93)90077‐I
    [Google Scholar]
  130. Sinha, R., Ahmad, J., Gaurav, K., & Morin, G. (2014). Shallow subsurface stratigraphy and alluvial architecture of the Kosi and Gandak megafans in the Himalayan foreland basin, India. Sedimentary Geology, 301, 133–149. https://doi.org/10.1016/j.sedgeo.2013.06.008
    [Google Scholar]
  131. Sinha, R., & Friend, P. F. (1994). River systems and their sediment flux, indo‐Gangetic plains, northern Bihar, India. Sedimentology, 41(4), 825–845. https://doi.org/10.1111/j.1365‐3091.1994.tb01426.x
    [Google Scholar]
  132. Sinha, R., & Jain, V. (1998). Flood hazards of North Bihar rivers, indo‐Gangetic plains. Memoirs‐Geological Society of India, 41, 27–52.
    [Google Scholar]
  133. Sinha, R., Latrubesse, E. M., & Nanson, G. C. (2012). Quaternary fluvial systems of tropics: Major issues and status of research. Palaeogeography, Palaeoclimatology, Palaeoecology, 356–357, 1–15. https://doi.org/10.1016/j.palaeo.2012.07.024
    [Google Scholar]
  134. Sinha, R., & Sarkar, S. (2009). Climate‐induced variability in the Late Pleistocene–Holocene fluvial and fluvio‐deltaic successions in the Ganga plains, India: A synthesis. Geomorphology, 113(3–4), 173–188. https://doi.org/10.1016/j.geomorph.2009.03.011
    [Google Scholar]
  135. Slootman, A., Cartigny, M. J., & Vellinga, A. J. (2019). Build‐up‐and‐fill structure: The depositional signature of strongly aggradational chute‐and‐pool bedforms. Marine and River Dune Dynamics–MARID VI, 213–218.
    [Google Scholar]
  136. Smith, L. N. (1988). Basin analysis of the lower Eocene San Jose formation, San Juan Basin, New Mexico and Colorado (Ph.D. dissertation). University of New Mexico, Albuquerque.
    [Google Scholar]
  137. Smith, L. N. (1992). Stratigraphy, sediment dispersal and paleogeography of the lower Eocene San Jose formation, San Juan Basin, New Mexico and Colorado. San Juan Basin IV: New Mexico geological society guidebook, 43rd field conference (pp. 297–309).
  138. Smith, L. N., & Lucas, S. G. (1991). Stratigraphy, sedimentology, and paleontology of the lower Eocene San Jose formation in the central portion of the San Juan Basin, northwestern New Mexico. New Mexico Bureau of Mines and Mineral Resources, Bulletin, 126, 44.
    [Google Scholar]
  139. Stear, W. M. (1985). Comparison of the bedform distribution and dynamics of modern and ancient sandy ephemeral flood deposits in the southwestern Karoo region, South Africa. Sedimentary Geology, 45(3), 209–230. https://doi.org/10.1016/0037‐0738(85)90003‐X
    [Google Scholar]
  140. Stone, W. J. (1983). Hydrogeology and water resources of the San Juan Basin, New Mexico [Hydrologic Report 6]. New Mexico Bureau of Mines and Mineral Resources.
