1887
Volume 26, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

This study presents an integrated provenance record for ancient forearc strata in southern Alaska. Paleocene–Eocene sedimentary and volcanic strata >2000 m thick in the southern Talkeetna Mountains record nonmarine sediment accumulation in a remnant forearc basin. In these strata, igneous detritus dominates conglomerate and sandstone detrital modes, including plutonic and volcanic clasts, plagioclase feldspar, and monocrystalline quartz. Volcanic detritus is more abundant and increases upsection in eastern sandstone and conglomerate. U‐Pb ages of >1600 detrital zircons from 19 sandstone samples document three main populations: 60–48 Ma (late Paleocene–Eocene; 14% of all grains), 85–60 Ma (late Cretaceous–early Paleocene; 64%) and 200–100 Ma (Jurassic–Early Cretaceous; 11%). Eastern sections exhibit the broadest distribution of detrital ages, including a principal population of late Paleocene–Eocene ages. In contrast, central and western sections yield mainly late Cretaceous–early Paleocene detrital ages. Collectively, our results permit reconstruction of individual fluvial drainages oriented transverse to a dissected arc. Specifically, new data suggest: (1) Detritus was eroded from volcanic‐plutonic sources exposed along the arcward margin of the sampled forearc basin fill, primarily Jurassic–Paleocene magmatic‐arc plutons and spatially limited late Paleocene–Eocene volcanic centers; (2) Eastern deposystems received higher proportions of juvenile volcanic detritus through time from late Paleocene–Eocene volcanic centers, consistent with emplacement of a slab window beneath the northeastern part of the basin during spreading‐ridge subduction; (3) Western deposystems transported volcanic‐plutonic detritus from Jurassic–Paleocene remnant arc plutons and local eruptive centers that flanked the northwestern part of the basin; (4) Diagnostic evidence of sediment derivation from accretionary‐prism strata exposed trenchward of the basin fill is lacking. Our results provide geologic evidence for latest Cretaceous–early Paleocene exhumation of arc plutons and marine forearc strata followed by nonmarine sediment accumulation and slab‐window magmatism. This inferred history supports models that invoke spreading‐ridge subduction beneath southern Alaska during Paleogene time, providing a framework for understanding a mature continental‐arc/forearc‐basin system modified by ridge subduction. Conventional provenance models predict reduced input of volcanic detritus to forearc basins during progressive exhumation of the volcanic edifice and increasing exposure of subvolcanic plutons. In contrast, our results show that forearc basins influenced by ridge subduction may record localized increases in juvenile volcanic detritus during late‐stage evolution in response to accumulation of volcanic sequences formed from slab‐window eruptive centers.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12033
2013-09-24
2024-04-29
Loading full text...

Full text loading...

