1887
Volume 26, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Sequence‐stratigraphic models for fourth to sixth order, glacio‐eustatic sequences based only on relative sea‐level variations result in simplified and potentially false interpretations. Glacio‐eustatic sea‐level variations form only one aspect of cyclic climate variation; other aspects, such as variations in fluvial water discharge, vegetation cover, weathering and sediment supply can lead to variable sediment yield, thus adding complexity to sequence‐stratigraphic patterns normally attributed to sea‐level variations. Analogue flume models show a significant impact of water discharge on the timing and character of sequence boundaries, and on changes in the relative importance of systems tracts, as expressed in sediment volumes. Four deltas, generated under the influence of an identical sea‐level curve, and affected by different water‐discharge cycles were generated in the Eurotank facility: (1) constant discharge; (2) high‐frequency discharge variations (HFD); (3) discharge leading sea level by a quarter phase; (4) discharge lagging sea level by a quarter phase. HFD shift the parasequence stacking pattern consistently but do not alter large‐scale delta architecture. Water‐discharge changes that lead sea‐level changes result in high sediment yield during sea‐level rise and in the poor development of maximum flooding surfaces. Delta‐front erosion during sea‐level fall is expressed by multiple, small channels related to upstream avulsions, and does not result in an incised valley that efficiently routs sediment to the shelf edge. When water‐discharge changes lag sea‐level changes, sediment yield is high during falling sea level and results in rapid progradation during forced regression. Erosion from incised valleys is strong on the proximal delta top and dissipates towards the delta front. The combination of high discharge and sea‐level fall provides the most efficient mode of valley incision and sediment transport to the shelf edge. During sea‐level rise, low water discharge results in sediment starvation and well‐developed maximum flooding surfaces. Water‐discharge variations thus alter sequence‐stratigraphic patterns and provide an alternative explanation to the amplitude of sea‐level fall for generating either type 1 or 2 erosional unconformities.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12034
2013-09-24
2024-10-10
Loading full text...

Full text loading...

References

  1. van den Berg van Saparoea, A.‐P. & Postma, G. (2008) Control of climate change on the yield of rivers systems. In: Recent Advances in Models of Siliciclastic Shallow‐Marine Stratigraphy (Ed. by G.J.Hampson , R.J.Steel & P.M.Burgess ) SEPM Spec. Publ., 90, 15–33.
    [Google Scholar]
  2. Blum, M.D. & Aslan, A. (2006) Signatures of climate vs. sea‐level change within incised valley‐fill successions: quaternary examples from the Texas Gulf Coast. Sed. Geol., 190, 177–211.
    [Google Scholar]
  3. Blum, M.D. & Tornqvist, T.E. (2000) Fluvial responses to climate and sea‐level change: a review and look forward. Sedimentology, 47, 2–48.
    [Google Scholar]
  4. Bourget, J., Zaragosi, S., Ellouz‐Zimmermann, S., Ducassou, E., Prins, M.A., Garlan, T., Lanfumey, V., Schneider, J.L., Rouillard, P. & Giraudeau, J. (2010) Highstand vs. lowstand turbidite system growth in the Makran active margin: imprints of high‐frequency external controls on sediment delivery mechanisms to deep water systems. Mar. Geol., 274, 187–208.
    [Google Scholar]
  5. Brasington, J. & Smart, R.M.A. (2003) Close range digital photogrammetric analysis of experimental drainage basin evolution. Earth Surf. Proc. Land., 28, 231–247.
    [Google Scholar]
  6. Carvajal, C., Steel, R. & Petter, A. (2009) Sediment supply: the main driver of shelf‐margin growth. Earth‐Sci. Rev., 96, 221–248.
    [Google Scholar]
  7. Castelltort, S. & Van Den Driessche, J. (2003) How plausible are high‐frequency sediment supply‐driven cycles in the stratigraphic record?Sed. Geol., 157, 3–13.
    [Google Scholar]
  8. Catuneanu, O., Abreu, V., Bhattacharya, J.P., Blum, M.D., Dalrymple, R.W., Eriksson, P.G., Fielding, C.R., Fisher, W.L., Galloway, W.E., Gibling, M.R., Giles, K.A., Holbrook, J.M., Jordan, R., Kendall, C.G.S.C., Macurda, B., Martinsen, O.J., Miall, A.D., Neal, J.E., Nummedal, D., Pomar, L., Posamentier, H.W., Pratt, B.R., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A., Tucker, M.E. & Winker, C. (2009) Towards the standardization of sequence stratigraphy. Earth‐Sci. Rev., 92, 1–33.
    [Google Scholar]
  9. Chandler, J.H., Shiono, K., Rameshwaren, P. & Lane, S.N. (2001) Measuring flume surfaces for hydraulics research using a kodak Dcs460. Photogramm. Rec., 17, 39–61.
