1887
Volume 26, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Stable isotope measurements (O, C, Sr), microthermometry and salinity measurements of fluid inclusions from different fracture populations in several anticlines of the Sevier‐Laramide Bighorn basin (Wyoming, USA) were used to unravel the palaeohydrological evolution. New data on the microstructural setting were used to complement previous studies and refine the fracture sequence at basin scale. The latter provides the framework and timing of fluid migration events across the basin during the Sevier and Laramide orogenic phases. Since the Sevier tectonic loading of the foreland basin until its later involvement into the Laramide thick‐skinned orogeny, three main fracture sets (out of seven) were found to have efficiently enhanced the hydraulic permeability of the sedimentary cover rocks. These pulses of fluid are attested by calcite crystals precipitated in veins from hydrothermal ( > 120 °C) radiogenic fluids derived from Cretaceous meteoric fluids that interacted with the Precambrian basement rocks. Between these events, vein calcite precipitated from formational fluids at chemical and thermal equilibrium with surrounding environment. At basin scale, the earliest hydrothermal pulse is documented in the western part of the basin during forebulge flexuring and the second one is documented in basement‐cored folds during folding. In addition to this East/West diachronic opening of the cover rocks to hydrothermal pulses probably controlled by the tectonic style, a decrease in 87/86Sr values from West to East suggests a crustal‐scale partially squeegee‐type eastward fluid migration in both basement and cover rocks since the early phase of the Sevier contraction. The interpretation of palaeofluid system at basin scale also implies that joints developed under an extensional stress regime are better vertical drains than joints developed under strike‐slip regime and enabled migration of basement‐derived hydrothermal fluids.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12032
2013-08-19
2024-04-29
Loading full text...

Full text loading...

References

  1. Ahmadhadi, F., Daniel, J.‐M., Azzizadeh, M. & Lacombe, O. (2008) Evidence for pre‐folding vein development in the Oligo‐Miocene Asmari Formation in the Central Zagros Fold Belt, Iran. Tectonics, 27, TC1016.
    [Google Scholar]
  2. Amrouch, K., Lacombe, O., Bellahsen, N., Daniel, J.‐M. & Callot, J.‐P. (2010) Stress and strain patterns, kinematics and deformation mechanisms in a basement‐cored anticline: Sheep Mountain Anticline, Wyoming. Tectonics, 29, TC1005.
    [Google Scholar]
  3. Amrouch, K., Beaudoin, N., Lacombe, O., Bellahsen, N. & Daniel, J.‐M. (2011) Paleostress magnitudes in folded sedimentary rocks. Geophys. Res. Lett., 38, L17301.
    [Google Scholar]
  4. Anderson, D.W. & Picard, M.D. (1974) Evolution of synorogenic clastic deposits in the intermontane Uinta Basin of Utah. SEPM Spec. Publ., 22, 167–189.
    [Google Scholar]
  5. Andrews, D.A., Pierce, W.G. & Eargle, D.H. (1947) Geological map of the Bighorn Basin, Wyoming and Montana. United States Department of the Interior, Geological Survey, 1:100,000.
  6. Bacchu, S. (1995) Synthesis and Model of Formation‐Water Flow, Alberta Basin, Canada. AAPG Bull., 79, 1159–1178.
    [Google Scholar]
  7. Barbier, M., Hamon, Y., Callot, J.‐P., Floquet, M. & Daniel, J.‐M. (2012a) Sedimentary and diagenetic controls on the multiscale fracturing pattern of a carbonate reservoir: the Madion Formation (Sheep Mountain, Wyoming, USA). Mar. Petrol. Geol., 29, 50–67.
    [Google Scholar]
  8. Barbier, M., Leprêtre, R., Daniel, J.‐M., Gasparrini, M., Callot, J.‐P., Hamon, Y., Lacombe, O. & Floquet, M. (2012b) Impact of fracturing stratigraphy on paleo‐hydrodynamics, the Madison Formation case study (Bighorn Basin, Wyoming, USA). Tectonophysics, 576–577, 116–132.
    [Google Scholar]
  9. Beaudoin, N., Bellahsen, N., Lacombe, O. & Emmanuel, L. (2011) Fracture‐controlled paleohydrogeology in a basement‐cored, fault‐related fold: Sheep Mountain anticline (Wyoming, USA). Geochem. Geophys. Geosyst., 12, Q06011.
