1887
Volume 19, Issue 3
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Regional incision and lateral shifts of rivers in the West Siberian Basin and surrounding areas show the action of long wavelength surface tilting, directed away from the Urals and Central Asian mountains and towards the Siberian Craton. In the north of the basin, surface uplift of individual folds is recorded by local lateral drainage migration. Lateral slopes of river valleys vary in gradient from 0.001 to 0.0001, generally decreasing with increasing river discharge. As a result of this surface deformation significant drainage shifts are taking place in three of the longest and highest discharge river systems on Earth: the Yenisei, Ob' and Irtysh. The deformation is most plausibly caused by subtle faulting at depth, below the thick basin fill of Mesozoic and Lower Cenozoic sediments. Active deformation of western Siberia appears to represent a previously unrecognised, far‐field effect of the India–Eurasia collision, up to ∼1500 km north of the limit of major seismicity and mountain building. It adds ∼2.5 × 106 km2 to the region deformed by the collision, which is an area greater than the Himalayas and Tibet combined. It is also an analogue for the formation of low‐angle unconformities in terrestrial sedimentary basins on the periphery of other orogenic belts.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2007.00331.x
2007-07-31
2024-04-27
Loading full text...

Full text loading...

References

  1. Allen, M.B., Anderson, L., Searle, R.C. & Buslov, M.M. (2006) Oblique rift geometry of the West Siberian Basin: tectonic setting for the Siberian flood basalts. J. Geol. Soc., 163, 901–904.
    [Google Scholar]
  2. An, Z., Kutzbach, J.E., Prell, W.L. & Porter, S.C. (2001) Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan plateau since Late Miocene times. Nature, 411, 62–66.
    [Google Scholar]
  3. Arkhipov, S.A. (1998) Stratigraphy and paleogeography of the Sartan glaciation in West Siberia. Quatern. Int., 45–46, 29–42.
    [Google Scholar]
  4. Arkhipov, S.A., Zykina, V.S., Krukover, A.A. & Gnibidenko, Z.N. (1997) Stratigraphy and paleomagnetism of glacial and loess‐soil deposits on the West‐Siberian Plain. Russ. Geol. Geophys., 38, 1027–1048.
    [Google Scholar]
  5. Avetisov, G.P. (1999) Geodynamics of the zone of continental continuation of Mid‐Arctic earthquakes belt (Laptev Sea). Phys. Earth Planet. Interiors, 114, 59–70.
    [Google Scholar]
  6. Bayasgalan, A., Jackson, J. & McKenzie, D. (2005) Lithosphere rheology and active tectonics in Mongolia: relations between earthquake source parameters, gravity and GPS measurements. Geophys. J. Int., 163, 1151–1179.
    [Google Scholar]
  7. Bochkarev, V.S., Brekhuntsov, A.M. & Deshchenya, N.P. (2003) The Paleozoic and Triassic evolution of West Siberia. Russ. Geol. Geophys., 44, 120–143.
    [Google Scholar]
  8. Boote, D.R.D., Clark‐Lowes, D.D. & Traut, M.W. (1998) Palaeozoic petroleum systems of North Africa. In: Petroleum Geology of North Africa (Ed. by D.C.McGregor , R.T.J.Moody & D.D.Clark‐Lowes ), Spec. Publ. Geol. Soc. London , 132, 7–68.
    [Google Scholar]
  9. Burbank, D., Meigs, A. & Brozovic, N. (1996a) Interactions of growing folds and coeval depositional systems. Basin Res., 8, 199–223.
    [Google Scholar]
  10. Burbank, D.W. (1992) Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin. Nature, 357, 680–683.
    [Google Scholar]
  11. Burbank, D.W., Leland, J., Fielding, E., Anderson, R.S., Brozovic, N., Reid, M.R. & Duncan, C. (1996b) Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature, 379, 505–510.
    [Google Scholar]
  12. Clark, M.K., Schoenbohm, L.M., Royden, L.H., Whipple, K.X., Burchfiel, B.C., Zhang, X., Tang, W., Wang, E. & Chen, L. (2004) Surface uplift, tectonics, and erosion of eastern Tibet from large‐scale drainage patterns. Tectonics, 23, DOI: 10.1029/2002TC001402.
    [Google Scholar]
  13. Clift, P.D. & Blusztajn, J. (2005) Reorganization of the western Himalayan river system after five million years ago. Nature, 438, 1001–1003.
    [Google Scholar]
  14. Cloetingh, S., Burov, E. & Poliakov, A. (1999) Lithosphere folding: primary response to compression? (from Central Asia to Paris Basin). Tectonics, 18, 1064–1083.