    [Google Scholar]
  10. Collinson, J.D. (1988) Controls on Namurian sedimentation in the central province basins of northern England. In: Sedimentation in a Synorogenic Basin Complex: The Upper Carboniferous of Northwest Europe (Ed. by B.MBesly & GKelling ), pp. 85–101. Blackie, Glasgow.
    [Google Scholar]
  11. Ethridge, F.G., Wood, L.J. & Schumm, S.A. (1998) Cyclic variables controlling fluvial sequence development: problems and perspectives. In: Relative Role of Eustasy, Climate, and Tectonism in Continental Rocks (Ed. by K.W.Shanley & P.W.McCabe ) SEPM Spec. Publ.., 59, 17–29.
    [Google Scholar]
  12. Goodbred, S.L. (2003) Response of the Ganges dispersal system to climate change: a source‐to‐sink view since the last interstade. Sed. Geol., 162, 83–104.
    [Google Scholar]
  13. Hampson, G.J., Jewell, T.O., Irfan, N., Gani, M.R. & Bracken, B. (2013) Modest change in fluvial style with varying accommodation in regressive alluvial‐to‐coastal‐plain wedge: Upper Cretaceous Blackhawk Formation, Wasatch Plateau, central Utah, U.S.A. J. Sed. Res., 83, 145–169.
    [Google Scholar]
  14. van Heijst, M.W.I.M. & Postma, G. (2001) Fluvial response to sea‐level changes: a quantitative analogue, experimental approach. Basin Res., 13, 269–292.
    [Google Scholar]
  15. van Heijst, M.W.I.M., Postma, G., Meijer, X.D., Snow, J.N. & Anderson, J.B. (2001) Quantitative analogue flume‐model study of rivershelf systems: principles and verification exemplified by the Late Quaternary Colorado riverdelta evolution. Basin Res., 13, 243–268.
    [Google Scholar]
  16. van Heijst, M.W.I.M., Postma, G., van Kesteren, W.P. & de Jongh, R.G. (2002) Control of syndepositional faulting on systems tract evolution across growth‐faulted shelf margins: an analog experimental model of the Miocene Imo River field, Nigeria. AAPG Bull., 86, 1335–1366.
    [Google Scholar]
  17. Helland‐Hansen, W. & Hampson, G.J. (2009) Trajectory analysis: concepts and applications. Basin Res., 21, 454–483.
    [Google Scholar]
  18. Helland‐Hansen, W. & Martinsen, O.J. (1996) Shoreline trajectories and sequences: description of variable depositional‐dip scenarios. J. Sed. Res., Sec. B: Stratigr. Global Stud., 66, 670–688.
    [Google Scholar]
  19. Hickson, T.A., Sheets, B.A., Paola, C. & Kelberer, M. (2005) Experimental test of tectonic controls on three‐dimensional alluvial facies architecture. J. Sed. Res., 75, 710–722.
    [Google Scholar]
  20. Holbrook, J. (2001) Origin, genetic interrelationships, and stratigraphy over the continuum of fluvial channel‐form bounding surfaces: an illustration from middle Cretaceous strata, southeastern Colorado. Sed. Geol., 144, 179–222.
    [Google Scholar]
  21. Holbrook, J.M. & Bhattacharya, J.P. (2012) Reappraisal of the sequence boundary in time and space: case and considerations for an SU (subaerial unconformity) that is not a sediment bypass surface, a time barrier, or an unconformity. Earth‐Sci. Rev., 113, 271–302.
    [Google Scholar]
  22. Holbrook, J., Scott, R.W. & Oboh‐Ikuenobe, F.E. (2006) Base‐level buffers and buttresses: a model for upstream versus downstream control on fluvial geometry and architecture within sequences. J. Sed. Res., 76, 162–174.
    [Google Scholar]
  23. Hunt, D. & Tucker, M.E. (1992) Stranded parasequences and the forced regressive wedge systems tract – deposition during base‐level fall. Sed. Geol., 81, 1–9.
    [Google Scholar]
  24. Imbrie, J. (1985) A theoretical framework for the pleistocene ice ages. J. Geol. Soc., 142, 417–432.
    [Google Scholar]
  25. Imbrie, J. & Imbrie, J.Z. (1980) Modeling the climatic response to orbital variations. Science, 207, 943–953.
    [Google Scholar]
  26. Jerolmack, D.J. & Paola, C. (2010) Shredding of environmental signals by sediment transport. Geophys. Res. Lett., 37, L19401. doi: 10.1029/2010GL044638.
    [Google Scholar]
  27. Jervey, M.T. (1988) Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. In: Sea Level Changes—An Integrated Approach (Ed. by C.K.Wilgus , B.S.Hastings , C.G.S.C.Kendall , H.W.Posamentier , H.W.Ross & J.C.Van Wagoner ) SEPM Spec. Publ.., 42, 47–69.