    [Google Scholar]
  10. Beaudoin, N., Leprêtre, R., Bellahsen, N., Amrouch, K., Callot, J.‐P., Emmanuel, L. & Daniel, J.‐M. (2012) Structural and microstructural evolution of the Rattlesnake Mountain Anticline (Wyoming, USA): new insights into the Sevier and Laramide orogenic stress build‐up in the Bighorn Basin. Tectonophysics, 576–577, 20–45.
    [Google Scholar]
  11. Bebout, G.E., Anastasio, D.J. & Holl, J.E. (2001) Synorogenic crustal fluid infiltration in the Idaho‐Montana thrust belt. Geophys. Res. Lett., 28, 4295–4298.
    [Google Scholar]
  12. Bell, L.H. (1970) Depositional history of the Cambrian Flathead Standstone, Park County, Wyoming. Wyoming Geol. Assoc. Guidebook, 22, 115–131.
    [Google Scholar]
  13. Bellahsen, N., Fiore, P. & Pollard, D. (2006a) The role of fractures in the structural interpretation of Sheep Mountain Anticline, Wyoming. J. Struct. Geol., 28, 850–867.
    [Google Scholar]
  14. Bellahsen, N., Fiore, P.E. & Pollard, D.D. (2006b) From spatial variation of fracture patterns to fold kinematics: a geomechanical approach. Geophys. Res. Lett., 33, 1–4.
    [Google Scholar]
  15. Bethke, C.M. & Marshak, S. (1990) Brine migrations across North America – the plate tectonics of groundwater. Annu. Rev. Earth Planet. Sci., 18, 287–315.
    [Google Scholar]
  16. Billi, A. (2005) Attributes and influence on fluid flow of fractures in foreland carbonates of southern Italy. J. Struct. Geol., 27, 1630–1643.
    [Google Scholar]
  17. Bjørlykke, K. (1993) Fluid flow in sedimentary basin. Sed. Geol., 86, 137–158.
    [Google Scholar]
  18. Bjørlykke, K. (1994) Fluid flow processes and diagenesis in sedimentary basins. In: Geofluid: Origin, Migration and Evolution of Fluids in Sedimentary Basins (Ed. by J.Parnell ) Geol. Soc. London Spec. Publ., 78, 127–140.
    [Google Scholar]
  19. Bjørlykke, K. (1999a) Principal aspects of compaction and fluid flow in mudstones. In: Mud and Mudstones: Physical and Fluid Flow Properties (Ed. by A.C.Aplin , A.J.Fleet & J.H.S.Macquaker ) Geol. Soc. London Spec. Publ., 158, 73–78.
    [Google Scholar]
  20. Bjørlykke, K. (1999b) An overview of factors controlling rates of compaction, fluid generation and fluid flow in sedimentary basins. In: Growth, Dissolutions and Pattern Formation in Geosystems (Ed. by B.Jamtveit & P.Meakin ), pp. 381–404. Kluwer Akademic Publishers, Norwell.
    [Google Scholar]
  21. Bjørlykke, K. (2010) Subsurface water and fluid flow in sedimentary basins. In: Petroleum Geoscience. From Sedimentary Environments to Rock Physics (Ed. by K.Bjørlykke ), pp. 259–279. Springer, Berlin.
    [Google Scholar]
  22. Blackstone, D.L. Jr. (1990) Rocky Mountain foreland structure exemplified by the Owl Creek Mountains, Bridger Range and Casper Arch, central Wyoming. In: 41st Annual Field Conference Guidebook (Ed. by R.W.Specht ), pp. 155–166. Wyoming Geological Association, Cheyenne.
    [Google Scholar]
  23. Boiron, M.C., Cathelineau, M., Banks, D.A., Buschaert, S., Fourcade, S., Coulibaly, Y., Michelot, J.L. & Boyce, A. (2002) Fluid transfers at a basement/cover interface Part II. Large‐scale introduction of chlorine into the basement by Mesozoic basinal brines. Chem. Geol., 192, 121–140.
    [Google Scholar]
  24. Bons, P.D., Elburg, M.A. & Gomez‐Rivas, E. (2012) A review of the formation of tectonic veins and their microstructures. J. Struct. Geol., 43, 33–62.
    [Google Scholar]
  25. Bottinga, Y. (1969) Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite‐carbon dioxide‐graphite‐methane‐hydrogen‐water vapor. Geochim. Cosmochim. Acta, 33, 49–64.
    [Google Scholar]
  26. Brigaud, F., Chapman, D.S. & le Douaran, S. (1990) Estimating thermal conductivity in sedimentary basins using lithologic data and geophysical well logs. AAPG Bull., 74, 1459–1477.
