1887
Volume 26, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

The Indus drainage has experienced major variations in climate since the Last Glacial Maximum (LGM) that have affected the volumes and compositions of the sediment reaching the ocean since that time. We here present a comprehensive first‐order source‐to‐sink budget spanning the time since the LGM. We show that buffering of sediment in the floodplain accounts for . 20–25% of the mass flux. Sedimentation rates have varied greatly and must have been on average three times the recent, predamming rates. Much of the sediment was released by incision of fluvial terraces constructed behind landslide dams within the mountains, and especially along the major river valleys. New bedrock erosion is estimated to supply around 45% of the sedimentation. Around 50% of deposited sediment lies under the southern floodplains, with 50% offshore in large shelf clinoforms. Provenance indicators show a change of erosional focus during the Early Holocene, but no change in the Mid–Late Holocene because of further reworking from the floodplains. While suspended loads travel rapidly from source‐to‐sink, zircon grains in the bedload show travel times of 7–14 kyr. The largest lag times are anticipated in the Indus submarine fan where sedimentation lags erosion by at least 10 kyr.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12038
2014-02-17
2024-04-28
Loading full text...

Full text loading...

References

  1. Ali, K.F. & De Boer, D.H. (2008) Factors controlling specific sediment yield in the upper Indus River basin, northern Pakistan. Hydrol. Process., 22, 3102–3114.
    [Google Scholar]
  2. Alizai, A., Carter, A., Clift, P.D., VanLaningham, S., Williams, J.C. & Kumar, R. (2011) Sediment provenance, reworking and transport processes in the Indus River by U‐Pb dating of detrital zircon grains. Global Planet. Change, 76, 33–55. doi:10.1016/j.gloplacha.2010.11.008
    [Google Scholar]
  3. Blum, M., Martin, J., Milliken, K. & Garvin, M. (2013) Paleovalley Systems: insights from Quaternary analogs and experiments. Earth‐Sci. Rev., 116, 128–169. doi:10.1016/j.earscirev.2012.09.003
    [Google Scholar]
  4. Bookhagen, B. & Burbank, D.W. (2006) Topography, Relief, and TRMM‐derived rainfall variations along the Himalaya. Geophys. Res. Lett., 33, L08405. doi:10.1029/2006GL026037
    [Google Scholar]
  5. Bookhagen, B., Thiede, R.C. & Strecker, M.R. (2005) Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology, 33, 149–152.
    [Google Scholar]
  6. Bookhagen, B., Fleitmann, D., Nishiizumi, K., Strecker, M.R. & Thiede, R.C. (2006) Holocene monsoonal dynamics and fluvial terrace formation in the northwest Himalaya, India. Geology (Boulder), 34, 601–604.
    [Google Scholar]
  7. Burgess, P.M. & Hovius, N. (1998) Rates of delta progradation during highstands; consequences for timing of deposition in deep‐marine systems. J. Geol. Soc., 155, 217–222.
    [Google Scholar]
  8. Chabaux, F., Granet, M., Pelt, E., France‐Lanord, C. & Galy, V. (2006) U‐238‐U‐234‐Th‐230 disequilibria and timescale of sedimentary transfers in rivers: clues from the Gangetic plain rivers. J. Geochem. Explor., 88, 373–375.
    [Google Scholar]
  9. Clift, P.D. (2006) Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth Planet. Sci. Lett., 241, 571–580.
    [Google Scholar]
  10. Clift, P.D., Campbell, I.H., Pringle, M.S., Carter, A., Zhang, X., Hodges, K.V., Khan, A.A. & Allen, C.M. (2004) Thermochronology of the Modern Indus River Bedload: new insight into the control on the marine stratigraphic record. Tectonics, 23, TC5013. doi:10.1029/2003TC001559
    [Google Scholar]
  11. Clift, P.D., Giosan, L., Blusztajn, J., Campbell, I.H., Allen, C.M., Pringle, M., Tabrez, A., Danish, M., Rabbani, M.M., Carter, A. & Lückge, A. (2008) Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon. Geology, 36, 79–82. doi:10.1130/G24315A.1
    [Google Scholar]
  12. Clift, P.D., Giosan, L., Carter, A., Garzanti, E., Galy, V., Tabrez, A.R., Pringle, M., Campbell, I.H., France‐Lanord, C., Blusztajn, J., Allen, C., Alizai, A., Lückge, A., Danish, M. & Rabbani, M.M. (2010) Monsoon control over erosion patterns in the western himalaya: possible feed‐backs into the tectonic evolution. In: Monsoon Evolution and Tectonic‐Climate Linkage in Asia (Ed. by P.D.Clift , R.Tada & H.Zheng ) Geol. Soc. London Spec. Publ., 342, 181–213.