    [Google Scholar]
  15. Cox, R.T., Van Arsdale, R.B. & Harris, J.B. (2001) Identification of possible Quaternary deformation in the northeastern Mississippi embayment using quantitative geomorphic analysis of drainage‐basin asymmetry. Geol. Soc. Am. Bull., 113, 615–624.
    [Google Scholar]
  16. Dick, H.J.B., Lin, J. & Schouten, H. (2003) An ultraslow‐spreading class of ocean ridge. Nature, 426, 405–412.
    [Google Scholar]
  17. England, P. & Molnar, P. (2005) Late Quaternary to decadal velocity fields in Asia. J. Geophys. Res.-Solid Earth, 110, DOI: 10.1029/2004JB003541.
    [Google Scholar]
  18. Holbrook, J. & Schumm, S.A. (1999) Geomorphic and sedimentary response of rivers to tectonic deformation: a brief review and critique of a tool for recognizing subtle epeirogenic deformation in modern and ancient settings. Tectonophysics, 305, 287–306.
    [Google Scholar]
  19. Kontorovich, A.E. (1975) Geology of Oil and Gas of West Siberia. Nedra, Moscow.
    [Google Scholar]
  20. Leeder, M.R. & Alexander, J. (1987) The origin and tectonic significance of asymmetrical meander‐belts. Sedimentology, 34, 217–226.
    [Google Scholar]
  21. Mangerud, J., Astakhov, V. & Svendsen, J.I. (2002) The extent of the Barents‐Kara ice sheet during the last glacial maximum. Quatern. Sci. Rev., 21, 111–119.
    [Google Scholar]
  22. Mangerud, J., Jakobsson, M., Alexanderson, H., Astakhov, V., Clarke, G.K.C., Henriksen, M., Hjort, C., Krinner, G., Lunkka, J.P., Moller, P., Murray, A., Nikolskaya, O., Saarnisto, M. & Svendsen, J.I. (2004) Ice‐dammed lakes and rerouting of the drainage of northern Eurasia during the last glaciation. Quatern. Sci. Rev., 23, 1313–1332.
    [Google Scholar]
  23. Marple, R.T. & Talwani, P. (2000) Evidence for a buried fault system in the coastal plain of the Carolinas and Virginia – implications for neotectonics in the southeastern United States. Geol. Soc. Am. Bull., 112, 200–220.
    [Google Scholar]
  24. McKenzie, D. & Fairhead, D. (1997) Estimates of the effective elastic thickness of the continental lithosphere from Bouguer and free air gravity anomalies. J. Geophys. Res., 102, 27523–27552.
    [Google Scholar]
  25. Milliman, J.D. & Syvitski, J.P.M. (1992) Geomorphic tectonic control of sediment discharge to the ocean – the importance of small mountainous rivers. J. Geol., 100, 525–544.
    [Google Scholar]
  26. Ministry of Geology of the USSR
    Ministry of Geology of the USSR . (1965) Geological map of the USSR, 1:2,500,000.
  27. Mitrovica, J.X., Pysklywec, R.N., Beaumont, C. & Rutty, A. (1996) The Devonian to Permian sedimentation of the Russian platform: an example of subduction-controlled long-wavelength tilting of continents. J. Geodyn., 22, 79–96.
    [Google Scholar]
  28. Molnar, P., England, P. & Martinod, J. (1993) Mantle dynamics, uplift of the Tibetan plateau and the Indian monsoon. Rev. Geophys., 31, 357–396.
    [Google Scholar]
  29. Molnar, P. & Tapponnier, P. (1975) Cenozoic tectonics of Asia: effects of a continental collision. Science, 189, 419–426.
    [Google Scholar]
  30. Nalivkin, D.V. (1983) Geological map of the USSR and adjacent water‐covered areas, Ministry of Geology of the USSR. Moscow.
  31. Ouchi, S. (1985) Response of alluvial rivers to slow active tectonic movement. Bull. Geol. Soc. Am., 96, 504–515.
    [Google Scholar]
  32. Peakall, J., Leeder, M., Best, J. & Ashworth, P. (2000) River response to lateral ground tilting: a synthesis and some implications for the modelling of alluvial architecture in extensional basins. Basin Res., 12, 413–424.
    [Google Scholar]
  33. Peltier, W.R. (2004) Global glacial isostasy and the surface of the ice‐age Earth: the ICE-5G (Vm2) model and GRACE. Ann. Rev. Earth Planet. Sci., 32, 111–149.