    [Google Scholar]
  27. Brown, W.G. (1988) Deformational style of Laramide uplifts in the Wyoming foreland. In: Interaction of the Rocky Mountain Foreland and the Cordilleran Thrust Belt (Ed. by C.J.Schmidt & W.J.Perry Jr ) G.S.A. Memoir 171, Boulder, 1–26.
    [Google Scholar]
  28. Bruckschen, P., Oesmann, S. & Veizer, J. (1999) Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics. Chem. Geol., 161, 127–163.
    [Google Scholar]
  29. Budai, J.M. & Wiltschko, D.V. (1989) Isotopic exchange during tectonic veining: example from Absaroka Sheet in Wyoming overthrust belt. Am. Assoc. Petrol. Geol. Bull., 73, 338.
    [Google Scholar]
  30. Chung, H.M., Brand, S.W. & Grizzle, P.L. (1981) Carbon isotope geochemistry of Paleozoic oils from Big Horn Basin. Geochim. Cosmochim. Acta, 45, 1803–1815.
    [Google Scholar]
  31. Coplen, T.B. (2007) Calibration of the calcite‐water oxygen‐isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochim. Cosmochim. Acta, 71, 3948–3957.
    [Google Scholar]
  32. Coplen, T.B., Kendall, C. & Hopple, J. (1983) Intercomparison of stable isotope reference samples. Nature, 302, 236–238.
    [Google Scholar]
  33. Crowley, P.D., Reiners, P.W., Reuter, J.M. & Kaye, G.D. (2002) Laramide exhumation of the Bighorn Mountains, Wyoming: an apatite (U‐Th)/He thermochronology study. Geology, 30, 27–30.
    [Google Scholar]
  34. Darton, N.H. (1905) Geologic map of the Bighorn Mountains Wyoming. U.S. Geological Survey, 1:100,000.
  35. Decelles, P.G. (1994) Late Cretaceous–Paleocene synorogenic sedimentation and kinematic history of the Sevier thrust belt, northeast Utah and southwest Wyoming. Geol. Soc. Am. Bull., 106, 32–56.
    [Google Scholar]
  36. Decelles, P.G. (2004) Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western USA. Am. J. Sci., 304, 105–168.
    [Google Scholar]
  37. Decelles, P.G. & Coogan, J.C. (2006) Regional structure and kinematic history of the Sevier fold‐and‐thrust belt, central Utah. Geol. Soc. Am. Bull., 118, 841–864.
    [Google Scholar]
  38. Deming, D., Nunn, J. A. & Evans, D.G. (1990) Thermal effects of compaction‐driven groundwater flow from overthrust belts. J. Geophys. Res., 95, 6669–6683.
    [Google Scholar]
  39. Dettman, D.L. & Lohmann, K.C. (2000) Oxygen evidence for high‐altitude snow in the Laramide Rocky Mountains of North America during the Late Cretaceous and Paleogene. Geology, 28, 243–246.
    [Google Scholar]
  40. Dewever, B., Swennen, R. & Breesch, L. (2011) Fluid flow compartmentalization in the Sicilian fold and thrust belt: Implications for the regional aqueous fluid flow and oil migration history. Tectonophysics, doi:10.1016/j.tecto.2011.08.009.
    [Google Scholar]
  41. Dickson, J.A.D. (1966) Carbonate identification and genesis as revealed by staining. J. Sed. Petrol., 36, 491–505.
    [Google Scholar]
  42. Dietrich, D., McKenzie, J.A. & Song, H. (1983) Origin of calcite in syntectonic veins as determined from carbon‐isotope ratios. Geology, 11, 547–551.
    [Google Scholar]
  43. Dubessy, J., Lhomme, T., Boiron, M.C. & Rull, F. (2002) Determination of chlorinity in aqueous fluids using Raman spectroscopy of the stretching band of water at room temperature: application to fluid inclusions. Appl. Spectrosc., 56, 99–106.
    [Google Scholar]
  44. Durdella, M.J. (2001) Mechanical modeling of fault‐related folds: West Flank of the Bighorn Basin, Wyoming. M.S. Thesis, Purdue University, West Lafayette.
  45. Emrich, K., Ehhalt, D.H. & Vogel, J.C. (1970) Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Planet. Sci. Lett., 8, 363–371.
    [Google Scholar]
  46. Engelder, T. (1984) The role of pore water circulation during the deformation of foreland fold and thrust belts. J. Geophys. Res., 89, 4319–4325.
