1887
Volume 26, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

The chemical composition of fine‐grained siliciclastic sediments is a powerful tool in provenance studies, either as a complement to other whole rock/single grain methods, or as a stand‐alone method when other techniques are not applicable, and particularly in those cases where the coarser sediment fractions are not available or the regional‐scale geologic framework is lost due major successive tectonic events. A comprehensive geochemical investigation of pelites from the post‐rift deposits of the Ligurian‐Piedmont ocean (sampled in tectonic units of the Alpine‐Apennine orogen: Balagne Nappe, Corsica; Tuscan Nappe and Internal Ligurian units, Northern Apennines; Err‐Platta units, Central Alps) has identified for the first time a major mafic‐ultramafic input immediately following rifting. Key trace element ratios (e.g. La/Yb < 10; avg. Eu/Eu* = 0.73 ± 0.06, 1SD; Th/(Cr + Ni + V) < 0.03) show that the pelitic siliciclastic layers intercalated in the Radiolarite Formation (the first post‐rift deposits) are systematically enriched in a mafic‐ultramafic source component compared with the younger post rift sediments (Calpionella Limestone and Palombini Shale). Such a peculiar chemical fingerprint is interpreted as the result of erosion and distribution across the whole basin (even to continental domains) of intraoceanic ophiolitic debris by turbidity and bottom currents sweeping the sea floor at the time of deposition of the Radiolarite Formation. Exhumed mantle and gabbroic‐basaltic rocks exposed at the morphologically articulated seafloor of the slow‐spreading Ligurian‐Piedmont ocean were available to erosion during the whole time‐span of the deposition of the Radiolarite Formation, whilst they became progressivey subordinate as a source as the basin floor was progressively covered by the siliciclastic input from the developing passive continental margins.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12036
2013-12-15
2024-04-28
Loading full text...

Full text loading...

References

  1. Aiello, I.W. (1994) Stratigraphy of Monte Alpe Cherts in eastern Liguria, Italy. Ofioliti, 19, 301–306.
    [Google Scholar]
  2. Aiello, I.W. & Hagstrum, J.T. (2001) Paleomagnetism and paleogeography of Jurassic radiolarian cherts from the northern Apennines of Italy. Geol. Soc. Am. Bull., 113, 469–481.
    [Google Scholar]
  3. Andò, S., Garzanti, E., Padoan, M. & Limonta, M. (2012) Corrosion of heavy minerals during weathering and diagenesis: a catalog for optical analysis. Sed. Geol., 280, 165–178.
    [Google Scholar]
  4. Andreani, M., Mével, C., Boullier, A.M. & Escartín, J. (2007) Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites. Geochem. Geophys. Geosyst., 8. doi: 10.1029/2006GC001373.
    [Google Scholar]
  5. Andri, E. & Fanucci, F. (1975) La Risedimentazione Dei Calcari a Calpionelle Liguri. Boll. Soc. Geol. Ital., 94, 915–925.
    [Google Scholar]
  6. Andri, E. & Fanucci, F. (1980) Caratteri Sedimentologici E Inquadramento Paleogeografico Di Alcune Serie Pelagiche Giurassico‐Cretacee. 1) Diaspri Di Monte Alpe (Liguria Orientale). Atti Soc. Tosc. Sc. Nat. Mem. Ser. A, 87, 39–59.
    [Google Scholar]
  7. Baldwin, G.J., Thurston, P.C. & Kamber, B.S. (2011) High‐precision rare earth element, nickel, and chromium chemistry of chert microbands pre‐screened with in‐situ analysis. Chem. Geol., 285, 133–143.
    [Google Scholar]
  8. Baumgartner, P.O. (1987) Age and genesis of Tethyan Jurassic radiolarites. Eclogae Geol. Helv., 80, 831–879.
    [Google Scholar]
  9. Bayon, G., German, C.R., Burton, K.W., Nesbitt, R.W. & Rogers, N. (2004) Sedimentary Fe–Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE. Earth Planet. Sci. Lett., 224, 477–492.
    [Google Scholar]
  10. Beard, J.S., Frost, B.R., Fryer, P., McCaig, A., Searle, R., Ildefonse, B., Zinin, P. & Sharma, S.K. (2009) Onset and progression of serpentinization and magnetite formation in olivine‐rich troctolite from IODP Hole U1309d. J. Petrol., 50, 387–403.
    [Google Scholar]
  11. Bédard, É., Hébert, R., Guilmette, C. & Dostal, J. (2008) The supra‐ophiolitic sedimentary cover of the Asbestos ophiolite, Québec, Canada: first geochemical evidence of transition from oceanic to continental sediment flux. Lithos, 105, 239–252.
    [Google Scholar]
  12. Bekker, A., Holland, H.D., Young, G.M. & Nesbitt, H.W. (2003) Fe2o3/Feo ratio in average shale through time: a reflection of the stepwise oxidation of the atmosphere?Geol. Soc. Am. Meet. Abstr. Prog., 35, 83.