    [Google Scholar]
  13. Clift, P.D., Giosan, L., Henstock, T. & Tabrez, A.R. (2013) Sediment Storage and reworking on the shelf and in the canyon of the Indus River‐Fan system since the Last Glacial Maximum. Basin Res. In press.
    [Google Scholar]
  14. Costa, J.E. & Schuster, R.L. (1988) The formation and failure of natural dams. Geol. Soc. Am. Bull., 100, 1054–1068.
    [Google Scholar]
  15. Dortch, J., Owen, L.A., Haneberg, W.C., Caffee, M.W., Dietsch, C. & Kamp, D.U. (2008) Nature and timing of large‐landslides in the Himalaya and Transhimalaya of northern india. Quatern. Sci. Rev., 28, 1037–1054.
    [Google Scholar]
  16. Dortch, J.M., Owen, L.A. & Caffee, M.W. (2010) Quaternary glaciation in the Nubra and Shyok Valley confluence, northernmost Ladakh, India. Quatern. Res., 74, 132–144.
    [Google Scholar]
  17. Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A. & Matter, A. (2003) Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman. Science, 300, 1737–1739.
    [Google Scholar]
  18. Garzanti, E., Vezzoli, G., Ando, S., France‐Lanord, C., Singh, S.K. & Foster, G. (2004) Sand petrology and focused erosion in collision orogens: The Brahmaputra case. Earth Planet. Sci. Lett., 220, 157–174.
    [Google Scholar]
  19. Garzanti, E., Vezzoli, G., Ando, S., Paparella, P. & Clift, P.D. (2005) Petrology of Indus River sands: a key to interpret erosion history of the Western Himalayan Syntaxis. Earth Planet. Sci. Lett., 229, 287–302. doi:10.1016/j.epsl.2004.11.008
    [Google Scholar]
  20. Garzanti, E., Andò, S., France‐Lanord, C., Vezzoli, G., Censi, P., Galy, V. & Najman, Y. (2010) Mineralogical and chemical variability of fluvial sediments: 1. Bedload sand (Ganga–Brahmaputra, Bangladesh). Earth Planet. Sci. Lett., 299, 368–381. doi:10.1016/j.epsl.2010.09.017
    [Google Scholar]
  21. Giosan, L., Clift, P.D., Blusztajn, J., Tabrez, A., Constantinescu, S. & Filip, F. (2006a) On the control of climate‐ and human‐modulated fluvial sediment delivery on river delta development: the Indus. EOS Trans. Am. Geophys. Union, 87, OS14A‐04.
    [Google Scholar]
  22. Giosan, L., Constantinescu, S., Clift, P.D., Tabrez, A.R., Danish, M. & Inam, A. (2006b) Recent morphodynamics of the Indus delta shore and shelf. Cont. Shelf Res., 26, 1668–1684.
    [Google Scholar]
  23. Giosan, L., Clift, P.D., Macklin, M.G., Fuller, D.Q., Constantinescu, S., Durcan, J.A., Stevens, T., Duller, G.A.T., Tabrez, A., Adhikari, R., Gangal, K., Alizai, A., Filip, F., VanLaningham, S. & Syvitski, J.P.M. (2012a) Fluvial landscapes of the Harappan civilization. Proc. Natl. Acad. Sci. USA, 109, 1688–1694. doi:10.1073/pnas.1112743109
    [Google Scholar]
  24. Giosan, L., Fuller, D.Q., Nicoll, K., Flad, R.K. & Clift, P.D., editors (2012b) Climates, Landscapes, and Civilizations. Geophysical Monograph Series. American Geophysical Union, Washington, D. C.
    [Google Scholar]
  25. Goldstein, S.L., O'Nions, R.K. & Hamilton, P.J. (1984) A Sm‐Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet. Sci. Lett., 70, 221–236.
    [Google Scholar]
  26. Goodbred, S.L. & Kuehl, S.A. (2000a) The significance of large sediment supply, active tectonism, and eustasy on margin sequence development; Late Quaternary stratigraphy and evolution of the Ganges‐Brahmaputra delta. Sed. Geol., 133, 227–248.
    [Google Scholar]
  27. Goodbred, S.L. & Kuehl, S.A. (2000b) Enormous Ganges‐Brahmaputra sediment discharge during strengthened early Holocene monsoon. Geology (Boulder), 28, 1083–1086.
    [Google Scholar]
  28. Granet, M., Chabaux, F., Stille, P., France‐Lanord, C. & Pelt, E. (2007) Time‐scales of sedimentary transfer and weathering processes from U‐series nuclides: clues from the Himalayan rivers. Earth Planet. Sci. Lett., 261, 389–406.