    [Google Scholar]
  47. Engelder, T. (1987) Joints and some fractures in rocks. In: Fracture Mechanics of Rock (Ed. by B.Atkinson ), pp. 27–69. Academic Press, Waltham.
    [Google Scholar]
  48. Engelder, T., Gross, M.R. & Pinkerton, P. (1997) Joint development in clastic rocks of the Elk Basin anticline, Montana‐Wyoming. In: Fractured Reservoirs: Characterization and Modeling, Rocky Mountain Association of Geologists 1997 Guidebook (Ed. T.Hoak , A.Klawitter & P.Blomquist , pp. 1–18. Rocky Mountain Association of Geologists, Denver.
    [Google Scholar]
  49. Erslev, E.A. (1995) Heterogeneous Laramide deformation in the Rattlesnake Mountain Anticline, Cody, Wyoming. Field Trip., 7, 141–150.
    [Google Scholar]
  50. Erslev, E.A. & Koenig, N.V. (2009) Three‐dimensional kinematics of Laramide, basement‐involved Rocky Mountain deformation, USA: insights from minor faults and GIS‐enhanced structure maps. GSA Mem., 204, 125–150.
    [Google Scholar]
  51. Evans, M.A. (2010) Temporal and spatial changes in deformation conditions during the formation of the Central Appalachian fold‐and‐thrust belt: evidence from joints, vein mineral paragenesis, and fluid inclusions. In: From Rofinia to Pangea: The Lithotectonic Record of The Appalachian Region (Ed. by R.P.Tollo , M.J.Bartholomew , J.P.Hibbard & P.M.Karabinos ) Geol. Soc. Am. Mem., 206, 477–552.
    [Google Scholar]
  52. Evans, M.A. & Fischer, M.P. (2012) On the distribution of fluids in folds: a review of controlling factors and processes. J. Struct. Geol., 44, 2–24.
    [Google Scholar]
  53. Evans, M.A., Bebout, G.E. & Brown, C.H. (2012) Changing fluid conditions during folding: an example from the central Appalachians. Tectonophysics, 576–577, 99–115.
    [Google Scholar]
  54. Fanshawe, J.R. (1971). Structural evolution of Big Horn basin. Symposium on Wyoming Tectonics and their economic significance, 35–42.
  55. Ferket, H., Swennen, R., Ortuño, S. & Roure, F. (2003) Reconstruction of the fluid flow history during Laramide foreland fold and thrust belt development in eastern Mexico: cathodoluminescence and δ18O‐δ13C isotope trends of calcite‐cemented fractures. J. Geochem. Explor., 78–79, 163–467.
    [Google Scholar]
  56. Fiore Allwardt, P., Bellahsen, N. & Pollard, D.D. (2007) Curvature and fraturing based on global positioning system data collected at Sheep Mountain anticline, Wyoming. Geosphere, 3, 408–421.
    [Google Scholar]
  57. Fischer, M.P., Higuera‐Díaz, I.C., Evans, M.A., Perry, E.C. & Lefticariu, L. (2009) Fracture‐controlled paleohydrology in a map‐scale detachment fold: Insights from the analysis of fluid inclusions in calcite and quartz veins. J. Struct. Geol., 31, 1490–1510.
    [Google Scholar]
  58. Fitz‐Diaz, E., Hudleston, P., Siebenaller, L., Kirschner, D., Camprubi, A., Tolson, G. & Pi Puig, T. (2011) Insights into fluid flow and water‐rock interaction during deformation of carbonate sequences in the Mexican fold‐thrust belt. J. Struct. Geol., 33, 1237–1253.
    [Google Scholar]
  59. Forster, A. & Evans, J.P. (1991) Fluid flow in thrust faults and crystalline thrust sheets: results of combined field and modeling studies. Geophys. Res. Lett., 18, 979–982.
    [Google Scholar]
  60. Forster, A., Irmen, A.P. & Vondra, C. (1996) Structural interpretation of Sheep Mountain Anticline, Bighorn Basin, Wyoming. Wyoming Geol. Assoc. Guidebook, 47, 239–251.
    [Google Scholar]
  61. Fourcade, S., Michelot, J.L., Buschaert, S., Cathelineau, M., Freiberger, R., Coulibaly, Y. & Aranyossy, J.F. (2002) Fluid transfers at the basement/cover interface Part I. Subsurface recycling of trace carbonate from granitoid basement rocks (France). Chem. Geol., 192, 99–119.
