1887
Volume 27, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

The Patagonian Magallanes retroarc foreland basin affords an excellent case study of sediment burial recycling within a thrust belt setting. We report combined detrital zircon U–Pb geochronology and (U–Th)/He thermochronology data and thermal modelling results that confirm delivery of both rapidly cooled, first‐cycle volcanogenic sediments from the Patagonian magmatic arc and recycled sediment from deeply buried and exhumed Cretaceous foredeep strata to the Cenozoic depocentre of the Patagonian Magallanes basin. We have quantified the magnitude of Eocene heating with thermal models that simultaneously forward model detrital zircon (U–Th)/He dates for best‐fit thermal histories. Our results indicate that 54–45 Ma burial of the Maastrichtian Dorotea Formation produced 164–180 °C conditions and heating to within the zircon He partial retention zone. Such deep burial is unusual for Andean foreland basins and may have resulted from combined effects of high basal heat flow and high sediment accumulation within a rapidly subsiding foredeep that was floored by basement weakened by previous Late Jurassic rifting. In this interpretation, Cenozoic thrust‐related deformation deeply eroded the Dorotea Formation from . 5 km burial depths and may be responsible for the development of a basin‐wide Palaeogene unconformity. Results from the Cenozoic Río Turbio and Santa Cruz formations confirm that they contain both Cenozoic first‐cycle zircon from the Patagonian magmatic arc and highly outgassed zircon recycled from older basin strata that experienced burial histories similar to those of the Dorotea Formation.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12088
2014-08-28
2024-04-26
Loading full text...

Full text loading...

References

  1. Allen, R.B. (1982) Geología de la Cordillera Sarmiento, Andes Patagónicos, entre los 50°00′ S y 52°15′ S, Magallanes, Chile. Servicio Nacional de Geologia y Mineria, Chile, Boletin, 38, 1–46.
    [Google Scholar]
  2. Armitage, D.A., Romans, B.W., Covault, J.A. & Graham, S.A. (2009) The influence of mass transport deposit surface topography on the evolution of turbidite architecture: the Sierra Contreras, Tres Pasos Formation (Cretaceous), southern Chile. J. Sediment. Res., 79, 287–301.
    [Google Scholar]
  3. Barbeau, D.L., Olivero, E.B., Swanson‐Hysell, N.L., Zahid, K.M., Murray, K.E. & Gehrels, G.E. (2009) Detrital zircon geochronology of the eastern Magallanes foreland basin: implications for Eocene kinematics of the northern Scotia Arc and Drake Passage. Earth Planet. Sci. Lett., 20, 23–45.
    [Google Scholar]
  4. Bernhardt, A., Jobe, Z., Grove, M. & Lowe, D. (2011) Palaeogeography and diachronous infill of an ancient deep‐marine foreland basin, Upper Cretaceous Cerro Toro Formation, Magallanes basin. Basin Res. doi.10.1111/j.1365‐2117.2011.00528.x.
    [Google Scholar]
  5. Biddle, K.T., Uliana, M.A., Mitchum, R.M., Jr, Fitzgerald, M.G. & Wright, R.C. (1986) The stratigraphic and structural evolution of the central and eastern Magallanes basin, southern South America. In: Foreland Basins (Ed. by AllenP.A. & HomewoodP. ), Int. Assoc. Sedimentol. Spec. Publ., pp. 41–63. Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  6. Blisniuk, P.M., Stern, L.A., Chamberlain, C.P., Idleman, B. & Zeitler, P.K. (2005) Climate and ecological changes during Miocene surface uplift in the southern Patagonian Andes. Earth Planet. Sci. Lett., 230, 125–142.
    [Google Scholar]
  7. Bostelmann, J.E., Le Roux, J.P., Vásquez, A., Gutiérrez, N.M., Oyarzún, J.L., Carreño, C., Torres, T., Otero, R., Llanos, A., Fanning, C.M. & Hervé, F. (2013) Burdigalian deposits of the Santa Cruz Formation in the Sierra Baguales, Austral (Magallanes) Basin: Age, depositional environment and vertebrate fossils. Andean Geol., 40, 459–489.