    [Google Scholar]
  13. Bernoulli, D., Manatschal, G., Desmurs, L. & Müntener, O. (2003) Where did Gustav Steinmann see the trinity? Back to the roots of an Alpine ophiolite concept. Geol. Soc. Am. Spec. Pap., 373, 93–110.
    [Google Scholar]
  14. Bloemsma, M.R., Zabel, M., Stuut, J.B.W., Tjallingii, R., Collins, J.A. & Weltje, G.J. (2012) Modelling the joint variability of grain size and chemical composition in sediments. Sed. Geol., 280, 135–148.
    [Google Scholar]
  15. Bolhar, R., Kamber, B.S., Moorbath, S., Whitehouse, M.J. & Collerson, K.D. (2005) Chemical characterization of earth's most ancient clastic metasediments from the Isua Greenstone Belt, southern West Greenland. Geochim. Cosmochim. Acta, 69, 1555–1573.
    [Google Scholar]
  16. Bonatti, E. (1965) Palagonite, hyaloclastites and alteration of volcanic glass in the ocean. Bull. Volcanol., 28, 257–269.
    [Google Scholar]
  17. Bonatti, E., Honnorez, J. & Gartner, S. (1973) Sedimentary serpentinites from the Mid‐Atlantic Ridge. J. Sed. Res., 43, 728–735.
    [Google Scholar]
  18. Böning, P., Brumsack, H., Jr, Schnetger, B. & Grunwald, M. (2009) Trace element signatures of Chilean upwelling sediments at ~ 36°S. Mar. Geol., 259, 112–121.
    [Google Scholar]
  19. Boschi, C., Dini, A., Früh‐Green, G.L. & Kelley, D.S. (2008) Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (Mar 30°N): insights from B and Sr isotope data. Geochim. Cosmochim. Acta, 72, 1801–1823.
    [Google Scholar]
  20. Bosellini, A. & Winterer, E.L. (1975) Pelagic limestone and radiolarite of the Tethyan Mesozoic: a genetic model. Geology, 3, 279–282.
    [Google Scholar]
  21. Bracciali, L., Marroni, M., Pandolfi, L. & Rocchi, S. (2007) Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): from source area to configuration of margins. In: Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry (Ed. by J.Arribas , S.Critelli & M.J.Johnsson ) Geol. Soc. Am. Spec. Pap., 420, 73–93.
    [Google Scholar]
  22. Brunet, C., Monié, P., Jolivet, L. & Cadet, J.P. (2000) Migration of compression and extension in the Tyrrhenian Sea, insights from 40ar/39ar ages on micas along a transect from Corsica to Tuscany. Tectonophysics, 321, 127–155.
    [Google Scholar]
  23. Cann, J., Blackman, D., Smith, D., McAllister, E., Janssen, B., Mello, S., Avgerinos, E., Pascoe, A. & Escartin, J. (1997) Corrugated slip surfaces formed at ridge‐transform intersections on the Mid‐Atlantic Ridge. Nature, 385, 329–332.
    [Google Scholar]
  24. Cannat, M., Bideau, D. & Bougault, H. (1992) Serpentinized peridotites and gabbros in the Mid‐Atlantic Ridge axial valley at 15°37′N and 16°52′N. Earth Planet. Sci. Lett., 109, 87–106.
    [Google Scholar]
  25. Cannat, M., Mevel, C., Maia, M., Deplus, C., Durand, C., Gente, P., Agrinier, P., Belarouchi, A., Dubuisson, G., Humler, E. & Reynolds, J. (1995) Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid‐Atlantic Ridge (22°–24°N). Geology, 23, 49–52.
    [Google Scholar]
  26. Cannat, M., Lagabrielle, Y., Bougault, H., Casey, J., de Coutures, N., Dmitriev, L. & Fouquet, Y. (1997) Ultramafic and gabbroic exposures at the Mid‐Atlantic Ridge: geological mapping in the 15°N region. Tectonophysics, 279, 193–213.
    [Google Scholar]
  27. Carosi, R., Leoni, L., Montomoli, C. & Sartori, F. (2003) Very low‐grade metamorphism in the Tuscan Nappe, Northern Apennines, Italy: relationships between deformation and metamorphic indicators in the La Spezia mega‐fold. Swiss Bull. Mineral. Petrol., 83, 15–32.
    [Google Scholar]
  28. Carpentier, M., Weis, D. & Chauvel, C. (2013) Large U loss during weathering of upper continental crust: the sedimentary record. Chem. Geol., 340, 91–104.
    [Google Scholar]
  29. Chalot‐Prat, F. (2005) An undeformed ophiolite in the Alps: field and geochemical evidence for a link between volcanism and shallow plate tectonic processes. Geol. Soc. Am. Spec. Pap., 388, 751–780.