    [Google Scholar]
  62. Fox, J.E. & Dolton, G.L. (1995) Bighorn Basin Province (034). In: National Assessment of United States Oil and Gas Resources – Results, Methodology, and Supporting Data. (Ed. by D.L.Gauther , G.L.Dolton , K.I.Takahashi & K.L.Varnes ) U.S. Geol. Surv. Digital Data Ser., 30, 1–22.
    [Google Scholar]
  63. Ge, S. & Garven, G. (1989) . In: The Origin and Evolution of Sedimentary Basin and Their Energy and Mineral Resources (Ed. by R.A.Prince ), Am. Geophys. Union, 99, 145–157.
    [Google Scholar]
  64. van Geet, M., Swennen, R., Durmishi, C., Roure, F. & Muchez, P. (2002) Paragenesis of Cretaceous to Eocene carbonate reservoirs in the Ionian fold and thrust belt (Albania): relation between tectonism and fluid flow. Sedimentology, 49, 697–718.
    [Google Scholar]
  65. Géraud, Y., Surma, F. & Mazerolle, F. (2003) Porosity and fluid flow characterization of granite by capillary wetting using X‐ray computed tomography. In: Applications of X‐ray Computed Tomography in Geosciences (Ed. by F.Mees , R.Swennen , M.Van Geet & P.Jacobs ) Geol. Soc. London Spec. Publ., 215, 95–105.
    [Google Scholar]
  66. Hall, S.M. & Veizer, J. (1996) Geochemistry of Precambrian carbonates: VII. Belt Supergroup, Montana and Idaho, USA. Geochim. Cosmochim. Acta, 60, 667–677.
    [Google Scholar]
  67. Hanor, J.S. (1980) Dissolved methane in sedimentary brines: potential effect on the PVT properties of fluid inclusions. Econ. Geol., 75, 603–609.
    [Google Scholar]
  68. Harrison, J.E. (1972) Precambrian Belt Basin of Northwestern United States: its geometry, sedimentation, and copper occurrences. Geol. Soc. Am. Bull., 83, 1215–1240.
    [Google Scholar]
  69. Heasler, H.P. & Hinckley, B.S. (1985) Geothermal resources of the Bighorn Basin, Wyoming. Wyoming Geol. Surv., 8, 27.
    [Google Scholar]
  70. Henderson, I.H.C. & McCAIG, A.M. (1996) Fluid pressure and salinity variation in shear zone‐related veins, central Pyrenees, France: implication for the fault‐valve model. Tectonophysics, 262, 321–348.
    [Google Scholar]
  71. Hennier, J.H. (1984) Structural Analysis of The Sheep Mountain Anticline. Texas A&S University, Bighorn basin, Wyoming. 118 pp.
    [Google Scholar]
  72. Hennier, J.H. & Spang, J.H. (1983) Mechanisms for deformation of sedimentary strata at Sheep mountain anticline, Bighorn basin, Wyoming. Wyoming Geol. Assoc. Guidebook, 34, 96–111.
    [Google Scholar]
  73. Hilgers, C. & Urai, J.L. (2002) Microstructural observations on natural syntectonic fibrous veins: implications for growth process. Tectonophysics, 352, 257–274.
    [Google Scholar]
  74. Hubbert, M.K. & Willis, D.G. (1957) Mechanics of hydraulic fracturing. Trans. AIME, 210, 153–166.
    [Google Scholar]
  75. Katz, D.A., Eberli, G.P., Swart, P.K. & Smith, L.B. (2006) Tectonic‐hydrothermal brecciation associated with calcite precipitation and permeability destruction in Mississippian carbonate reservoirs. Montana and Wyoming. AAPG Bull., 90, 1803–1841.
    [Google Scholar]
  76. Kim, S.‐T. & O'neil, J.R. (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Acta, 61, 3461–3475.
    [Google Scholar]
  77. Koch, P.L., Zachos, J.C. & Dettman, D.L. (1995) Stable isotope and paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA). Palaeogeogr. Palaeoclimatol. Palaeoecol., 115, 61–89.
    [Google Scholar]
  78. Laubach, S.E., Olson, J. & Gross, M.R. (2009) Mechanical and fracture stratigraphy. AAPG Bull., 93, 1413–1427.
    [Google Scholar]
  79. Lefticariu, L., Perry, E.C., Fischer, M.P. & Banner, J.L. (2005) Evolution of fluid compartmentalization in a detachment fold complex. Geology, 33, 69–72.