References

  1. Adams, D.D., Burns, L.E., Pessel, G.H., Little, T.A., Newberry, R.J. & Flynn, L.R. (1985) Preliminary Geologic Map of the Central Talkeetna Mountains, Alaska. Alaska Division of Geological and Geophysical Surveys, Fairbanks, AK. Public Data File 85‐20, scale 1:25,000, 2 sheets.
    [Google Scholar]
  2. Amato, J.M. & Pavlis, T.L. (2010) Detrital zircon ages from the Chugach terrane, southern Alaska, reveal multiple episodes of accretion and erosion in a subduction complex. Geology, 38, 459–462.
    [Google Scholar]
  3. Bleick, H.A., Till, A.B., Bradley, D.C., O'Sullivan, P.B., Wooden, J.L., Bradley, D.B., Taylor, T.A., Friedman, S.B. & Hults, C.P. (2012) Early Tertiary exhumation of the flank of a forearc basin, southwest Talkeetna Mountains, Alaska. US Geol. Surv. Open‐File Rep., 2012–1232 (available at http://pubs.usgs.gov/of/2012/1232/).
    [Google Scholar]
  4. Bradley, D.C., Kusky, T.M., Haeussler, P.J., Goldfarb, R.J., Miller, M.L., Dumoulin, J.A., Nelson, S.W. & Karl, S.M. (2003) Geologic signature of early Tertiary ridge subduction in Alaska. In: Geology of a Transpressional Orogen Developed During Ridge‐Trench Interaction Along the North Pacific Margin (Ed. by V.B.Sisson , S.M.Roeske & T.L.Pavlis ) Geol. Soc. Am. Spec. Pap., 371, 19–49.
    [Google Scholar]
  5. Bradley, D.C, Haeussler, P., O'Sullivan, P., Friedman, R., Till, A., Bradley, D. & Trop, J. (2009) Detrital zircon geochronology of Cretaceous and Paleogene strata across the south‐central Alaskan convergent margin. In: Studies by the U.S. Geological Survey in Alaska, 2007 (Ed. by P.J.Haeussler & J.P.Galloway ) US Geol. Surv. Prof. Pap., 1760‐F, 36.
    [Google Scholar]
  6. Breitsprecher, K. & Thorkelson, D.J. (2009) Neogene kinematic history of Nazca‐Antarctic‐Phoenix slab windows beneath Patagonia and the Antarctic Peninsula. Tectonophysics, 464, 10–20.
    [Google Scholar]
  7. Breitsprecher, K., Thorkelson, D.J., Groome, W.G. & Dostal, J. (2003) Geochemical confirmation of the Kula‐Farallon slab window beneath the Pacific Northwest in Eocene time. Geology, 31, 351–354.
    [Google Scholar]
  8. Clardy, B.I. (1974) Origin of the lower and middle tertiary Wishbone and Tsadaka formations, Matanuska Valley, Alaska. MS Thesis, University of Alaska, Fairbanks, Alaska.
  9. Clendenen, W.S., Fisher, D. & Byrne, T. (2003) Cooling and exhumation history of the Kodiak accretionary prism, southwest Alaska. In: Geology of a Transpressional Orogen Developed During Ridge‐Trench Interaction Along the North Pacific Margin (Ed. by V.B.Sisson , S.M.Roeske & T.L.Pavlis ) Geol. Soc. Am. Spec. Pap.371, 71–88.
    [Google Scholar]
  10. Clift, P. & Vannucci, P. (2004) Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys., 42, RG2001. doi: 10.1029/2003RG000127.
    [Google Scholar]
  11. Clift, P.D., Pavlis, T.L., Debari, S.M., Draut, A.E., Rioux, M. & Kelemen, P.B. (2005) Subduction erosion of the Jurassic Talkeetna‐Bonanza arc and the Mesozoic accretionary tectonics of western North America. Geology, 33, 881–884.
    [Google Scholar]
  12. Cloos, M. (1993) Lithosphere and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geol. Soc. Am. Bull., 105, 715–737.
    [Google Scholar]
  13. Cole, R.B. & Stewart, B.S. (2008) Continental margin volcanism at sites of spreading ridge subduction: examples from southern Alaska and western California. Tectonophysics, 464, 118–136.
    [Google Scholar]
  14. Cole, R.B., Nelson, S.W., Layer, P.W. & Oswald, P.J. (2006) Eocene volcanism above a depleted mantle slab window in southern Alaska. Geol. Soc. Am. Bull., 118, 140–158.
    [Google Scholar]
  15. Cole, R.B., Layer, P.W., Hooks, B., Cyr, A.J & Turner, J. (2007) Magmatism and deformation in a terrane suture zone south of the Denali Fault, northern Talkeetna Mountains, Alaska. In: Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska (Ed. by K.D.Ridgway , J.M.Trop , J.M.G.Glen & J.M.O'Neill ) Geol. Soc. Am. Spec. Pap., 431, 477–506.
    [Google Scholar]
  16. Cole, R.B., Stewart, B.S. & Layer, P.W. (2011) Early Cenozoic Talkeetna Mountains magmatism in south‐central Alaska: record of crust‐mantle variations, terrane accretion, and pluton exhumation. Geol. Soc. Am. Abstracts with Programs, 43(5), 553.
    [Google Scholar]