    [Google Scholar]
  34. Peterson, B.J., Holmes, R.M., McClelland, J.W., Vorosmarty, C.J., Lammers, R.B., Shiklomanov, A.I., Shiklomanov, I.A. & Rahmstorf, S. (2002) Increasing river discharge to the Arctic Ocean. Science, 298, 2171–2173.
    [Google Scholar]
  35. Peterson, J.A. & Clarke, J.W. (1991) Geology and hydrocarbon habitat of the West Siberian Basin. AAPG Studies in Geology 32.
  36. Puchkov, V.N. (1997) Structure and geodynamics of the Uralian orogen. In: Orogeny Through Time (Ed. by J.‐P.Burg & M.Ford ), Geol. Soc. Spec. Publ., 121, 201–236.
    [Google Scholar]
  37. Raymo, M.E. & Ruddiman, W.F. (1992) Tectonic forcing of Late Cenozoic climate. Nature, 359, 117–122.
    [Google Scholar]
  38. Reichow, M.K., Saunders, A.D., White, R.V., Pringle, M.S., Al'Mukhamedov, A.I., Medvedev, A.I. & Kirda, N.P. (2002) Ar‐40/Ar‐39 dates from the West Siberian Basin: Siberian flood basalt province doubled. Science, 296, 1846–1849.
    [Google Scholar]
  39. Royden, L.H., Burchfiel, B.C., King, R.W., Wang, E., Chen, Z.L., Shen, F. & Liu, Y.P. (1997) Surface deformation and lower crustal flow in eastern Tibet. Science, 276, 788–790.
    [Google Scholar]
  40. Scott, D.L., Rawlings, D.J., Page, R.W., Tarlowski, C.Z., Idnurm, M., Jackson, M.J. & Southgate, P.N. (2000) Basement framework and geodynamic evolution of the Palaeoproterozoic superbasins of north‐central Australia: an integrated review of geochemical, geochronological and geophysical data. Aust. J. Earth Sci., 47, 341–380.
    [Google Scholar]
  41. Sekretov, S.B. (2002) Structure and tectonic evolution of the southern Eurasia Basin, Arctic Ocean. Tectonophysics, 351, 193–243.
    [Google Scholar]
  42. Şengör, A.M.C. & Natal'in, B.A. (1996) Paleotectonics of Asia: fragments of a synthesis. In: The Tectonic Evolution of Asia (Ed. by A.Yin & M.Harrison ), pp. 486–640. Cambridge University Press, Cambridge.
    [Google Scholar]
  43. Starosel'tsev, V.S., Migurskii, A.V. & Starosel'tsev, K.V. (2003) The Yenisei Range and its junction with the Siberian platform and West Siberian plate. Russ. Geol. Geophys., 44, 76–85.
    [Google Scholar]
  44. Surkov, V.S. & Zhero, O.G. (1981) Basement and Devlopment of the Platform Cover of the West Siberian Platform. Nedra, Moscow.
    [Google Scholar]
  45. Svendsen, J.I., Alexanderson, H., Astakhov, V.I., Demidov, I., Dowdeswell, J.A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark‐Nielsen, M., Hubberten, H.W., Ingolfsson, O., Jakobsson, M., Kjaer, K.H., Larsen, E., Lokrantz, H., Lunkka, J.P., Lysa, A., Mangerud, J., Matiouchkov, A., Murray, A., Moller, P., Niessen, F., Nikolskaya, O., Polyak, L., Saarnisto, M., Siegert, C., Siegert, M.J., Spielhagen, R.F. & Stein, R. (2004) Late Quaternary ice sheet history of northern Eurasia. Quatern. Sci. Rev., 23, 1229–1271.
    [Google Scholar]
  46. Tapponnier, P., Xu, Z.Q., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G. & Yang, J.S. (2001) Oblique stepwise rise and growth of the Tibet plateau. Science, 294, 1671–1677.
    [Google Scholar]
  47. Vyssotski, A.V., Vyssotski, V.N. & Nezhdanov, A.A. (2006) Evolution of the West Siberian Basin. Mar. Petrol. Geol., 23, 93–126.
    [Google Scholar]
  48. Whitehouse, P.L., Allen, M.B. & Milne, G.A. (2007) Glacial isostatic adjustment as a control on coastal processes: an example from the Siberian Arctic. Geology, 35, 747–750.
    [Google Scholar]
  49. Zhang, P.‐Z., Shen, Z., Wang, M., Gan, W., Bürgmann, R., Molnar, P., Wang, Q., Niu, Z., Sun, J., Wu, J., Sun, H. & You, X. (2004) Continuous deformation of the Tibetan plateau from global positioning system data. Geology, 32, 809–812.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2007.00331.x
Loading
/content/journals/10.1111/j.1365-2117.2007.00331.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error