    [Google Scholar]
  28. Kim, W., Paola, C., Voller, V.R. & Swenson, J.B. (2006) Experimental measurement of the relative importance of controls on shoreline migration. J. Sed. Res., 76, 270–283.
    [Google Scholar]
  29. Leeder, M.R. (1988) Recent developments in Carboniferous geology: a critical review with implications for the British Isles and N.W. Europe. Proc. Geol. Assoc., 99, 73–100.
    [Google Scholar]
  30. Leeder, M.R., Harris, T. & Kirkby, M.J. (1998) Sediment supply and climate change: implications for basin stratigraphy. Basin Res., 10, 7–18.
    [Google Scholar]
  31. Martinsen, O.J., Collinson, J.D. & Holdsworth, B.K. (1995) Millstone grit cyclicity revisited, II: sequence stratigraphy and sedimentary responses to changes of relative sea‐level. In: Sed. Facies Anal. (Ed. by A.G.Plint ), pp. 305–327. Blackwell Publishing Ltd, Oxford, UK.
    [Google Scholar]
  32. Meijer, X.D. (2002) Modelling the drainage evolution of a river‐shelf system forced by Quaternary glacio‐eustacy, Basin Res., 14, 361–377.
    [Google Scholar]
  33. Milana, J.P. & Tietze, K.‐W. (2002) Three‐dimensional analogue modelling of an alluvial basin margin affected by hydrological cycles: processes and resulting depositional sequences. Basin Res., 14, 237–264.
    [Google Scholar]
  34. Milana, J.P. & Tietze, K.‐W. (2007) Limitations of sequence stratigraphic correlation between marine and continental deposits: A 3D experimental study of unconformity‐bounded units. Sedimentology, 54, 293–316.
    [Google Scholar]
  35. Muto, T. & Steel, R.J. (2002a) Role of autoretreat and as changes in the understanding of deltaic shoreline trajectory: a semi‐quantitative approach. Basin Res., 14, 303–318.
    [Google Scholar]
  36. Muto, T. & Steel, R.J. (2002b) In defense of shelf‐edge delta development during falling and lowstand of relative sea level. J. Geol., 110, 421.
    [Google Scholar]
  37. Muto, T. & Swenson, J.B. (2005) Large‐scale fluvial grade as a nonequilibrium state in linked depositional systems: theory and experiment. J. Geophys. Res.: Earth Surf., 110, F03002.
    [Google Scholar]
  38. Muto, T., Steel, R.J. & Swenson, J.B. (2007) Autostratigraphy: a framework norm for genetic stratigraphy. J. Sed. Res., 77, 2–12.
    [Google Scholar]
  39. Paola, C., Heller, P.L. & Angevine, C.L. (1992) The large‐scale dynamics of grain‐size variation in alluvial basins, 1: theory. Basin Res., 4, 73–90.
    [Google Scholar]
  40. Paola, C., Straub, K., Mohrig, D. & Reinhardt, L. (2009) The “unreasonable effectiveness” of stratigraphic and geomorphic experiments. Earth‐Sci. Rev., 97, 1–43.
    [Google Scholar]
  41. Plink‐Björklund, P. & Steel, R. (2005) Deltas on falling‐stage and lowstand shelf margins, the Eocene Central Basin of Spitsbergen: importance of sediment supply. In: River Deltas‐Concepts, Models, and Examples, (Ed. by L.Gasan & J.Bhattacharya ) SEPM Spec. Publ., 83, 179–206.
    [Google Scholar]
  42. Porebski, S.J. & Steel, R.J. (2003) Shelf‐margin deltas: their stratigraphic significance and relation to deepwater sands. Earth‐Sci. Rev., 62, 283–326.
    [Google Scholar]
  43. Posamentier, H.W. & Allen, G.P. (1993) Variability of the sequence stratigraphic model: effects of local basin factors. Sed. Geol., 86, 91–109.
    [Google Scholar]
  44. Posamentier, H.W. & James, D.P. (1993) An overview of sequence‐stratigraphic concepts: uses and abuses. In: Sequence Stratigraphy and Facies Associations, (Ed. by H.W.Posamentier , C.P.Summerhayes , B.U.Haq & G.P.Allen ). Blackwell Publishing Ltd, Oxford, UK.
    [Google Scholar]
  45. Posamentier, H.W. & Vail, P.R. (1988) Eustatic controls on clastic deposition II – sequence and system tract models. In: Sea Level Changes – An Integrated Approach (Ed. by C.K.Wilgus , B.S.Hastings , C.G.S.C.Kendall , H.W.Posamentier , H.W.Ross & J.C.Van Wagoner ) SEPM Spec. Publ.., 42, 125–154.