  17. Csejtey, B. JR., Nelson, W.H., Jones, D.L., Silberling, N.J., Dean, R.M., Morris, M.S., Lanphere, M.A., Smith, J.G. & Silberman, M.L. (1978) Reconnaissance geologic map and geochronology, Talkeetna Mountains quadrangle, north part of Anchorage quadrangle, and southwestern corner of Healy quadrangle, Alaska. US Geol. Surv. Open‐File Rep., 78‐558‐A, 60, 1 sheet, scale 1:250,000.
    [Google Scholar]
  18. Davidson, C. & Mcphillips, D. (2007) Along‐strike variations in metamorphism and deformation of the strata of the Kahiltna basin, south central Alaska. In: Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska (Ed. by K.D.Ridgway , J.M.Trop , J.M.G.Glen & J.M.O'Neill ) Geol. Soc. Am. Spec. Pap., 431, 437–465.
    [Google Scholar]
  19. Degraaff‐Surpless, K., Graham, S.A., Wooden, J.L. & Mcwilliams, M.O. (2002) Detrital zircon provenance analysis of the Great Valley Group, California: evolution of an arc‐forearc system. Geol. Soc. Am. Bull., 114, 1564–1580.
    [Google Scholar]
  20. Dewey, J.F. (1980) Episodicity, sequence and style at convergent plate boundaries. Geol. Assoc. Can. Spec. Pap., 20, 553–573.
    [Google Scholar]
  21. Dickinson, W.R. (1970) Interpreting detrital modes of greywacke and arkose. J. Sed. Petrol., 40, 695–707.
    [Google Scholar]
  22. Dickinson, W.R. (1982) Compositions of sandstones in circum‐Pacific subduction complexes and forearc basins. Am. Assoc. Pet. Geol. Bull., 66, 121–137.
    [Google Scholar]
  23. Dickinson, W.R. (1995) Forearc basins. In: Tectonics of Sedimentary Basins (Ed. by C.J.Busby & R.V.Ingersoll ), pp. 221–261. Blackwell Science, Cambridge.
    [Google Scholar]
  24. Dickinson, W.R. (2008) Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis. Earth Planet. Sci. Lett., 275, 80–92.
    [Google Scholar]
  25. Dickinson, W.R. & Gehrels, G.E. (2009) U‐Pb ages of detrital zircons in Jurassic eolian and associated sandstones of the Colorado Plateau: evidence for transcontinental dispersal and intraregional recycling of sediment. Geol. Soc. Am. Bull., 121, 408–433.
    [Google Scholar]
  26. Dickinson, W.R. & Snyder, W.S. (1979) Geometry of subducted slabs related to San Andreas Transform. J. Geol., 87, 609–627.
    [Google Scholar]
  27. Dickinson, W.R., Bear, L.S., Brakenridge, G.R., Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A, Lindberg, F.A. & Ryberg, P.T. (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Am. Bull., 94, 222–235.
    [Google Scholar]
  28. Dickinson, W.R., Lawton, T.F. & Gehrels, G.E. (2009) Recycling detrital zircons: a case study from the Cretaceous Bisbee Group of southern Arizona. Geology, 37, 503–506.
    [Google Scholar]
  29. Donaghy, E. (2012) Sedimentology, depositional age, and provenance of sedimentary and volcanic rocks exposed along Willow Creek, eastern Susitna Basin, south‐central Alaska: implications for modification of a forearc basin by spreading ridge subduction. BS Thesis, Bucknell University, Lewisburg, PA.
  30. D'orazio, M., Agostini, S., Innocenti, F., Haller, J.J., Manetti, P. & Mazzarini, F. (2001) Slab window‐related magmatism from southernmost South America: the Late Miocene mafic volcanics from the Estancia Glencross Area (52°S, Argentina–Chile). Lithos, 57, 67–89.
    [Google Scholar]
  31. Dusel‐Bacon, C., Wooden, J.L. & Hopkins, M.J. (2004) U‐Pb zircon and geochemical evidence for bimodal mid‐Paleozoic magmatism and syngenetic base‐metal mineralization in the Yukon‐Tanana terrane, Alaska. Geol. Soc. Am. Bull., 116, 989–1015.
    [Google Scholar]
  32. Eberhart‐Phillips, D., Christensen, D., Brocher, T.M., Hansen, R., Ruppert, N.A., Haeussler, P.J. & Abers, G.A. (2006) Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska, with local earthquakes and active source data. J. Geophys. Res., 111, B11303. doi: 10.1029/2005JB004240.
    [Google Scholar]
  33. Ferris, A., Abers, G.A., Christensen, D.H. & Veenstra, E. (2003) High resolution image of the subducted Pacific (?) plate beneath central Alaska, 50–150 km depth. Earth Planet. Sci. Lett., 214, 575–588.
    [Google Scholar]
  34. Fildani, A., Hessler, A.M. & Graham, S.A. (2008) Trench‐forearc interactions reflected in the sedimentary fill of Talara basin, northwest Peru. Basin Res., 30, 305–331.
    [Google Scholar]
  35. Finzel, E.S. (2010) Geodynamics of flat‐slab subduction, sedimentary basin development, and hydrocarbon systems along the southern Alaska convergent plate margin. PhD Thesis, Purdue University, West Lafayette, IN.
  36. Finzel, E.S., Trop, J.M. & Ridgway, K.D. (2011) Upper‐plate proxies for flat‐slab subduction processes in southern Alaska. Earth Planet. Sci. Lett., 303, 348–360.