    [Google Scholar]
  29. Granet, M., Chabaux, F., Stille, P., Dosseto, A., France‐Lanord, C. & Blaes, E. (2010) U‐series disequilibria in suspended river sediments and implication for sediment transfer time in alluvial plains: the case of the Himalayan rivers. Geochim. Cosmochim. Acta, 74, 2851–2865.
    [Google Scholar]
  30. Harris, N.B.W. (2006) The elevation of the Tibetan Plateau and its impact on the monsoon. Palaeogeogr. Palaeoclimatol. Palaeoecol., 241, 4–15.
    [Google Scholar]
  31. Hedrick, K.A., Seong, Y.B., Owen, L.A., Caffee, M.W. & Dietsch, C. (2011) Towards defining the transition in style and timing of quaternary glaciation between the monsoon‐influenced Greater Himalaya and the semi‐arid Transhimalaya of Northern India. Quatern. Int., 236, 21–33. doi:10.1016/j.quaint.2010.07.023
    [Google Scholar]
  32. Herzschuh, U. (2006) Palaeo‐moisture evolution in monsoonal Central Asia during the last 50,000 years. Quatern. Sci. Rev., 25, 163–178.
    [Google Scholar]
  33. Hewitt, K. (1998) Catastrophic landslides and their effects on the Upper Indus streams, Karakoram Himalaya, northern Pakistan. Geomorphology, 26, 47–80.
    [Google Scholar]
  34. Hewitt, K. (2009) Catastrophic rock slope failures and late Quaternary developments in the Nanga Parbat‐Haramosh Massif, Upper Indus basin, Northern Pakistan. Quatern. Sci. Rev., 28, 1055–1069.
    [Google Scholar]
  35. Hoang, L.V., Wu, F.Y., Clift, P.D., Wysocka, A. & Swierczewska, A. (2009) Evaluating the evolution of the Red River system based on in‐Situ U‐Pb dating and Hf isotope analysis of zircons. Geochem. Geophys. Geosyst., 10, Q11008. doi:10.1029/2009GC002819
    [Google Scholar]
  36. Hoang, L.V., Clift, P.D., Mark, D., Zheng, H. & Tan, M.T. (2010) Ar‐Ar muscovite dating as a constraint on sediment provenance and erosion processes in the Red and Yangtze River systems, SE Asia. Earth Planet. Sci. Lett., 295, 379–389. doi:10.1016/j.epsl.2010.04.012
    [Google Scholar]
  37. Hu, Z. & Gao, S. (2008) Upper crustal abundances of trace elements: a revision and update. Chem. Geol., 253, 205–221. doi:10.1016/j.chemgeo.2008.05.010
    [Google Scholar]
  38. Inam, A., Clift, P.D., Giosan, L., Tabrez, A.R., Tahir, M., Rabbani, M.M. & Danish, M. (2007) The geographic, geological and oceanographic setting of the Indus River. In: Large Rivers: Geomorphology and Management (Ed. by A.Gupta ), pp. 333–345. John Wiley and Sons, Chichester, UK.
    [Google Scholar]
  39. Kazmi, A.H. (1984) Geology of the Indus delta. In: Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan (Ed. by B.U.Haq , J.D.Milliman ), pp. 65–70. Van Nostrand Reinhold, New York.
    [Google Scholar]
  40. Korup, O., Montgomery, D.R. & Hewitt, K. (2010) Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes. Proc. Natl. Acad. Sci. USA, 107, 5317–5322.
    [Google Scholar]
  41. Lavé, J. & Avouac, J.P. (2001) Fluvial incision and tectonic uplift across the Himalaya of Central Nepal. J. Geophys. Res., 106, 561–526, 592. doi: 10.1029/2001JB000359
    [Google Scholar]
  42. Limmer, D.R., Henstock, T.J., Giosan, L., Ponton, C., Tabrez, A.R., Macdonald, D.I.M. & Clift, P.D. (2012) Impacts of sediment supply and local tectonics on clinoform distribution: the seismic stratigraphy of the mid Pleistocene‐Holocene Indus Shelf. Mar. Geophys. Res., 33, 251–267. doi:10.1007/s11001‐012‐9160‐6
    [Google Scholar]
  43. Lupker, M., France‐Lanord, C., Lavé, J., Bouchez, J., Galy, V., Métivier, F., Gaillardet, J., Lartiges, B. & Mugnier, J.L. (2011) A Rouse‐based method to integrate the chemical composition of river sediments: application to the Ganga Basin. J. Geophys. Res., 116, F04012. doi:10.1029/2010JF001947
    [Google Scholar]
  44. Lupker, M., Blard, P.‐H., Lavé, J., France‐Lanord, C., Leanni, L., Puchol, N., Charreau, J. & Bourles, D. (2012) 10be‐Derived Himalayan denudation rates and sediment budgets in the Ganga Basin. Earth Planet. Sci. Lett., 333–334, 146–156. doi:10.1016/j.epsl.2012.04.020
    [Google Scholar]
  45. Maheo, G., Pecher, A., Guillot, S., Rolland, Y. & Delacourt, C. (2004) Exhumation of Neogene gneiss domes between oblique crustal boundaries in south Karakorum, northwest Himalaya, Pakistan. Geol. Soc. Am. Spec. Pap., 380, 141–154.