    [Google Scholar]
  46. Posamentier, H.W., Jervey, M.T. & Vail, P.R. (1988) Eustatic controls on clastic deposition I – conceptual framework. In: Sea Level Changes – an Integrated Approach (Ed. by C.K.Wilgus , B.S.Hastings , C.G.S.C.Kendall , H.W.Posamentier , H.W.Ross & J.C.Van Wagoner ) SEPM Spec. Publ.., 42, 110–124.
    [Google Scholar]
  47. Postma, G. (2001) Physical climate signatures in shallow‐ and deep‐water deltas. Global Planet. Change, 28, 93–106.
    [Google Scholar]
  48. Postma, G., Hilgen, F.J. & Zachariasse, W.J. (1993) Precession‐punctuated growth of a late Miocene submarine‐fan lobe on Gavdos (Greece). Terra Nova, 5, 438–444.
    [Google Scholar]
  49. Postma, G., Kleinhans, M.G., Meijer, P.T. & Eggenhuisen, J.T. (2008) Sediment transport in analogue flume models compared with real‐world sedimentary systems: a new look at scaling evolution of sedimentary systems in a flume. Sedimentology, 55, 1541–1557.
    [Google Scholar]
  50. Prins, M.A., Postma, G., Cleveringa, J., Cramp, A. & Kenyon, N.H. (2000) Controls on terrigenous sediment supply to the Arabian Sea during the late quaternary: the Indus Fan. Marine Geol., 169, 327–349.
    [Google Scholar]
  51. Ritchie, B.D., Gawthorpe, R.L. & Hardy, S. (2004) Three‐dimensional numerical modeling of deltaic depositional sequences 2: influence of local controls. J. Sed. Res., 74, 221–238.
    [Google Scholar]
  52. Rittenour, T.M., Blum, M.D. & Goble, R.J. (2007) Fluvial evolution of the lower Mississippi River valley during the last 100 k.y. glacial cycle: response to glaciation and sea‐level change. Geol. Soc. Am. Bull., 119, 586–608.
    [Google Scholar]
  53. Schlager, W. (1993) Accommodation and supply–a dual control on stratigraphic sequences. Sed. Geol., 86, 111–136.
    [Google Scholar]
  54. Schlager, W. (2010) Ordered hierarchy versus scale invariance in sequence stratigraphy. Int. J. Earth Sci., 99, S139–S151.
    [Google Scholar]
  55. Sheets, B.A., Hickson, T.A. & Paola, C. (2002) Assembling the stratigraphic record: depositional patterns and time‐scales in an experimental alluvial basin. Basin Res., 14, 287–301.
    [Google Scholar]
  56. Simpson, G. & Castelltort, S. (2012) Model shows that rivers transmit high‐frequency climate cycles to the sedimentary record. Geology, 40, 1131–1134.
    [Google Scholar]
  57. Stouthamer, E. & Berendsen, H.J.A. (2007) Avulsion: the relative roles of autogenic and allogenic processes. Sed. Geol., 198, 309–325.
    [Google Scholar]
  58. Uroza, C.A. & Steel, R.J. (2008) A highstand shelf‐margin delta system from the Eocene of West Spitsbergen, Norway. Sed. Geol., 203, 229–245.
    [Google Scholar]
  59. Vail, P.R., Mitchum, R.M. Jr & Thompson, SIII. (1977) Seismic stratigraphy and global changes of sea level, part 3: relative changes of sea level from coastal onlap. In: Seismic Stratigraphy – Applications to Hydrocarbon Exploration (Ed. by C.E.Payton ) AAPG Mem.26, 63–81.
    [Google Scholar]
  60. Van der Zwan, C.J. (2002) The Impact of Milankovitch‐scale climatic forcing on sediment supply. Sed. Geol., 147, 271–294.
    [Google Scholar]
  61. Van Wagoner, J.C., Posamentier, H.W., Mitchum, R.M., Vail, P.R., Sarg, J.F., Loutit, T.S. & Hardenbol, J. (1988) An overview of the fundamentals of sequence stratigraphy and key definitions. In: Sea Level Changes – an Integrated Approach (Ed. by C.K.Wilgus , B.S.Hastings , C.G.S.C.Kendall , H.W.Posamentier , H.W.Ross & J.C.Van Wagoner ) SEPM Spec. Publ.., 42, 37–45.
    [Google Scholar]
  62. Weltje, G. & De Boer, P.L. (1993) Astronomically induced paleoclimatic oscillations reflected in Pliocene turbidite deposits on Corfu (Greece): implications for the interpretation of higher order cyclicity in ancient turbidite systems. Geology, 21, 307–310.
    [Google Scholar]
/content/journals/10.1111/bre.12034
Loading
/content/journals/10.1111/bre.12034
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error