    [Google Scholar]
  30. Chavagnac, V., Lair, M., Milton, J.A., Lloyd, A., Croudace, I.W., Palmer, M.R., Green, D.R.H. & Cherkashev, G.A. (2008) Tracing dust input to the Mid‐Atlantic Ridge between 14°45′n and 36°14′n: geochemical and Sr Isotope study. Mar. Geol., 247, 208–225.
    [Google Scholar]
  31. Chiari, M., Marcucci, M. & Principi, G. (2000) The age of the radiolarian cherts associated with the ophiolites in the Apennines (Italy). Ofioliti, 25, 141–146.
    [Google Scholar]
  32. Comas‐Cufí, M. & Thió‐Henestrosa, S. (2011) Codapack 2.0: A Stand‐Alone, Multi‐Platform Compositional Software. CoDaWork'11: 4th International Workshop on Compositional Data Analysis, Sant Feliu de Guíxols.
  33. Condie, K.C. (1991) Another look at rare earth elements in shales. Geochim. Cosmochim. Acta, 55, 2527–2531.
    [Google Scholar]
  34. Copeland, R.A., Frey, F.A. & Wones, D.R. (1971) Origin of clay minerals in a Mid‐Atlantic Ridge sediment. Earth Planet. Sci. Lett., 10, 186–192.
    [Google Scholar]
  35. Cox, R., Lowe, D.R. & Cullers, R.L. (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta, 59, 2919–2940.
    [Google Scholar]
  36. Cullers, R.L. (1995) The controls on the major‐ and trace‐element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, U.S.A. Chem. Geol., 123, 107–131.
    [Google Scholar]
  37. Cullers, R.L. (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian‐Permian Age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, 51, 181–203.
    [Google Scholar]
  38. Cullers, R.L. (2002) Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, Co, USA. Chem. Geol., 191, 305–327.
    [Google Scholar]
  39. Cullers, R., Chaudhuri, S., Kilbane, N. & Koch, R. (1979) Rare‐earths in size fractions and sedimentary rocks of Pennsylvanian‐Permian age from the mid‐continent of the U.S.A. Geochim. Cosmochim. Acta, 43, 1285–1301.
    [Google Scholar]
  40. Dal Piaz, G. (2010) The Italian Alps: a journey across two centuries of Alpine geology. In: The Geology of Italy: Tectonics and Life Along Plate Margins (Ed. by M.Beltrando , A.Peccerillo , M.Mattei , S.Conticelli & C.Doglioni ) J. Virtual Explorer, 36. doi: 10.3809/Jvirtex.2010.00234.
    [Google Scholar]
  41. Danelian, T., De Wever, P. & Durand‐Delga, M. (2008) Revised radiolarian ages for the sedimentary cover of the balagne ophiolite (corsica, france). Implications for the palaeoenvironmental evolution of the Balano‐Ligurian margin. Bull. Soc. Géol. Fr., 179, 289–296.
    [Google Scholar]
  42. Desmurs, L., Müntener, O. & Manatschal, G. (2002) Onset of magmatic accretion within a magma‐poor rifted margin: a case study from the platta ocean‐continent transition, eastern Switzerland. Contrib. Mineral. Petrol., 144, 365–382.
    [Google Scholar]
  43. Deville, E., Fudral, S., Lagabrielle, Y., Marthaler, M. & Sartori, M. (1992) From oceanic closure to continental collision: a synthesis of the “Schistes Lustrés” metamorphic complex of the Western Alps. Geol. Soc. Am. Bull., 104, 127–139.
    [Google Scholar]
  44. Dickinson, W.R. (1970) Interpreting detrital modes of graywacke and arkose. J. Sed. Res., 40, 695–707.
    [Google Scholar]
  45. Dou, Y., Yang, S., Liu, Z., Clift, P.D., Shi, X., Yu, H. & Berne, S. (2010) Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30ka: constraints from rare earth element compositions. Mar. Geol., 275, 212–220.
    [Google Scholar]
  46. Durand‐Delga, M., Peybernès, B. & Rossi, P. (1997) Arguments En Faveur De La Position, Au Jurassique, Des Ophiolites De Balagne (Haute‐Corse, France) Au Voisinage De La Marge Continentale Europèenne. C. R. Acad. Sci. Ser. IIA ‐ Earth Planet. Sci., 325, 973–981.
    [Google Scholar]
  47. Egal, E. (1992) Structures and tectonic evolution of the external zone of Alpine Corsica. J. Struct. Geol., 14, 1215–1228.
    [Google Scholar]
  48. Ehlers, B.‐M. & Jokat, W. (2009) Subsidence and crustal roughness of ultra‐slow spreading ridges in the northern North Atlantic and the Arctic Ocean. Int. J. Geophys., 177, 451–462.