    [Google Scholar]
  46. Métivier, F. & Gaudemer, Y. (1999) Stability of output fluxes of large rivers in South and East Asia during the last 2 million years; implications of floodplain processes. Basin Res., 11, 293–303.
    [Google Scholar]
  47. Milliman, J.D. & Syvitski, J.P.M. (1992) Geomorphic/tectonic control of sediment discharge to the ocean; the importance of small mountainous rivers. J. Geol., 100, 525–544.
    [Google Scholar]
  48. Owen, L.A., Caffee, M., Finkel, R.C. & Seong, Y.B. (2008) Quaternary glaciation of the Himalayan–Tibetan orogen. J. Quatern. Sci., 23, 513–531. doi:10.1002/jqs.1203
    [Google Scholar]
  49. Phartiyal, B. & Sharma, A. (2009) Soft‐sediment deformation structures in the late Quaternary sediments of Ladakh: evidence for multiple phases of seismic tremors in the northwestern Himalayan region. J. Asian Earth Sci., 34, 761–770.
    [Google Scholar]
  50. Phartiyal, B., Sharma, A., Upadhyay, R., Ram‐Awatar & Sinha, A.K. (2005) Quaternary geology, tectonics and distribution of palaeo‐ and present fluvio/glacio lacustrine deposits in Ladakh, NW Indian Himalaya – a study based on field observations. Geomorphology, 65, 241–256.
    [Google Scholar]
  51. Prins, M.A., Postma, G., Cleveringa, J., Cramp, A. & Kenyon, N.H. (2000) Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Indus Fan. Mar. Geol., 169, 327–349. doi:10.1016/S0025‐3227(00)00086‐4
    [Google Scholar]
  52. Sinha, A., Cannariato, K.G., Stott, L.D., Li, H.‐C., You, C.‐F., Cheng, H., Edwards, R.L. & Singh, I.B. (2005) Variability of Southwest Indian summer monsoon precipitation during the Bolling‐Allerod. Geology, 33, 813–816.
    [Google Scholar]
  53. Stuiver, M. & Grootes, P.M. (2000) Gisp2 Oxygen isotope ratios. Quatern. Res. (New York), 53, 277–284.
    [Google Scholar]
  54. Syvitski, J.P.M., Morehead, M.D., Bahr, D.B. & Mulder, T. (2000) Estimating fluvial sediment transport: the rating parameters. Water Resour. Res., 36, 2747–2760.
    [Google Scholar]
  55. Vail, P.R., Mitchum, R.M., Todd, R.G., Widmier, J.M., Thompson, S.I., Sangree, J.B., Bubb, J.N. & Hatlelid, W.G. (1977) Seismic stratigraphy and global changes of sea‐level. In: Seismic Stratigraphy – Applications to Hydrocarbon Exploration (Ed. by C.E.Payton ) AAPG Mem., 26, 49–212.
    [Google Scholar]
  56. Williams, G.P. (1989) Sediment concentration versus water discharge during single hydrologic events in rivers. J. Hydrol., 111, 89–106.
    [Google Scholar]
  57. Wittmann, H., von Blanckenburg, F., Maurice, L., Guyot, J.‐L., Filizola, N. & Kubik, P.W. (2011) Sediment production and delivery in the Amazon River basin quantified by in situ‐produced cosmogenic nuclides and recent river loads. Geol. Soc. Am. Bull., 123, 934–950. doi:10.1130/B30317.1
    [Google Scholar]
  58. Zeitler, P.K. & Chamberlain, C.P. (1991) Petrogenetic and tectonic significance of young leukogranites from the northwestern Himalaya, Pakistan. Tectonics, 10, 729–741.
    [Google Scholar]
  59. Zeitler, P.K., Chamberlain, C.P. & Smith, H.A. (1993) Synchronous anatexis, metamorphism, and rapid denudation at Nanga‐Parbat (Pakistan Himalaya). Geology, 21, 347–350.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12038
Loading
/content/journals/10.1111/bre.12038
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error