    [Google Scholar]
  141. Syvitski, J. P. M., & Milliman, J. D. (2007). Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. The Journal of Geology, 115(1), 1–19. https://doi.org/10.1086/509246
    [Google Scholar]
  142. Tabor, N. J., Myers, T. S., & Michel, L. A. (2017). Sedimentologist's guide for recognition, description, and classification of Paleosols. In K. E.Zeigler & W. G.Parker (Eds.), Terrestrial depositional systems: Deciphering complexities through multiple stratigraphic Methods (pp. 165–208). Elsevier. https://doi.org/10.1016/B978‐0‐12‐803243‐5.00004‐2
    [Google Scholar]
  143. Talling, P. J., Malgensini, G., & Felletti, F. (2013). Can liquefied debris flows deposit clean sand over large areas of sea floor? Field evidence from the Marnoso‐arenacea formation, Italian Apennines. Sedimentology, 60(3), 720–762. https://doi.org/10.1111/j.1365‐3091.2012.01358.x
    [Google Scholar]
  144. Tandon, S. K., & Gibling, M. R. (1997). Calcretes at sequence boundaries in upper carboniferous cyclothems of the Sydney Basin, Atlantic Canada. Sedimentary Geology, 112(1–2), 43–67. https://doi.org/10.1016/S0037‐0738(96)00092‐9
    [Google Scholar]
  145. Trendell, A. M., Atchley, S. C., & Nordt, L. C. (2013). Facies analysis of a probable large‐fluvial fan depositional system: The upper Triassic Chinle Formation At petrified Forest National Park, Arizona, U.S.A. Journal of Sedimentary Research, 83(10), 873–895. https://doi.org/10.2110/jsr.2013.55
    [Google Scholar]
  146. Tsentas, C., & Lucas, S. (1980). Position of the Paleocene‐Eocene boundary in the south‐Central San Juan Basin. New Mexico: Geological Society of America Abstracts with Programs, 12, 538.
    [Google Scholar]
  147. Uba, C., Heubeck, C., & Hulka, C. (2005). Facies analysis and basin architecture of the Neogene Subandean synorogenic wedge, southern Bolivia. Sedimentary Geology, 180(3), 91–123. https://doi.org/10.1016/j.sedgeo.2005.06.013
    [Google Scholar]
  148. Valente, C. R., & Latrubesse, E. M. (2012). Fluvial archive of peculiar avulsive fluvial patterns in the largest quaternary intracratonic basin of tropical South America: The Bananal Basin, Central‐Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 356–357, 62–74. https://doi.org/10.1016/j.palaeo.2011.10.002
    [Google Scholar]
  149. Vellinga, A. J., Cartigny, M. J. B., Eggenhuisen, J. T., & Hansen, E. W. M. (2017). Morphodynamics and depositional signature of low‐aggradation cyclic steps: New insights from a depth‐resolved numerical model. Sedimentology, 65(2), 540–560. https://doi.org/10.1111/sed.12391
    [Google Scholar]
  150. Ventra, D., & Clarke, L. E. (2018). Geology and geomorphology of alluvial and fluvial fans: Current progress and research perspectives. Geological Society, London, Special Publications, 440(1), 1–21. https://doi.org/10.1144/SP440.16
    [Google Scholar]
  151. Vepraskas, M. J. (2016). In C. B.Craft (Ed.), Wetland soils: Genesis, hydrology, landscapes, and classification (2nd ed.). CRC Press, Taylor & Francis Group.
    [Google Scholar]
  152. Wang, B., & Ding, Q. (2008). Global monsoon: Dominant mode of annual variation in the tropics. Current Contributions to Understanding the General Circulation of the Atmosphere Part 2, 44(3), 165–183. https://doi.org/10.1016/j.dynatmoce.2007.05.002
    [Google Scholar]
  153. Wang, J., & Plink‐Björklund, P. (2019). Stratigraphic complexity in fluvial fans: Lower Eocene Green River Formation, Uinta Basin, USA. Basin Research, 31(5), 892–919. https://doi.org/10.1111/bre.12350
    [Google Scholar]
  154. Weissmann, G., Hartley, A., Scuderi, L., Nichols, G., Davidson, S., Owen, A., Atchley, S. C., Bhattacharyya, P., Chakraborty, T., Ghosh, P., Nordt, L. C., Michel, L., & Tabor, N. J. (2013). Prograding distributive fluvial systems: Geomorphic models and ancient examples. New Frontiers in Paleopedology and Terrestrial Paleoclimatology: SEPM, Special Publication, 104, 131–147.