    [Google Scholar]
  8. Calderón, M., Fildani, A., Hervé, F., Fanning, C.M., Weislogel, A. & Cordani, U. (2007) Late Jurassic bimodal magmatism in the northern sea‐floor remnant of the Rocas Verdes basin, southern Patagonian Andes. J. Geol. Soc., 162, 1011–1022.
    [Google Scholar]
  9. Calderón, M., Fosdick, J.C., Warren, C., Massonne, H.‐J., Fanning, C.M., Cury, L.F., Schwanethal, J., Fonseca, P.E., Galaz, G., Gaytán, D. & Hervé, F. (2012) The low‐grade Canal de las Montañas Shear Zone and its role in the tectonic emplacement of the Sarmiento Ophiolitic Complex and Late Cretaceous Patagonian Andes orogeny, Chile. Tectonophysics, 524, 165–185.
    [Google Scholar]
  10. Cherniak, D.J., Watson, E.B. & Thomas, J.B. (2009) Diffusion of helium in zircon and apatite. Chem. Geol., 268, 155–166.
    [Google Scholar]
  11. Ghiglione, M.C. & Ramos, V.A. (2005) Progression of deformation and sedimentation in the southernmost Andes. Tectonophysics, 405, 25–46.
    [Google Scholar]
  12. Cina, S.E., Yin, A., Grove, M., Dubey, C.S., Shukla, D.P., Lovera, O.M., Kelty, T.K., Gehrels, G.E. & Foster, D.A. (2009) Gangdese arc detritus within the eastern Himalayan Neogene foreland basin: implications for the Neogene evolution of the Yalu‐Brahmaputra River system. Earth Planet. Sci. Lett., 285, 150–162.
    [Google Scholar]
  13. Covault, J.A., Romans, B.W. & Graham, S.A. (2009) Outcrop expression of a continental‐margin‐scale shelf‐edge delta from the Cretaceous Magallanes basin, Chile. J. Sediment. Res., 79, 523–539.
    [Google Scholar]
  14. Crane, W.H. & Lowe, D.R. (2008) Architecture and evolution of the Paine channel complex, Cerro Toro Formation (Upper Cretaceous), Silla Syncline, Magallanes basin, Chile. Sedimentology, 55, 979–1009.
    [Google Scholar]
  15. Cuitiño, R.I. & Scasso, R.A. (2010) Sedimentología y paleoambientes del Patagoniano y su transición a La Formación Santa Cruz al sur del Lago Argentino, Patagonia Austral. Revista de la Asociación Geológica Argentina, 66, 406–417.
    [Google Scholar]
  16. Cuitiño, J.I., Pimentel, M.M., Santos, M.V. & Scasso, R.A. (2012) High Resolution Isotopic Ages for the Early Miocene ‘Patagoniense’ Transgression in Southwest Patagonia. Stratigraphic Implications. J. S. Am. Earth Sci., 38, 110–122.
    [Google Scholar]
  17. Dalziel, I.W.D. (1986) Collision and Cordilleran orogenesis: an Andean perspective. In: Collision Tectonics (Ed. by CowardM.P. & ReisA.C. ), Geol. Soc. Spec. Pub., 19, 389–404.
    [Google Scholar]
  18. Dalziel, I.W.D., de Wit, M.J. & Palmer, K.F. (1974) Fossil marginal basin in the southern Andes. Nature, 250, 291–294.
    [Google Scholar]
  19. Degraaff‐Surpless, K., Graham, S.A., Wooden, J.L. & McWilliams, M.O. (2002) Detrital zircon provenance analysis of the Great Valley Group, California: evolution of an arc‐forearc system. Geol. Soc. Am. Bull., 114, 1564–1580.
    [Google Scholar]
  20. Dickinson, W.R. (1988) Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins. In: New Perspectives in Basin Analysis (Ed. by K.L.Kleinspehn , C.Paola ), pp. 3–25. Springer, New York.
    [Google Scholar]
  21. Dickinson, W.R. & Suczek, C.A. (1979) Plate tectonics and sandstone compositions. Am. Assoc. Pet. Geol. Bull., 63, 2164–2182.
    [Google Scholar]
  22. Ehlers, T.A. (2005) Crustal thermal processes and the interpretation of thermochronometer data. Rev. Mineral. Geochem., 58, 315–350.