    [Google Scholar]
  37. Flores, R.M. & Stricker, G.D. (1993) Early Cenozoic depositional systems, Wishbone Hill District, Matanuska coal field, Alaska. US Geol. Surv. Bull., 1992, 101–117.
    [Google Scholar]
  38. Forsythe, R. & Nelson, E. (1985) Geological manifestations of ridge collision: evidence from the Golfo de Penas–Taitao Basin, southern Chile. Tectonics, 4, 477–495.
    [Google Scholar]
  39. Fuchs, W.A. (1980) Tertiary tectonic history of the Castle Mountain fault system in the Talkeetna Mountains. Ph.D. Diss., University of Utah, Salt Lake City, UT.
  40. Gardner, T.W., Fisher, D.M., Morell, K.D. & Cupper, M.L. (2013) Upper‐plate deformation in response to flat slab subduction inboard of the aseismic Cocos Ridge, Osa Peninsula, Costa Rica. Lithosphere, doi: 10.1130/L251.1.
    [Google Scholar]
  41. Gehrels, G., Valencia, V. & Pullen, A. (2006) Detrital zircon geochronology by Laser‐Ablation Multicollector ICPMS at the Arizona LaserChron Center. In: Geochronology: Emerging Opportunities Paper 12 (Ed. by T.Loszewski & W.Huff ), pp. 67–76. Paleontological Society, Washington, DC.
    [Google Scholar]
  42. Gehrels, G.E., Valencia, V.A. & Ruiz, J. (2008) Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochem. Geophys. Geosyst., 9, Q03017. doi: 10.1029/2007GC001805.
    [Google Scholar]
  43. Gorring, M.L. & Kay, S.M. (2001) Mantle processes and sources of Neogene slab window magmas from southern Patagonia, Argentina. J. Petrol., 42, 1067–1094.
    [Google Scholar]
  44. Groome, W.G. & Thorkelson, D.J. (2009) The three‐dimensional thermo‐mechanical signature of ridge subduction and slab window migration. Tectonophysics, 464, 70–83.
    [Google Scholar]
  45. Groome, W.G., Thorkelson, D.J., Friedman, R.M., Mortenson, J.K., Massey, N.W.D., Marshall, D.D. & Layer, P.W. (2003) Magmatic and tectonic history of the Leech River Complex, Vancouver Island, British Columbia: evidence for ridge‐trench intersection and accretion of the Crescent terrane. In: Geology of a Transpressional Orogen Developed During Ridge‐Trench Interaction Along the North Pacific Margin (Ed. by V.B.Sisson , S.M.Roeske & T.L.Pavlis ) Geol. Soc. Am. Spec. Pap., 371, 327–353.
    [Google Scholar]
  46. Gutscher, M.A., Malavieille, J., Lallemand, S. & Collot, J.Y. (1999) Tectonic segmentation of the north Andean margin: impact of the Carnegie Ridge collision. Earth Planet. Sci. Lett., 168, 255–270.
    [Google Scholar]
  47. Hacker, B.R., Kelemen, P.B., Rioux, M.R., Mcwilliams, M.O., Gans, P.B., Reiners, P.W., Layer, P.W., Soderlund, U. & Vervoot, J.D. (2011) Thermochronology of the Talkeetna intraoceanic arc of Alaska: Ar/Ar, U‐Th/He, Sm‐Nd, and Lu‐Hf dating. Tectonics, 30, TC1011. doi: 10.1029/2010tc002798.
    [Google Scholar]
  48. Haeussler, P.J. & Nelson, S.W. (1993) Structural evolution of the Chugach‐Prince William Terrane at the hinge of the orocline in Prince William Sound, and implications for ore deposits. In: Geologic Studies in Alaska by the U.S. Geological Survey (Ed. by C.Dusel‐Bacon & A.B.Till ) US Geol. Surv. Bull.2068, 143–162.
    [Google Scholar]
  49. Haeussler, P.J., Bradley, D.C., Wells, R.E. & Miller, M.L. (2003) Life and death of the Resurrection plate: evidence for its existence and subduction in the northeastern Pacific in Paleocene–Eocene time. Geol. Soc. Am. Bull., 115, 867–880.
    [Google Scholar]
  50. Hampton, B.A., Ridgway, K.D., O'Neill, J.M., Gehrels, G.E., Schmidt, J. & Blodgett, R.B. (2007) Pre‐, syn‐, and post‐collisional stratigraphic framework and provenance of Upper Triassic‐Upper Cretaceous strata in the northern Talkeetna Mountains, Alaska. In: Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska (Ed. by K.D.Ridgway , J.M.Trop , J.M.G.Glen & J.M.O'Neill ) Geol. Soc. Am. Spec. Pap., 431, 401–438.
    [Google Scholar]
  51. Hampton, B.A., Ridgway, K.D. & Gehrels, G.E. (2010) A detrital record of Mesozoic island arc accretion and exhumation in the North American Cordillera: U‐Pb geochronology of the Kahiltna basin, southern Alaska. Tectonics, 29, doi: 10.1029/2009TC002544.
    [Google Scholar]
  52. Hansen, V.L. & Dusel‐Bacon, C. (1998) Structural and kinematic evolution of the Yukon‐Tanana upland tectonites, east‐central Alaska: a record of late Paleozoic to Mesozoic crustal assembly. Geol. Soc. Am. Bull., 110, 211–230.
    [Google Scholar]