    [Google Scholar]
  49. Elter, P. (1975) Introduction À La Géologie De L'apennin Septentrional. Bull. Soc. Géol. Fr., 7, 956–962.
    [Google Scholar]
  50. Elter, G., Elter, P., Sturani, P. & Weidmann, M. (1966) Sur La Prolongation Du Domaine Ligure De L'apennin Dans Le Monferrat Et Les Alpes Et Sur L'origine De La Nappe De La Simme S.L. Des Préalpes Romandes Et Chaiblaisiennes. Soc. Phys. Hist. Nat. Geneve, 19, 1002–1012.
    [Google Scholar]
  51. Elter, P., Lasagna, P., Marroni, M., Pandolfi, L., Vescovi, P. & Zanzucchi, G. (2005) Italian Geological Map 1:50000, Sheet 215 “Bedonia”. Istituto Poligrafico e Zecca dello Stato, Rome.
    [Google Scholar]
  52. von Eynatten, H. (2004) Statistical modelling of compositional trends in sediments. Sed. Geol., 171, 79–89.
    [Google Scholar]
  53. Fazzuoli, M., Becarelli, S., Burchietti, G., Ferrini, G., Garzonio, C.A., Mannori, G., Sani, F. & Sguazzoni, G. (1994) A short outline of the geology of the mesozoic inlier in the Lima Valley, Northern Apennines. Soc. Geol. Ital. Mem., 48, 79–85.
    [Google Scholar]
  54. Fedo, C.M., Eriksson, K.A. & Krogstad, E.J. (1996) Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source‐area weathering. Geochim. Cosmochim. Acta, 60, 1751–1763.
    [Google Scholar]
  55. Fox, P.J. & Heezen, B.C. (1965) Sands of the Mid‐Atlantic Ridge. Science, 149, 1367–1370.
    [Google Scholar]
  56. Franzini, M., Gratziu, C. & Schiaffino, L. (1968) I Sedimenti Silicei Non Detritici Dell'appennino Centro Settentrionale: 1. La Formazione Dei Diaspri Di Reppia (Genova). Atti Soc. Tosc. Sc. Nat. Mem., 75, 154–203.
    [Google Scholar]
  57. Froitzheim, N. & Manatschal, G. (1996) Kinematics of Jurassic rifting, mantle exhumation, and passive‐margin formation in the Austroalpine and Penninic nappes (Eastern Switzerland). Geol. Soc. Am. Bull., 108, 1120–1133.
    [Google Scholar]
  58. Gallet, S., Jahn, B.‐M., Van Vliet Lanoë, B., Dia, A. & Rossello, E. (1998) Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth Planet. Sci. Lett., 156, 157–172.
    [Google Scholar]
  59. Ganssloser, M. (1999) Detrital chromian spinels in Rhenohercynian greywackes and sandstones (Givetian‐Visean, Variscides, Germany) as indicators of ultramafic source rocks. Geol. Mag., 136, 437–451.
    [Google Scholar]
  60. Garrison, R.E. (1974) Radiolarian cherts, pelagic limestones and igneous rocks in eugeosynclinal assemblage. In: Pelagic Sediments on Land and Under the Sea (Ed. by K.J.Hsu & H.C.Jenkins ) Int. Assoc. Sedimentol. Spec. Publ. 1, 1, 367–339.
    [Google Scholar]
  61. Garver, J.I., Royce, P.R. & Smick, T.A. (1996) Chromium and nickel in shale of the Taconic foreland; a case study for the provenance of fine‐grained sediments with an ultramafic source. J. Sed. Res., 66, 100–106.
    [Google Scholar]
  62. Garzanti, E., Vezzoli, G. & Andò, S. (2002) Modern sand from obducted ophiolite belts (Sultanate of Oman and United Arab Emirates). J. Geol., 110, 371–391.
    [Google Scholar]
  63. Garzanti, E., Andò, S. & Vezzoli, G. (2009) Grain‐size dependence of sediment composition and environmental bias in provenance studies. Earth Planet. Sci. Lett., 277, 422–432.
    [Google Scholar]
  64. German, C.R., Klinkhammer, G.P., Edmond, J.M., Mura, A. & Elderfield, H. (1990) Hydrothermal scavenging of rare‐earth elements in the ocean. Nature, 345, 516–518.
    [Google Scholar]
  65. Gianelli, G. & Principi, G. (1977) Northern Apennine ophiolite: an ancient transcurrent fault zone. Boll. Soc. Geol. Ital., 96, 53–58.
    [Google Scholar]
  66. Govindaraju, K. (1995) Working values with confidence limits for twenty‐six CRPG, Anrt and IWG‐GIT geostandards. Geostandards Newsl., 19, 1–32.