    [Google Scholar]
  23. Einsele, G., Ratschbacher, L. & Wetzel, A. (1996) The Himalaya‐Bengal Fan denudation‐accumulation system during the past 20 Ma. J. Geol., 104, 163–184.
    [Google Scholar]
  24. Farley, K.A. (2002) (U‐Th)/He dating: techniques, Calibrations and applications. Rev. Min. Geochem., 47, 819–844.
    [Google Scholar]
  25. Fildani, A. & Hessler, A.M. (2005) Stratigraphic record across a retroarc basin inversion: Rocas Verdes – Magallanes basin, Patagonian Andes. Geol. Soc. Am. Bull., 117, 1596–1614.
    [Google Scholar]
  26. Fildani, A., Cope, T.D., Graham, S.A. & Wooden, J.L. (2003) Initiation of the Magallanes foreland basin: timing of the southernmost Patagonian Andes orogeny revised by detrital zircon provenance analysis. Geology, 31, 1081–1084.
    [Google Scholar]
  27. Flowers, R.M., Ketcham, R.A., Shuster, D.L. & Farley, K.A. (2009) Apatite (U‐Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim. Cosmochim. Acta, 73, 2347–2365.
    [Google Scholar]
  28. Forsythe, R. & Allen, R.B. (1980) The basement rocks of Península Staines, Región XII, Province of Última Esperanza, Chile. Revista Geológica de Chile, 10, 3–15.
    [Google Scholar]
  29. Fosdick, J.C. & Carrapa, B. (2012) Paleogene initiation of Andean foreland sedimentation in the Bermejo Basin and Precordillera thrust belt of NW Argentina from detrital geochronology and thermochronology. Geol. Soc. Am.Abstracts with Programs, 44, 72.
    [Google Scholar]
  30. Fosdick, J.C., Romans, B.W., Fildani, A., Calderón, M.N., Bernhardt, A. & Graham, S.A. (2011a) Kinematic history of the Cretaceous‐Neogene Patagonia thrust belt and Magallanes foreland Basin, Chile and Argentina (51°30' S). Geol. Soc. Am. Bull., 123, 1679–1698.
    [Google Scholar]
  31. Fosdick, J.C., Hilley, G.E. & Graham, S.A. (2011b) Flexural analysis of the Magallanes retroarc basin of southern South America: A 1‐D elastic‐plastic model for deflection of attenuated lithosphere. American Geophysical Union, Fall Meeting, abstract #T11B‐2334.
  32. Fosdick, J.C., Grove, M., Hourigan, J.K. & Calderón, M. (2013) Retroarc deformation and exhumation near the end of the Andes, southern Patagonia. Earth Planet. Sci. Lett., 361, 504–517.
    [Google Scholar]
  33. Furque, G. (1973) Descripción geológica de la Hoja 58b Lago Argentino. Boletin del Servicio Nacional Minero y Geológico, 140, 1–49.
    [Google Scholar]
  34. Galaz, G., Hervé, F. & Calderón, M. (2005) Metamorfismo y deformación de la Formacion Tobífera en la cordillera Riesco, región de Magallanes Chile: evidencias para su evolución tectónica. Revista de la Asociación Geológica Argentina, 60, 1–18.
    [Google Scholar]
  35. Gehrels, G.E., Valencia, V. & Pullen, A. (2006) Detrital zircon geochronology by Laser‐Ablation Multicollector ICPMS at the Arizona LaserChron Center. In:Geochronology: Emerging Opportunities, Paleontology Society Short Course (Ed. by LoszewskiT. & HuffW. ), Paleontology Society Papers, 11, 10.
    [Google Scholar]
  36. Gombosi, D.L., Barbeau, D.L., Jr. & Garver, J.I. (2009) New thermochronometric Constraints on the rapid Paleogene exhumation of the Cordillera Darwin Complex and related thrust sheets in the Fuegian Andes. Terra Nova, 21, 507–515.
    [Google Scholar]
  37. Graham, S.A., Tolson, R.B., Decelles, P.G., Ingersoll, R.V., Bargar, E., Caldwell, M., Cavazza, W., Edwards, D.P., Follo, W.F., Handschy, J.W., Lemke, L., Moxon, I., Rice, R., Smith, G.A. & White, J. (1986) Provenance modelling as a technique for analysing source terrane evolution and controls on foreland sedimentation. Special Publication of the International Association of Sedimentologists, 8, 425–436.