  53. Haq, B.U., Hardenbol, J. & Vail, P.R. (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea‐level change. In: Sea‐Level Changes: An Integrated Approach (Ed. by C.K.Wilgus , B.S.Hastings , H.Posamentier , J.Van Wagoner , C.A.Ross & C.G.St.C.Kendall ) SEPM Spec. Publ., 42, 78–108.
    [Google Scholar]
  54. Harlan, S.S., Snee, L.W., Vielreicher, R.M., Goldfarb, R.G., Mortensen, J.K. & Bradley, D.C. (2003) Age and cooling history of gold deposits and host rocks in the Willow Creek mining district, Talkeetna Mountains, south‐central Alaska. Geol. Soc. Am. Abstracts with Programs, 35(6), 235.
    [Google Scholar]
  55. Hillhouse, J.W. & Coe, R.S. (1994) Paleomagnetic data from Alaska. In: The Geology of Alaska (Ed. by G.Plafker & H.C.Berg ) Geol. Soc. Am., G‐1, 797–812.
    [Google Scholar]
  56. Hooks, B., Cole, R.B. & Schwartz, R.K. (2001) Petrology and provenance of the Arkose Ridge Formation adjacent to the southern Talkeetna Mountains Tertiary volcanic field, Alaska. Geol. Soc. Am. Abstracts with Programs, 33, 48.
    [Google Scholar]
  57. Hudson, T.L. & Magoon, L.B. (2002) Tectonic controls on greenhouse as flux to the Paleogene atmosphere from the Gulf of Alaska accretionary prism. Geology, 30, 547–550.
    [Google Scholar]
  58. Ickert, R.B., Thorkelson, D.J., Marshall, D.D. & Ullrich, T.D. (2009) Eocene adakitic volcanism in southern British Columbia: remelting of arc basalt above a slab window. Tectonophysics, 464, 164–185.
    [Google Scholar]
  59. Idleman, B., Trop, J.M. & Ridgway, K.D. (2011) Geochronological evidence for rapid forearc subsidence and sedimentation during Paleogene spreading ridge subduction along the southern Alaska convergent margin. Geol. Soc. Am. Abstracts with Programs, 43, 439.
    [Google Scholar]
  60. Ingersoll, R.V. (1978) Petrofacies and petrologic evolution of the Late Cretaceous forearc basin, northern and central California. J. Geol., 86, 335–352.
    [Google Scholar]
  61. Ingersoll, R.V. (1983) Petrofacies and provenance of late Mesozoic forearc basin, northern and central California. AAPG Bull., 67, 1125–1142.
    [Google Scholar]
  62. Ingersoll, R.V. (2012) Tectonics of sedimentary basins, with revised nomenclature. In: Tectonics of Sedimentary Basins: Recent Advances (Ed. by C.Busby & A.Azor ), pp. 1–43. John Wiley & Sons, Ltd, Chichester, UK.
    [Google Scholar]
  63. Ingersoll, R.V. & Eastmond, D.J. (2007) Composition of modern sand from the Sierra Nevada, California, U.S.A.: implications for actualistic petrofacies of continental‐margin magmatic arcs. J. Sed. Res., 77, 784–796.
    [Google Scholar]
  64. Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D. & Sares, S.W. (1984) The effect of grain size on detrital modes: a test of the Gazzi‐Dickinson point‐counting method. J. Sed. Petrol., 54, 103–116.
    [Google Scholar]
  65. Iwamori, H. (2000) Thermal effects of ridge subduction and its implications for the origin of granitic batholith and paired metamorphic belts. Earth Planet. Sci. Lett., 181, 131–144.
    [Google Scholar]
  66. Jacobson, C.E., Grove, M., Pedrick, J.N., Barth, A.P., Marsaglia, K.M., Gehrels, G. & Nourse, J. (2011) Late Cretaceous‐early Cenozoic tectonic evolution of the southern California margin inferred from provenance of trench and forearc sediments. Geol. Soc. Am. Bull., 123, 485–506.
    [Google Scholar]
  67. Jarrard, R.D. (1986) Relations among subduction parameters. Rev. Geophys., 24, 217–284.
    [Google Scholar]
  68. Johnston, S.T. & Thorkelson, D.J. (1997) Cocos‐Nazca slab window beneath Central America. Earth Planet. Sci. Lett., 146, 465–474.
    [Google Scholar]
  69. Kalbas, J.L., Ridgway, K.D. & Gehrels, G.E. (2007) Stratigraphy, depositional systems, and provenance of the Lower Cretaceous Kahiltna assemblage, western Alaska Range: basin development in response to oblique collision. In: Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska (Ed. by K.D.Ridgway , J.M.Trop , J.M.G.Glen & J.M.O'Neill ) Geol. Soc. Am. Spec. Pap., 431, 307–344.
    [Google Scholar]
  70. Kassab, C.M., Kortyna, C.D., Ridgway, K.D. & Trop, J.M. (2009) Sedimentology, structural framework, and basin analysis of the eastern Arkose Ridge Formation, Talkeetna Mountains, Alaska. Geol. Soc. Am., Abstracts with Programs, 41(7), 304.
    [Google Scholar]
  71. Kimbrough, D.L., Smith, D.P., Mahoney, J.B., Moore, T.E., Grove, M., Gastil, R.G. & Ortega‐Rivera, A. (2001) Forearc‐basin sedimentary response to rapid Late Cretaceous batholith emplacement in the Peninsular Ranges of southern and Baja California. Geology, 29, 491–494.