    [Google Scholar]
  80. Li, K., Cai, C., He, H., Jiang, L., Cai, L., Xiang, L., Huang, S. & Zhang, C. (2011) Origin of palaeo‐waters in the Ordovician carbonates in Tahe oilfield, Tarim Basin: constraints from fluid inclusions and Sr, C and O isotopes. Geofluids, 11, 71–86.
    [Google Scholar]
  81. Lopez, D.A. (2000) Geologic map of the Bridger 30' x 60' quadrangle, Montana. U.S. Geological Survey, 1:100,000.
  82. Love, J.D. & Christiansen, A.C. (1985) Geologic map of Wyoming. U.S. Geological Survey, 1:500,000.
  83. Lyubetskaya, T. & Ague, J.J. (2009) Modeling the magnitudes and directions of regional metamorphic fluid flow in collisional orogens. J. Petrol., 50, 1505–1531.
    [Google Scholar]
  84. Machel, H.G. & Buschkuehle, B.E. (2008) Diagenesis of the Devonian Southesk‐Cairn Carbonate Complex, Alberta, Canada: marine cementation, burial dolomitization, thermochemical sulfate reduction, anhydritization, and squeegee fluid flow. J. Sed. Res., 78, 366–389.
    [Google Scholar]
  85. Machel, H.G. & Cavel, P.A. (1999) Low‐flux, tectonically‐induced squeegee fluid flow (« hot flash ») into the Rocky Mountain Foreland Basin. Bull. Can. Petrol. Geol., 47, 510–533.
    [Google Scholar]
  86. Machel, H.G. & Lonnee, J. (2002) Hydrothermal dolomite – a product of poor definition and imagination. Sed. Geol., 152, 163–171.
    [Google Scholar]
  87. Marshak, S., Karlstrom, K. & Timmons, J.M. (2000) Inversion of Proterozoic extensional faults: an explanation for the pattern of Laramide and Ancestral Rockies intracratonic deformation, United States. Geology, 28, 735–738.
    [Google Scholar]
  88. McCabe, W.S. (1948) Elk basin, anticline, Park county, Wyoming, and Carbon county, Montana. AAPG Bull., 32, 52–67.
    [Google Scholar]
  89. McCaig, A.M. (1988) Deep fluid circulation in fault zones. Geology, 16, 865–960.
    [Google Scholar]
  90. Morrill, C. & Koch, P.L. (2002) Elevation or alteration? Evaluation of isotopic constraints on paleoaltitudes surrounding the Eocene Green River Basin. Geology, 30, 151–154.
    [Google Scholar]
  91. Neely, T.G. & Erslev, E.A. (2009) The interplay of fold mechanisms and basement weaknesses at the transition between Laramide basement‐involved arches, north‐central Wyoming, USA. J. Struct. Geol., 31, 1012–1027.
    [Google Scholar]
  92. Nesbitt, B.E. & Muehlenbachs, K. (1995) Geochemical studies of the origins and effects of synorogenic crustal fluids in the southern Omineca Belt of British Columbia, Canada. GSA Bull., 107, 1033–1050.
    [Google Scholar]
  93. Norris, R.D., Jones, L.S., Corfield, R.M. & Cartlidge, J.E (1996) Skiing in the Eocene Uinta Mountains? Isotopic evidence in the Green River Formation for snow melt and large mountains. Geology, 24, 403–406.
    [Google Scholar]
  94. Oliver, J. (1986) Fluids expelled tectonically from orogenic belts: their role in hydrocarbon migration and other geologic phenomena. Geology, 14, 99–102.
    [Google Scholar]
  95. Orr, W.L. (1974) Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation – study if Big Horn Basin Paleozoic oils. AAPG Bull., 58, 2295–2318.
    [Google Scholar]
  96. Pierce, W.G. (1966) Geologic map of the Cody quadrangle, Park County, Wyoming. U.S. Geological Survey, Geologic Quadrangle Map GQ‐542, 1:62,500.
  97. Pierce, W.G. & Nelson, W.H. (1968) Geologic map of the Pat O'Hara Mountain Quadrangle, Park County, Wyoming. U.S. Geological Survey, Geologic Quadrangle Map GQ‐0755, 1:62,500.
  98. Qing, H. & Mountjoy, E. (1992) Larger‐scale fluid flow in the Middle Devonian Presqu'ile barrier, Western Canada Sedimentary Basin. Geology, 20, 903–906.