    [Google Scholar]
  38. Graham, S.A., Hendrix, M.S., Wang, L.B. & Carroll, A.R. (1993) Collisional successor basins of western China; impact of tectonic inheritance on sand composition. Geol. Soc. Am. Bull., 105, 323–344.
    [Google Scholar]
  39. Guenthner, W.R., Reiners, P.W., Ketcham, R.A., Nasdala, L. & Giester, G. (2013) Helium diffusion in natural zircon: radiation damage, anisotropy, and the interpretation of zircon (U‐Th)/He thermochronology. Am. J. Sci., 313, 1456–198.
    [Google Scholar]
  40. Hamza, V.M. & Muñoz, M. (1996) Heat Flow Map of South America. Geothermics, 25, 599–621.
    [Google Scholar]
  41. Harambour, S.M. (2002) Deep‐seated Thrusts in the Frontal Part of the Magallanes Fold and Thrust Belt, Ultima Esperanza, Chile. 15th Congreso Geológico Argentino Actas, 3, 232.
    [Google Scholar]
  42. Heller, P.L. & Frost, C.D. (1988) Isotopic provenance of clastic deposits–application of geochemistry to sedimentary provenance studies. In: New Perspectives in Basin Analysis (Ed. by K.Kleinspehn & C.Paola ), pp. 27–42. Springer‐Verlag, New York.
    [Google Scholar]
  43. Hervé, F., Fanning, C.M. & Pankhurst, R.J. (2003) Detrital zircon age patterns and provenance of the metamorphic complexes of southern Chile. J. S. Am. Earth Sci., 16, 107–123.
    [Google Scholar]
  44. Hervé, F., Godoy, E., Mpodozis, C. & Fanning, M. (2004) Monitoring magmatism of the Patagonian Batholith through the U‐Pb SHRIMP dating of detrital zircons in sedimentary units of the Magallanes basin. Bolletino di Geofísica Teorica ed Applicata, 45, 113–117.
    [Google Scholar]
  45. Hervé, F., Massonne, H.‐J., Calderón, M. & Theye, T. (2007a) Metamorphic P‐T conditions of Late Jurassic rhyolites in the Magallanes fold and thrust belt, Patagonian Andes, Chile. J. Iberian Geol., 33, 5–16.
    [Google Scholar]
  46. Hervé, F., Pankhurst, R.J., Fanning, C.M., Calderón, M. & Yaxley, G.M. (2007b) The South Patagonian batholith: 150 my of granite magmatism on a plate margin. Lithos, 97, 373–394.
    [Google Scholar]
  47. Hofftstetter, R., Fuenzalida, H. & Cecioni, G. (1957) Lexique Stratigraphique International., v. V, Amérique Latine, Fascicule 7, Chile. Centre Nacional de la Recherche Scientifique, Paris, 444 pp.
  48. Hourigan, J.K., Reiners, P.W. & Brandon, M.T. (2005) U‐Th zonation dependent alpha‐ejection correction in (U‐Th)/He chronometry. Part I: Theory: Geochimica et Cosmochimica Acta, 69, 3349–3365.
    [Google Scholar]
  49. Hubbard, S.M., Romans, B.W. & Graham, S.A. (2008) Deep‐water foreland basin deposits of the Cerro Toro Formation, Magallanes basin, Chile: architectural elements of a sinuous basin axial channel belt. Sedimentology, 55, 1365–3091.
    [Google Scholar]
  50. Hünicken, M. (1955) Depósitos neocretácios y terciario s del extreme SSW de Santa Cruz. Cuenca carbonífera de Río Turbio. Revista del Instituto Nacional de Investigaciones de las Ciencas Naturales y Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”. Ciencias Geológicas, 4, 1–164.
    [Google Scholar]
  51. Katz, H.R. (1963) Revision of Cretaceous stratigraphy in Patagonian cordillera of Ultima Esperanza, Magallanes Province, Chile. AAPG Bull., 47, 506–524.
    [Google Scholar]
  52. Kay, S.M., Ramos, V.A. & Gorring, M.L. (2002) Geochemistry of Eocene plateau basalts related to ridge collision in southern Patagonia. XV Congreso Geológico Argentino, 3, 60–65.