    [Google Scholar]
  72. Kochelek, E.J., Amato, J.M., Pavlis, T.L. & Clift, P.D. (2011) Flysch deposition and preservation of coherent bedding in an accretionary complex: detrital zircon ages from the Upper Cretaceous Valdez Group, Chugach terrane, Alaska. Lithosphere, 3, 265–274.
    [Google Scholar]
  73. Kortyna, C.D. (2011) Provenance signature of a forearc basin modified by spreading ridge subduction: Detrital zircon geochronology and detrital modes from the Paleogene Arkose Ridge Formation, southern Alaska. BS Honors Thesis, Bucknell University, Lewisburg, PA.
  74. Kortyna, C.D., Trop, J.M., Lecomte, A.A., Bauer, E., Kassab, C.M., Sunderlin, D. & Ridgway, K.D. (2009) Sedimentology, paleontology, and structural framework of the central Arkose Ridge Formation, Talkeetna Mountains, Alaska. Geol. Soc. Am., Abstracts with Programs, 41(7), 304.
    [Google Scholar]
  75. Lecomte, A.A., Sunderlin, D., Kassab, C.M., Kortyna, C.D. & Trop, J.M. (2010) Floral remains in the Paleogene Arkose Ridge Formation, south‐central Alaska: climatic and paleoenvironmental implications. Geol. Soc. Am., Abstracts with Programs, 42(1), 162.
    [Google Scholar]
  76. Little, T.A. (1988) Tertiary tectonics of the Border Ranges fault system, north‐central Chugach Mountains, Alaska: Sedimentation, deformation, and uplift along the inboard edge of a subduction complex. PhD Thesis, Stanford University, Stanford, CA.
  77. Little, T.A. & Naeser, C.W. (1989) Tertiary tectonics of the Border Ranges fault system, southern Alaska, USA. J. Geophys. Res., 94(B4), 4333–4359.
    [Google Scholar]
  78. Ludwig, K.R. (2003) Isoplot 3.00, a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No. 4a, Berkeley, CA.
    [Google Scholar]
  79. Lytwyn, J., Lockhart, S., Casey, J. & Kusky, T. (2000) Geochemistry of near‐trench intrusives associated with ridge subduction, Seldovia quadrangle, southern Alaska. J. Geophys. Res., 105(27), 27957–27978.
    [Google Scholar]
  80. Madsen, J.K., Thorkelson, D.J., Friedman, R.M. & Marshall, D.D. (2006) Cenozoic to Recent plate configurations in the Pacific Basin: ridge subduction and slab window magmatism in western North America. Geosphere, 1, 11–34.
    [Google Scholar]
  81. Miller, M.L., Bradley, D.C., Bundtzen, T.K. & Mcclelland, W. (2002) Late Cretaceous through Cenozoic strike‐slip tectonics of southwestern Alaska. J. Geol., 110, 247–270.
    [Google Scholar]
  82. Moll‐Stalcup, E.J. (1994) Latest Cretaceous and Cenozoic magmatism in mainland Alaska. In: The Geology of Alaska (Ed. by G.Plafker & H.C.Berg ) Geol. Soc. Am., G‐1, 589–619.
    [Google Scholar]
  83. Neff, J.L., Hagadorn, J.W., Sunderlin, D. & Williams, C.J. (2011) Sedimentology, facies architecture and chemostratigraphy of a continental high‐latitude Paleocene–Eocene succession—the Chickaloon Formation, Alaska. Sed. Geol., 240, 14–29.
    [Google Scholar]
  84. Nie, J., Horton, B.K., Saylor, J.E., Mora, A., Mange, M., Garzione, C.N., Basu, A., Moreno, C.J., Caballero, V. & Parra, M. (2012) Integrated provenance analysis of a convergent retroarc foreland system: U–Pb ages, heavy minerals, Nd isotopes, and sandstone compositions of the Middle Magdalena Valley basin, northern Andes, Colombia. Earth‐Sci. Rev., 110, 111–126.
    [Google Scholar]
  85. Pallares, C., Maury, R.C., Bellon, H., Royer, J., Calmus, T., Aguillón‐Robles, A., Cotten, J., Benoit, M., Michaud, F. & Bourgois, J. (2007) Slab‐tearing following ridge–trench collision: evidence from Miocene volcanism in Baja California, Mexico. J. Volcanol. Geoth. Res., 161, 95–117.
    [Google Scholar]
  86. Panuska, B.C., Stone, D.B. & Turner, D.L. (1990) Paleomagnetism of Eocene volcanic rocks, Talkeetna Mountains, Alaska. J. Geophy. Res., 95, 6737–6750.
    [Google Scholar]
  87. Pavlis, T.L. & Roeske, S.M. (2007) The Border Ranges fault system, southern Alaska. In: Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska (Ed. by K.D.Ridgway , J.M.Trop , J.M.G.Glen & J.M.O'Neill ) Geol. Soc. Am. Spec. Pap., 431, 55–94.
    [Google Scholar]
  88. Plafker, G. & Berg, H.C. (1994) Overview of the geology and tectonic evolution of Alaska. In: The Geology of Alaska (Ed. by G.Plafker & H.C.Berg ) Geol. Soc. Am., G‐1, 989–1021.
    [Google Scholar]