    [Google Scholar]
  99. Ramsay, J.G. (1980) The crack‐seal mechanism of rock deformation. Nature, 284, 135–139.
    [Google Scholar]
  100. Reynolds, S.J. & Lister, G.S. (1987) Structural aspect of fluid‐rock interactions in detachment zones. Geology, 15, 362–366.
    [Google Scholar]
  101. Rhodes, M.K., Carroll, A.R., Pietras, J.T., Beard, B.L. & Johnson, C.M. (2002) Strontium isotope record of paleohydrology and continental weathering, Eocene Green River Formation, Wyoming. Geology, 30, 167–170.
    [Google Scholar]
  102. Rioux, R.L. (1994) Geologic map of the Sheep Mountain ‐ Little Sheep Mountain Area, Big Horn County, Wyoming. U.S. Geological Survey, 1:48,000.
  103. Rogers, C.P. Jr, Richards, P.W., Conant, L.C., Vine, J.D. & Notley, D.F. (1948) Geology of the worland ‐ Hyattville area, Big Horn and Washakie counties, Wyoming. Oil and Gas investigations preliminary map, 84, 1:48,000.
  104. Rosenbaum, J. & Sheppard, S.M.F. (1986) An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim. Cosmochim. Acta, 50, 1147–1150.
    [Google Scholar]
  105. Roure, F., Swennen, R., Schneider, F., Faure, J.L., Ferkand, H., Guilhaumou, N., Osadandz, K., Robion, P. & Vandeginste, V. (2005) Incidence and importance of tectonics and natural fluid migration on reservoir evolution in foreland fold‐and‐thrust belts. Oil Gas Sci. Technol., 60, 67–106.
    [Google Scholar]
  106. Roure, F., Andriessen, P., Callot, J.‐P., Ferket, H., Gonzalez, E., Guilhaumou, N., Hardebol, N., Lacombe, O., Malandain, J., Mougin, P., Muska, K., Ortuno, S., Sassi, W., Swennen, R. & Vilasi, N. (2010) The use of paleo‐thermo‐barometers and coupled thermal, fluid flow and pore fluid pressure modelling for hydrocarbon and reservoir prediction in fold‐and‐thrust belts. In: Hydrocarbons in Contractional Belts (Ed by G.Goffey , J.Craig , T.Needham & R.Scott ) Geol. Soc. London Spec. Publ., 348, 87–114.
    [Google Scholar]
  107. Rubey, W.W. & Hubbert, M.K. (1959) Role of fluid pressure in mechanics of overthrust faulting. II. Overthrust belt in geosynclmal area of western Wyoming in light of fluid‐pressure hypothesis. Geol. Soc. Am. Bull., 70, 167–205.
    [Google Scholar]
  108. Savage, H.M. & Cooke, M.L. (2004) The effect of non‐parallel thrust fault interaction on fold patterns. J. Struct. Geol., 26, 905–917.
    [Google Scholar]
  109. Schneider, F. (2003) Basin Modeling in Complex Area: Examples from Eastern Venezuelan and Canadian Foothills. Oil Gas Sci. Technol., 58, 313–324.
    [Google Scholar]
  110. Sibson, R.H. (1981) Fluid flow accompanying faulting: field evidence and models. In: Earthquake Prediction: An International Review (Ed. by D.W.Simpson & P.G.Richards ) Am. Geophys. Union Maurice Ewing Ser., 4, 593–603.
    [Google Scholar]
  111. Sibson, R.H. (1994) Crustal stress, faulting and fluid flow. In: Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins (Ed. by J.Parnell ) Geol. Soc. London Spec. Publ., 78, 69–84.
    [Google Scholar]
  112. Stanton, H.I. & Erslev, E.A. (2004) Sheep Mountain Anticline: backlimb tightening and sequential deformation in the Bighorn Basin, Wyoming. Wyoming Geol. Assoc. Guidebook, 53, 75–87.
    [Google Scholar]
  113. Stearns, D.W. (1978) Faulting and forced folding in the Rocky Montains foreland. In: Laramide Folding Associated With Basement Block Faulting in The Western United States (Ed. by V.Matthews ) Geol. Soc. Am. Mem., 151, 1–37.
    [Google Scholar]
  114. Stilwell, D.P., Davis‐Lawrence, S.W. & Elser, A.M. (2010) Reasonable foreseeable development scenario for oil and gas Bighorn Basin planning area, Wyoming. Final Rapport of the United States Department of the Interior, Bureau of Land Management, 176 pp.
  115. Stone, D.S. (1987). Northeast‐Southwest structural transect: Rocky Mountain foreland, Wyoming (abs.). AAPG Bull., 71, 1015, 1:24,000.