    [Google Scholar]
  67. Gruppo Lavoro Ofioliti Mediterranee
    Gruppo Lavoro Ofioliti Mediterranee (1977) I Complessi Ofiolitici E Le Unità Cristalline Della Corsica Alpina. Ofioliti, 2, 265–324.
    [Google Scholar]
  68. Hofmann, A., Bolhar, R., Dirks, P. & Jelsma, H. (2003) The geochemistry of Archaean shales derived from a mafic volcanic sequence, Belingwe greenstone belt, Zimbabwe: provenance, source area unroofing and submarine versus subaerial weathering. Geochim. Cosmochim. Acta, 67, 421–440.
    [Google Scholar]
  69. Johnsson, M.J. & Basu, A. (1993) Processes Controlling the Composition of Clastic Sediments. Geological Society of America, Boulder, CO.
    [Google Scholar]
  70. van de Kamp, P.C. & Leake, B.E. (1995) Petrology and geochemistry of siliciclastic rocks of mixed feldspathic provenance in the Northern Apennines, Italy. Chem. Geol., 122, 1–20.
    [Google Scholar]
  71. Kelley, D.S., Karson, J.A., Blackman, D.K., Fruh‐Green, G.L., Butterfield, D.A., Lilley, M.D., Olson, E.J., Schrenk, M.O., Roe, K.K., Lebon, G.T., Rivizzigno, P. & AT3‐60 Shipboard Party . (2001) An off‐axis hydrothermal vent field near the Mid‐Atlantic Ridge at 30°N. Nature, 412, 145–149.
    [Google Scholar]
  72. Kelley, D.S., Karson, J.A., Früh‐Green, G.L., Yoerger, D.R., Shank, T.M., Butterfield, D.A., Hayes, J.M., Schrenk, M.O., Olson, E.J., Proskurowski, G., Jakuba, M., Bradley, A., Larson, B., Ludwig, K., Glickson, D., Buckman, K., Bradley, A.S., Brazelton, W.J., Roe, K., Elend, M.J., Delacour, A., Bernasconi, S.M., Lilley, M.D., Baross, J.A., Summons, R.E. & Sylva, S.P. (2005) A serpentinite‐hosted ecosystem: the Lost City hydrothermal field. Science, 307, 1428–1434.
    [Google Scholar]
  73. Lagabrielle, Y. (2009) Mantle exhumation and lithospheric spreading: an historical perspective from investigations in the Oceans and in the Alps‐Apennines ophiolites. Boll. Soc. Geol. Ital., 128, 279–293.
    [Google Scholar]
  74. Lagabrielle, Y. & Bodinier, J.‐L. (2008) Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees. Terra Nova, 20, 11–21.
    [Google Scholar]
  75. Lagabrielle, Y. & Cannat, M. (1990) Alpine Jurassic ophiolites resemble the modern central Atlantic basement. Geology, 18, 319–322.
    [Google Scholar]
  76. Lagabrielle, Y. & Lemoine, M. (1997) Alpine, Corsican and Apennine ophiolites: the slow‐spreading ridge model. C. R. Acad. Sci. Ser. IIA ‐ Earth Planet. Sci., 325, 909–920.
    [Google Scholar]
  77. Leinen, M. & Stakes, D. (1979) metal accumulation rates in the central equatorial Pacific during Cenozoic time. Geol. Soc. Am. Bull., 90, 357–375.
    [Google Scholar]
  78. Lemoine, M., Tricart, P. & Boillot, G. (1987) Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apennines): in search of a genetic imodel. Geology, 15, 622–625.
    [Google Scholar]
  79. Leoni, L. (1974) Le Rocce Silicee Non Detritiche Dell'appennino Centro Settentrionale. Atti Soc. Tosc. Sc. Nat. Mem., 81, 187–221.
    [Google Scholar]
  80. Li, C., Kang, S., Zhang, Q. & Gao, S. (2012) Geochemical evidence on the source regions of Tibetan Plateau dusts during non‐monsoon period in 2008/09. Atmos. Environ., 59, 382–388.
    [Google Scholar]
  81. Mahlen, N.J., Johnson, C.M., Baumgartner, L.P. & Beard, B.L. (2005) Provenance of Jurassic Tethyan sediments in the Hp/Uhp Zermatt‐saas ophiolite, western Alps. Geol. Soc. Am. Bull., 117, 530–544.
    [Google Scholar]
  82. Manatschal, G. & Nievergelt, P. (1997) A continent‐ocean transition recorded in the Err and Platta nappes (Eastern Switzerland). Eclogae Geol. Helv., 90, 3–27.
    [Google Scholar]
  83. Manatschal, G., Sauter, D., Karpoff, A.M., Masini, E., Mohn, G. & Lagabrielle, Y. (2011) The Chenaillet Ophiolite in the French/Italian Alps: an ancient analogue for an Oceanic Core Complex?Lithos, 124, 169–184.