    [Google Scholar]
  155. Weissmann, G. S., Bennett, G. L., & Landsdale, A. L. (2005). Factors controlling sequence development on quaternary fluvial fans, San Joaquin Basin, California, USA. In A. M.Harvey, A. E.Mather, & M. R.Stokes (Eds.), Alluvial fans: Geomorphology, sedimentology, dynamics (pp. 169–186). The Geological Society; USA Distributor AAPG Bookstore.
    [Google Scholar]
  156. Weissmann, G. S., Hartley, A. J., Nichols, G. J., Scuderi, L. A., Olson, M., Buehler, H., & Banteah, R. (2010). Fluvial form in modern continental sedimentary basins: Distributive fluvial systems. Geology, 38(1), 39–42. https://doi.org/10.1130/G30242.1
    [Google Scholar]
  157. Weissmann, G. S., Hartley, A. J., Scuderi, L. A., Nichols, G. J., Owen, A., Wright, S., … Anaya, F. M. L. (2015). Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review. Geomorphology, 250, 187–219. https://doi.org/10.1016/j.geomorph.2015.09.005
    [Google Scholar]
  158. Weissmann, G. S., Mount, J. F., & Fogg, G. E. (2002). Glacially driven cycles in accumulation space and sequence stratigraphy of a stream‐dominated alluvial fan, San Joaquin Valley, California, U.S.A. Journal of Sedimentary Research, 72(2), 240–251. https://doi.org/10.1306/062201720240
    [Google Scholar]
  159. Wilkinson, M. J., & Gunnell, Y. (2023). Megafans as major continental landforms. In M. J.Wilkinson & Y.Gunnell (Eds.), Fluvial megafans on earth and mars (pp. 3–12). Cambridge University Press.
    [Google Scholar]
  160. Williams, G. E. (1971). Flood deposits of the sand‐bed ephemeral streams of Central Australia. Sedimentology, 17(1–2), 1–40. https://doi.org/10.1111/j.1365‐3091.1971.tb01128.x
    [Google Scholar]
  161. Williamson, T. E., & Lucas, S. G. (1992). Stratigraphy and mammalian biostratigraphy of the Paleocene Nacimiento Formation, southern San Juan Basin, New Mexico. San Juan Basin IV: New Mexico geological society guidebook, 43rd field conference (pp. 265–296).
  162. Williamson, T. E., Nichols, D. J., & Weil, A. (2008). Paleocene palynomorph assemblages from the Nacimiento Formation, San Juan Basin, New Mexico, and their biostratigraphic significance. New Mexico Geology, 30, 3–11.
    [Google Scholar]
  163. Willis, B. (1993). Ancient river systems in the Himalayan foredeep, Chinji Village area, northern Pakistan. Sedimentary Geology, 88(1), 1–76. https://doi.org/10.1016/0037‐0738(93)90151‐T
    [Google Scholar]
  164. Wilson, A., Flint, S., Payenberg, T., Tohver, E., & Lanci, L. (2014). Architectural styles and sedimentology of the fluvial lower Beaufort group, Karoo Basin, South Africa. Journal of Sedimentary Research, 84(4), 326–348. https://doi.org/10.2110/jsr.2014.28
    [Google Scholar]
  165. Woodward, L. A. (1987). Geology and mineral resources of Sierra Nacimiento and vicinity, New Mexico. New Mexico Bureau of Mines and Mineral Resources, Memoir, 42, 85.
    [Google Scholar]
  166. Zellman, K. L., Plink‐Björklund, P., & Fricke, H. C. (2020). Testing hypotheses on precipitation variability signatures in the river and floodplain deposits of the Paleogene San Juan Basin, New Mexico, USA. Journal of Sedimentary Research, 90(12), 1770–1801. https://doi.org/10.2110/jsr.2020.75
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12823
Loading
/content/journals/10.1111/bre.12823
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error