  89. Plafker, G., Moore, J.C. & Winkler, G.R. (1994) Geology of the southern Alaska margin. In: The Geology of Alaska (Ed. by G.Plafker & H.C.Berg ) Geol. Soc. Am., G‐1, 389–450.
    [Google Scholar]
  90. Ridgway, K.D., Trop, J.M. & Finzel, E.S. (2012) Modification of continental forearc basins by spreading ridge subduction and flat‐slab subduction processes: a case study from southern Alaska. In: Recent Advances in Tectonics of Sedimentary Basins (Ed. by C.Busby & A.Azor ), pp. 327–346. John Wiley & Sons, Ltd, Chichester, UK.
    [Google Scholar]
  91. Rioux, M., Hacker, B., Mattinson, J., Kelemen, P., Blusztajn, J. & Gehrels, G. (2007) Magmatic development of an intra‐oceanic arc: high‐precision U‐Pb zircon and whole‐rock isotopic analyses from the accreted Talkeetna arc, south‐central Alaska. Geol. Soc. Am. Bull., 119, 1168–1184.
    [Google Scholar]
  92. Rubatto, D. (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U‐Pb ages and metamorphism. Chem. Geol., 184, 123–138.
    [Google Scholar]
  93. Sak, P., Fisher, D., Gardner, T., Marshall, J. & La Femina, P. (2009) Rough crust subduction, forearc kinematics, and Quaternary uplift rates, Costa Rican segment of the Middle America Trench. Geol. Soc. Am. Bul., 121, 992–1012.
    [Google Scholar]
  94. Sample, J.C. & Reid, M.R. (2003) Large‐scale, latest Cretaceous uplift along the Northeast Pacific Rim: evidence from sediment volume, sandstone petrography, and Nd isotope signatures of the Kodiak Formation, Kodiak Islands, Alaska. In: Geology of a Transpressional Orogen Developed During Ridge‐Trench Interaction Along the North Pacific Margin (Ed. by V.B.Sisson , S.M.Roeske & T.L.Pavlis ) Geol. Soc. Am. Spec. Pap., 371, 51–70.
    [Google Scholar]
  95. Silberman, M.L. & Grantz, A. (1984) Paleogene volcanic rocks of the Matanuska Valley area and the displacement history of the Castle Mountain fault. In: The U.S. Geological Survey in Alaska: Accomplishments during 1981 (Ed. by W.L.Coonrad & R.L.Elliot ) US Geol. Surv. Circular, 868, 82–86.
    [Google Scholar]
  96. Sisson, V.B., Pavlis, T.L., Roeske, S.M. & Thorkelson, D.J. (2003) Introduction: an overview of ridge‐trench interactions in modern and ancient settings. In: Geology of a Transpressional Orogen Developed During Ridge‐Trench Interaction Along the North Pacific Margin (Ed. by V.B.Sisson , S.M.Roeske & T.L.Pavlis ) Geol. Soc. Am. Spec. Pap., 371, 1–18.
    [Google Scholar]
  97. Snow, C.A. & Ernst, W.G. (2008) Detrital zircon constraints on sediment distribution and provenance of the Mariposa Formation, central Sierra Nevada foothills, California. In: Ophiolites, Arcs, and Batholiths: A Tribute to Cliff Hopson (Ed. by J.E.Wright & J.W.Shervais ) Geol. Soc. Am. Spec. Pap., 438, 311–330.
    [Google Scholar]
  98. Sunderlin, D., Loope, G., Parker, N.E. & Williams, C.J. (2011a) Paleoclimatic and paleoecological implications of a Paleocene–Eocene fossil leaf assemblage, Chickaloon Formation, Alaska. Palaios, 26, 335–345.
    [Google Scholar]
  99. Sunderlin, D., White, J.G., Lecomte, A.A. & Trop, J.M. (2011b) Paleobotany and paleoecology of the Early Paleogene Arkose Ridge Formation, Talkeetna Mountains, Alaska. Geol. Soc. Am., Abstracts with Programs, 43, 164.
    [Google Scholar]
  100. Surpless, K.D. & Augsburger, G.A. (2009) Provenance of the Pythian Cave conglomerate, northern California: implications for mid‐Cretaceous paleogeography of the U.S. Cordillera. Cretaceous Res., 30, 1181–1192.
    [Google Scholar]
  101. Taylor, F.W., Mann, P., Bevis, M.G., Edwards, R.L., Cheng, H., Cutler, K.B., Gray, S.C., Burr, G.S., Beck, J.W., Phillips, D.A., Cabioch, G. & Recy, J. (2005) Rapid fore‐arc uplift and subsidence caused by impinging bathymetric features; examples from the New Hebrides and Solomon arcs. Tectonics, 24, TC6005, doi: 10.1029/2004TC001650.
    [Google Scholar]
  102. Thorkelson, D.J. (1996) Subduction of diverging plates and the principles of slab window formation. Tectonophysics, 255, 47–63.
    [Google Scholar]
  103. Thorkelson, D.J. & Taylor, R.P. (1989) Cordilleran slab windows. Geology, 17, 833–836.
    [Google Scholar]
  104. Thorkelson, D.J., Madsen, J.K. & Sluggett, C.L. (2011) Mantle flow through the Northern Cordilleran slab window revealed by volcanic geochemistry. Geology, 39, 267–270.
    [Google Scholar]
  105. Triplehorn, D.M., Turner, D.L. & Naeser, C.W. (1984) Radiometric age of the Chickaloon Formation of south‐central Alaska: location of the Paleocene–Eocene boundary. Geol. Soc. Am. Bull., 95, 740–742.