    [Google Scholar]
  84. Marroni, M. & Pandolfi, L. (1996) The deformation history of an accreted ophiolite sequence: the internal Liguride Units (Northern Apennines, Italy). Geodin. Acta, 9, 13–29.
    [Google Scholar]
  85. Marroni, M. & Pandolfi, L. (2003) Deformation history of the ophiolite sequence from the Balagne Nappe, northern Corsica: insights in the tectonic evolution of Alpine Corsica. Geol. J., 38, 67–83.
    [Google Scholar]
  86. Marroni, M. & Pandolfi, L. (2007) the architecture of an incipient oceanic basin: a tentative reconstruction of the Jurassic Liguria‐Piemonte basin along the Northern Apennines–Alpine Corsica transect. Int. J. Earth Sci., 96, 1059–1078.
    [Google Scholar]
  87. Marroni, M., Molli, G., Montanini, A. & Tribuzio, R. (1998) The association of comntinental crust rocks with ophiolites in the Northern Apennines (Italy): implications for the continent‐ocean transition in the Western Tethys. Tectonophysics, 292, 43–66.
    [Google Scholar]
  88. Marroni, M., Pandolfi, L. & Perilli, N. (2000) Calcareous nannofossil dating of the St. Marino Formation from the Balagne Ophiolite sequence (Alpine Corsica): a comparison with the Palombini Shale of the northern Apennine. Ofioliti, 25, 147–155.
    [Google Scholar]
  89. Marroni, M., Molli, G., Ottria, G. & Pandolfi, L. (2001) Tectono‐sedimentary evolution of the External Liguride Units (Northern Apennines, Italy): insights in the pre‐collisional history of a fossil ocean‐continent transition zone. Geodin. Acta, 14, 307–320.
    [Google Scholar]
  90. Marroni, M., Meneghini, F. & Pandolfi, L. (2004) From accretion to exhumation in a fossil accretionary wedge: a case history from Gottero unit (Northern Apennines, Italy). Geodin. Acta, 17, 41–53.
    [Google Scholar]
  91. Masini, E., Manatschal, G., Mohn, G. & Unternehr, P. (2012) Anatomy and tectono‐sedimentary evolution of a rift‐related detachment system: the example of the Err detachment (Central Alps, SE Switzerland). Geol. Soc. Am. Bull., 124, 1535–1551.
    [Google Scholar]
  92. McDonough, W.F. & Sun, S.‐s. (1995) The composition of the earth. Chem. Geol., 120, 223–253.
    [Google Scholar]
  93. McLennan, S.M. (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Geochemistry and Mineralogy of Rare Earth Elements (Ed. by B.R.Lipin & G.A.McKay ) Rev. Mineral., 21, 169–200.
    [Google Scholar]
  94. McLennan, S.M. (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst., 2. doi: 10.1029/2000GC000109.
    [Google Scholar]
  95. McLennan, S.M., Hemming, S., McDaniel, D.K. & Hanson, G.N. (1993) Geochemical approaches to sedimentation, provenance and tectonics. In: Processes Controlling the Composition of Clastic Sediments (Ed. by M.J.Johnsson & A.Basu ) GSA Spec. Pap., 284, 21–40.
    [Google Scholar]
  96. Minshull, T.A. (1999) On the roughness of Mesozoic oceanic crust in the western North Atlantic. Geophys. J. Int., 136, 286–290.
    [Google Scholar]
  97. Mohn, G., Manatschal, G., Müntener, O., Beltrando, M. & Masini, E. (2010) unravelling the interaction between tectonic and sedimentary processes during lithospheric thinning in the Alpine Tethys margins. Int. J. Earth Sci., 99, 75–101.
    [Google Scholar]
  98. Molli, G. (2008) Northern Apennine–Corsica orogenic system: an updated overview. Geol. Soc. London Spec. Publ., 298, 413–442.
    [Google Scholar]
  99. Morford, J.L. & Emerson, S. (1999) The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta, 63, 1735–1750.
    [Google Scholar]
  100. Morse, J.W. & Luther, G.W., III (1999) Chemical influences on trace metal‐sulfide interactions in anoxic sediments. Geochim. Cosmochim. Acta, 63, 3373–3378.
    [Google Scholar]
  101. Müntener, O. & Piccardo, G.B. (2003) Melt migration in ophiolitic peridotites: the message from Alpine‐Apennine peridotites and implications for embryonic ocean basins. Geol. Soc. London Spec. Publ., 218, 69–89.
    [Google Scholar]
  102. Müntener, O., Pettke, T., Desmurs, L., Meier, M. & Schaltegger, U. (2004) Refertilization of mantle peridotite in embryonic ocean basins: trace element and Nd isotopic evidence and implications for crust–mantle relationships. Earth Planet. Sci. Lett., 221, 293–308.