    [Google Scholar]
  116. Stone, D.S. (1993) Basement‐involved thrust‐generated folds as seismically imaged in the subsurface of the central Rocky Mountain foreland. In: Laramide Basement Deformation in The Rocky Mountain of The Western United States (Ed by C.J.Schmidt , R.B.Chase & E.A.Erslev ) Geol. Soc. Am. Spec. Pap., 280, 271–318.
    [Google Scholar]
  117. Stone, D.S. (2003) New interpretations of the Piney Creek thrust and associated Granite Ridge tear fault, northeastern Bighorn Mountain, Wyoming. Rocky Mt. Geol., 38, 205–235.
    [Google Scholar]
  118. Stone, D.S. (2004) Rio thrusting, multi‐stage migration and formation of vertically segregated Paleozoic oil pools at Torchlight Field on the Greybull Platform (Eastern Bighorn basin): implication for exploration. Mt. Geol., 41, 119–138.
    [Google Scholar]
  119. Templeton, A.S., Sweeney, J.Jr, Manske, H., Tilghman, J.F., Calhoun, S.C., Voilich, A. & Chamberlain, C.P. (1995) Fluids and the Heart Mountain fault revisited. Geology, 23, 929–932.
    [Google Scholar]
  120. Thomas, L.E. (1965) Sedimentation and structural development of Bighorn Basin. AAPG Bull., 49, 1867–1877.
    [Google Scholar]
  121. Travé, A., Calvet, F., Sans, M., Vergés, J. & Thirlwall, M. (2000) Fluid history related to the Alpine compression at the margin of the south‐Pyrenean Foreland basin: the El Guix anticline. Tectonophysics, 321, 73–102.
    [Google Scholar]
  122. Travé, A., Labaume, P. & Vergés, J. (2007) Fluid Systems in Foreland fold‐and‐thrust Belts: An Overview from the Southern Pyrenees. In: Thrust Belts and Foreland Basins (Ed by O.Lacombe , J.Lavé , F.Roure & J.Vergès , pp. 93–117. Springer, Berlin.
    [Google Scholar]
  123. Ulmer‐Scholle, D.S. & Scholle, P.A. (1994) Replacement of evaporites within the Permian Park City Formation, Bighorn basin, Wyoming, U.S.A. Sedimentology, 41, 1203–1222.
    [Google Scholar]
  124. Vandeginste, V., Swennen, R., Allaeys, M., Ellam, R.M., Osadetz, K. & Roure, F. (2012) Challenge of structural diagenesis in foreland fold‐and‐thrust belts: a case study on paleofluid flow in the Canadian Rocky Mountains West of Calgary. Mar. Petrol. Geol., 35, 235–251.
    [Google Scholar]
  125. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G. & Strauss, H. (1999) 87Sr/86Sr δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol., 161, 59–88.
    [Google Scholar]
  126. Vilasi, N., Malandain, J., Barrier, L., Amrouch, K., Callot, J.‐P., Guilhaumou, N., Lacombe, O., Muska, K., Roure, F. & Swennen, R. (2009) From outcrop and petrographic studies to basin‐scale fluid flow modelling: the use of the Albanian natural laboratory for carbonate reservoir characterization. Tectonophysics, 474, 367–392.
    [Google Scholar]
  127. Weil, A.B. & Yonkee, W.A. (2012) Layer‐parallel shortening across the Sevier fold‐thrust belt and Laramide foreland of Wyoming: spatial and temporal evolution of a complex geodynamic system. Earth Planet. Sci. Lett., 357–358, 405–420.
    [Google Scholar]
  128. Wiltschko, D.V., Lambert, G.R. & Lamb, W. (2009) Conditions during syntectonic vein formation in the footwall of the Absaroka Thrust Fault, Idaho‐Wyoming‐Utah fold and thrust belt. J. Struct. Geol., 31, 1039–1057.
    [Google Scholar]
  129. Yu, H.‐S. & Chou, Y.‐W. (2001) Characteristics and development of the flexural forebulge and basal unconformity of Western Taiwan Foreland Basin. Tectonophysics, 333, 277–291.
    [Google Scholar]
  130. Zheng, Y.F. (1999) Oxygen isotope fractionation in carbonate and sulphate minerals. J. Geochem., 33, 109–126.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12032
Loading
/content/journals/10.1111/bre.12032
Loading

Data & Media loading...

Supplements

Table S1. Stable isotope (O, C, Sr) data set.

PDF
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error