    [Google Scholar]
  106. Trop, J.M. (2008) Latest Cretaceous forearc basin development along an accretionary convergent margin: south‐central Alaska. Geol. Soc. Am. Bull., 120, 207–224.
    [Google Scholar]
  107. Trop, J.M. & Ridgway, K.D. (2000) Sedimentology, stratigraphy, and tectonic importance of the Paleocene–Eocene Arkose Ridge Formation, Cook Inlet‐Matanuska Valley forearc basin, Alaska. In: Short Notes on Alaskan Geology 1999 (Ed. by D.S.Pinney & P.K.Davis ) Alaska Div. Geol. Geophys. Surv. Prof. Rep., 119, 129–144.
    [Google Scholar]
  108. Trop, J.M. & Ridgway, K.D. (2007) Mesozoic and Cenozoic tectonic growth of southern Alaska: a sedimentary basin perspective. In: Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska (Ed. by K.D.Ridgway , J.M.Trop , J.M.G.Glen & J.M.O'Neill ) Geol. Soc. Am. Spec. Pap., 431, 55–94.
    [Google Scholar]
  109. Trop, J.M., Ridgway, K.D. & Spell, T.L. (2003) Sedimentary record of transpressional tectonics and ridge subduction in the Tertiary Matanuska Valley‐Talkeetna Mountains forearc basin, southern Alaska. In: Geology of a Transpressional Orogen Developed During Ridge‐Trench Interaction Along the North Pacific Margin (Ed. by V.B.Sisson , S.M.Roeske & T.L.Pavlis ) Geol. Soc. Am. Spec. Pap., 371, 89–118.
    [Google Scholar]
  110. Trop, J.M., Szuch, D.A., Rioux, M. & Blodgett, R.B. (2005) Sedimentology and provenance of the Upper Jurassic Naknek Formation, Talkeetna Mountains, Alaska: bearings on the accretionary tectonic history of the Wrangellia composite terrane. Geol. Soc. Am. Bull., 117, 570–588.
    [Google Scholar]
  111. Trop, J.M., Kissock, K., Idleman, B.D., Donaghy, E. & Ridgway, K.D. (2012) Sedimentary record of exhumation along a forearc basin‐accretionary prism boundary during ridge subduction: paleogene Chickaloon Formation, northern Chugach Mountains, southern Alaska. Geol. Soc. Am., Abstracts with Programs, 44(7), 175.
    [Google Scholar]
  112. Underwood, M.B., Shelton, K.L., Mclaughlin, R.J., Laughland, M.M. & Solomon, R.M. (1999) Middle Miocene paleotemperature anomalies within the Franciscan Complex of Northern California: thermo‐tectonic responses near the Mendocino triple junction. Geol. Soc. Am. Bull., 111, 1448–1467.
    [Google Scholar]
  113. Von Huene, R. & Scholl, D.W. (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys., 29, 279–316.
    [Google Scholar]
  114. Wilson, F.H., Dover, J.H., Bradley, D.C., Weber, F.R., Bundtzen, T.K. & Haeussler, P.J. (1998) Geologic map of central (interior) Alaska. US Geol. Surv. Open‐File Rep., 98‐133‐A, 63.
    [Google Scholar]
  115. Wilson, D.S., Mccrory, P.A. & Stanley, R.G. (2005) Implications of volcanism in coastal California for the Neogene deformation history of western North America. Tectonics, 24, TC3008, doi: 10.1029/2003TC001621.
    [Google Scholar]
  116. Winkler, G.R. (1978) Framework grain mineralogy and provenance of sandstones from the Arkose Ridge and Chickaloon Formations, Matanuska Valley, The United States Geological Survey in Alaska – Accomplishments during 1977. US Geol. Surv. Circ., 772‐B, B70–B73.
    [Google Scholar]
  117. Winkler, G.R. (1992) Geologic map and summary geochronology of the Anchorage 1° × 3° quadrangle, southern Alaska. US Geol. Surv. Misc. Inv. Ser. Map, I‐2283. scale 1:250,000.
    [Google Scholar]
  118. Wu, F‐Y., Ji, W‐Q., Liu, C‐Z. & Chung, S‐L. (2010) Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore‐arc basin: constraints on Transhimalayan magmatic evolution in southern Tibet. Chem. Geol., 271, 13–25.
    [Google Scholar]
  119. Yan, Z., Xiao, W.J., Windley, B.F., Wang, Z.Q. & Li, J.L. (2010) Silurian clastic sediments in the North Quilian Shan, NW China: chemical and isotopic constraints on their forearc provenance with implications for the Paleozoic evolution of the Tibetan plateau. Sed. Geol., 231, 98–114.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12033
Loading
/content/journals/10.1111/bre.12033
Loading

Data & Media loading...

Supplements

U‐Pb concordia plots of plutonic samples.

U‐Pb concordia plots of sandstone samples.

 

 

Raw and recalculated conglomerate compositional data.

PDF

Raw sandstone point‐count data.

PDF

Recalculated sandstone point‐count data.

PDF

U‐Pb zircon ages for plutonic samples.

PDF

U‐Pb detrital‐zircon ages for sandstone samples.

PDF
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error