    [Google Scholar]
  103. Murray, R.W. (1994) Chemical criteria to identify the depositional environment of chert: general principles and applications. Sed. Geol., 90, 213–232.
    [Google Scholar]
  104. Muttoni, G., Erba, E., Kent, D.V. & Bachtadse, V. (2005) Mesozoic Alpine facies deposition as a result of past latitudinal plate motion. Nature, 434, 59–63.
    [Google Scholar]
  105. Nardi, R., Puccinelli, A. & Verani, M. (1978) Carta Geologica Delle Balagne ‘Sedimentaria’ (Corsica) Alla Scala 1/25000 E Note Illustrative. Boll. Soc. Geol. Ital., 97, 3–22.
    [Google Scholar]
  106. Nilsen, T. & Abbate, E. (1983–84) Submarine‐fan facies associations of the Upper Cretaceous and Paleocene Gottero Sandstone, Ligurian Apennines, Italy. Geo‐Mar. Lett., 3, 193–197.
    [Google Scholar]
  107. Owen, A.W., Armstrong, H.A. & Floyd, J.D. (1999) Rare earth elements in chert clasts as provenance indicators in the ordovician and ilurian of the Southern Uplands of Scotland. Sed. Geol., 124, 185–195.
    [Google Scholar]
  108. Péron‐Pinvidic, G., Manatschal, G., Minshull, T.A. & Sawyer, D.S. (2007) Tectonosedimentary evolution of the deep iberia‐newfoundland margins: evidence for a complex breakup history. Tectonics, 26, doi:10.1029/2006tc001970.
    [Google Scholar]
  109. Pettijohn, F.J., Potter, P.E. & Siever, R. (1987) Sand and Sandstone. 2nd edn, Springer Verlag, New York.
    [Google Scholar]
  110. Piccardo, G.B., Rampone, E. & Vannucci, R. (1990) Upper mantle evolution during continental rifting and ocean formation: evidences from peridotite bodies of the Western Alpine‐Northern Apennine system. Soc. Géol. Fr. Mém., 156, 323–333.
    [Google Scholar]
  111. Plank, T. & Langmuir, C.H. (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol., 145, 325–394.
    [Google Scholar]
  112. Pollack, G.D., Krogstad, E.J. & Bekker, A. (2009) U‐Th‐Pb‐Ree systematics of organic‐rich shales from the ca. 2.15 Ga Sengoma Argillite Formation, Botswana: evidence for oxidative continental weathering during the Great Oxidation Event. Chem. Geol., 260, 172–185.
    [Google Scholar]
  113. Potts, P.J. & Kane, J.S. (2005) International association of geoanalysts certificate of analysis: certified reference material Ou‐6 (Penrhyn Slate). Geostand. Geoanal. Res., 29, 233–236.
    [Google Scholar]
  114. Press, S. (1986) Detrital spinels from alpinotype source rocks in middle devonian sediments of the Rhenish Massif. Geol. Rundsch., 75, 333–340.
    [Google Scholar]
  115. Rampone, E., Hofmann, A.W., Piccardo, G.B., Vannucci, R., Bottazzi, P. & Ottolini, L. (1995) Petrology, mineral and isotope geochemistry of the External Liguride peridotites (Northern Apennines, Italy). J. Petrol., 36, 81–105.
    [Google Scholar]
  116. Rampone, E., Hofmann, A.W., Piccardo, G.B., Vannucci, R., Bottazzi, P. & Ottolini, L. (1996) Trace element and isotope geochemistry of depleted peridotites from an N‐Morb type ophiolite (Internal Liguride, N. Italy). Contrib. Mineral. Petrol., 123, 61–76.
    [Google Scholar]
  117. Rampone, E., Hofmann, A.W. & Raczek, I. (1998) Isotopic contrast within the Internal Liguride ophiolite (N. Italy): the lack of a genetic mantle‐crust relationship. Earth Planet. Sci. Lett., 163, 175–179.
    [Google Scholar]
  118. Rosenbaum, G. & Lister, G.S. (2005) The Western Alps from the Jurassic to Oligocene: spatio‐temporal constraints and evolutionary reconstructions. Earth‐Sci. Rev., 69, 281–306.
    [Google Scholar]
  119. Ross, D.J.K. & Bustin, R.M. (2009) Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic‐rich strata: Examples from the Devonian‐Mississippian Shales, Western Canadian Sedimentary Basin. Chem. Geol., 260, 1–19.
    [Google Scholar]
  120. Rossi, P. & Durand‐Delga, M. (2001) Significance of sandstones interbedded in the Jurassic Basalts of the Balagne Ophiolitic Nappe (Corsica, France). Ofioliti, 26, 169–174.
    [Google Scholar]
  121. Rudnick, R. & Gao, S. (2003) Composition of the continental crust. In: Treatise on Geochemistry (Ed. by H.D.Holland & K.K.Turekian ), Vol. 3, pp. 1–64. Pergamon, Oxford.
    [Google Scholar]
  122. Rudnick, R.L., Barth, M., Horn, I. & McDonough, W.F. (2000) Rutile‐bearing refractory eclogites: missing link between continents and depleted mantle. Science, 287, 278–281.
    [Google Scholar]
  123. Saccani, E., Padoa, E. & Tassinari, R. (2000) Preliminary data on the Pineto gabbroic massif and nebbio basalts: progress toward the geochemical characterization of Alpine Corsica ophiolites. Ofioliti, 25, 75–85.
    [Google Scholar]
  124. Sanfilippo, A. & Tribuzio, R. (2011) Melt transport and deformation history in a nonvolcanic ophiolitic section, northern apennines, Italy: implications for crustal accretion at slow spreading settings. Geochem. Geophys. Geosyst., 12, Q0AG04.
    [Google Scholar]
  125. Schaltegger, U., Desmurs, L., Manatschal, G., Müntener, O., Meier, M., Frank, M. & Bernoulli, D. (2002) The transition from rifting to sea‐floor spreading within a magma‐poor rifted margin: field and isotopic constraints. Terra Nova, 14, 156–162.
    [Google Scholar]
  126. Sloan, H., Sauter, D., Goff, J.A. & Cannat, M. (2012) Abyssal hill characterization at the ultraslow spreading Southwest Indian Ridge. Geochem. Geophys. Geosyst.., 13, Q0AE06.
    [Google Scholar]
  127. Smith, D.K., Cann, J.R. & Escartin, J. (2006) Widespread active detachment faulting and core complex formation near 13°N on the Mid‐Atlantic Ridge. Nature, 442, 440–443.
    [Google Scholar]
  128. Stampfli, G.M. & Borel, G.D. (2004) The TRANSMED Transects in space and time: constraints on the Paleotectonic evolution of the Mediterranean domain. In: The Transmed Atlas: The Mediterranean Region from Crust to Mantle (Ed. by WCavazza , FRoure , WSpakman , G.M.Stampfli , P.A.Ziegler ), pp. 53–80. Springer‐Verlag, Berlin, Heidelberg.
    [Google Scholar]
  129. Surya Prakash, L., Ray, D., Paropkari, A.L., Mudholkar, A.V., Satyanarayanan, M., Sreenivas, B., Chandrasekharam, D., Kota, D., Kamesh Raju, K.A., Kaisary, S., Balaram, V. & Gurav, T. (2012) Distribution of REEs and yttrium among major geochemical phases of marine Fe–Mn oxides: comparative study between hydrogenous and hydrothermal deposits. Chem. Geol., 312–313, 127–137.
    [Google Scholar]
  130. Tamponi, M., Bertoli, F., Innocenti, F. & Leoni, L. (2003) X‐ray fluorescence analysis of major elements in silicate rocks using fused glass discs. Atti Soc. Tosc. Sc. Nat. Mem., 107, 73–80.
    [Google Scholar]
  131. Taylor, S.R. & McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Palo Alto, CA.
    [Google Scholar]
  132. Taylor, S.R. & McLennan, S.M. (1995) The geochemical evolution of the continental crust. Rev. Geophys., 32, 241–265.
    [Google Scholar]
  133. Totten, M.W., Hanan, M.A. & Weaver, B.L. (2000) Beyond whole‐rock geochemistry of shales: the importance of assessing mineralogic controls for revealing tectonic discriminants of multiple sediment sources for the Ouachita Mountain flysch deposits. Geol. Soc. Am. Bull., 112, 1012–1022.
    [Google Scholar]
  134. Toulkeridis, T., Clauer, N., Kröner, A., Reimer, T. & Todt, W. (1999) Characterization, provenance, and tectonic setting of fig tree greywackes from the Archaean Baberton Greenstone Belt, South Africa. Sed. Geol., 124, 113–129.
    [Google Scholar]
  135. Weltje, G.J. & von Eynatten, H. (2004) Quantitative provenance analysis of sediments: review and outlook. Sed. Geol., 171, 1–11.
    [Google Scholar]
  136. Wilcock, W.S., Delong, E.F., Kelley, D. S., Baross, J.A. & Craig Cary, S. (2004) The Subseafloor Biosphere at Mid‐Ocean Ridges, Geophys. Monograph Series. AGU, Washington, DC.
    [Google Scholar]
  137. Zuffa, G.G. (1985) Provenance of Arenites. D. Reidel Publishing Company, Dordrecht, Boston.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12036
Loading
/content/journals/10.1111/bre.12036
Loading

Data & Media loading...

Supplements

Trace element replicate ICP‐MS analyses of the international reference material OU‐6 (Penrhyn Slate; Potts & Kane, 2005).

PDF

Two examples of chemical diagrams with all samples indicated.

PDF
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error