    [Google Scholar]
  53. Ketcham, R.A. (2005) Forward and inverse modeling of low‐temperature thermochronometry data. Rev. Mineral. Geochem., 58, 275–314.
    [Google Scholar]
  54. Ketcham, R.A., Guenthner, W.R. & Reiners, P.W. (2013) Geometric analysis of radiation damage connectivity in zircon and its implications for helium diffusion. Am. Mineral., 98, 350–360.
    [Google Scholar]
  55. Klepeis, K., Betka, P., Clarke, G., Fanning, M., Hervé, F., Rojas, L., Mpodozis, C. & Thomson, S. (2010) Continental underthrusting and obduction during the Cretaceous closure of the Rocas Verdes rift basin, Cordillera Darwin, Patagonian Andes. Tectonics, 29, TC3014.
    [Google Scholar]
  56. Kohn, M.J., Spear, F.S. & Dalziel, I.W.D. (1993) Metamorphic P‐T Paths from Cordillera Darwin, a core complex in Tierra del Fuego, Chile. J. Petrol., 34, 519–542.
    [Google Scholar]
  57. Kraemer, P.E. (1998) Structure of the Patagonian Andes: regional balanced cross section at 50°S, Argentina. Int. Geol. Rev., 40, 896–915.
    [Google Scholar]
  58. Le Roux, J.P., Puratich, J., Mourgues, A., Oyarzún, J.L., Otero, R.A., Torres, T. & Hervé, F. (2010) Estuary deposits in the Río Baguales Formation (Chattian‐Aquitanean), Magallanes Province, Chile. Andean Geology, 37, 329–344.
    [Google Scholar]
  59. Lovera, O.M., Richter, F.M. & Harrison, T.M. (1989) The 40Ar/39Ar geothermometry for slowly cooled samples having a distribution of diffusion domain sizes. J. Geophys. Res., 94, 17917–17935.
    [Google Scholar]
  60. Lovera, O.M., Grove, M., Kimbrough, D.L. & Abbott, P.L. (1999) A method for evaluating basement exhumation histories from closure age distributions of detrital minerals. J. Geophys. Res., 104, 29,419‐29,438.
    [Google Scholar]
  61. Ludwig, K.R. (2008) Isoplot 3.6: Berkeley Geochronology Center, Special Publication, 4, 77.
  62. Macellari, C.E., Barrio, C.A. & Manassero, M.J. (1989) Upper Cretaceous to Paleocene depositional sequences and sandstone petrography of south‐western Patagonia (Argentina and Chile). J. S. Am. Earth Sci., 2, 223–239.
    [Google Scholar]
  63. Malumián, N. & Caramés, A. (1997) Upper Campanian‐Paleogene from the Río Turbio coal measures in southern Argentina: micropaleontology and the Paleocene/Eocene boundary. J. S. Am. Earth Sci., 10, 189–201.
    [Google Scholar]
  64. Malumián, N. & Náñez, C. (1988) El género Transversigerina y la edad de la transgression Patagoniana. 6° Congreso Nacional de Geología Económica Actas, 1, 285–290.
  65. Malumián, N., Panza, J.L., Parisi, C., Nanez, C., Caramés, A. & Torre, A. (2000) Hoja Geológica 5172‐III, Yacimiento Río Turbio (1:250,000). Servicio Geologico Minero Argentino, Boletin, 247, 180, Buenos Aires.
    [Google Scholar]
  66. Mcdougall, I. & Harrison, T.M. (1999) Geochronology and Thermochronology by the 40Ar/39Ar Method, 2nd edn. Oxford University Press, Oxford.
    [Google Scholar]
  67. McAtamney, J., Klepeis, K., Mehrtens, C., Thomson, S.N., Betka, P., Rojas, L. & Snyder, S. (2011) Along‐strike variability of back‐arc basin collapse and the initiation of sedimentation in the Magallanes foreland basin, southernmost Andes (53–54.5°S). Tectonics, 30, 1–26.
    [Google Scholar]
  68. Natland, M.L., Gonzalez, P.E., Canon, A. & Ernst, M. (1974) A system of stages for correlation of Magallanes basin sediments. Am. Assoc. Pet. Geol. Mem., 139, 126.
    [Google Scholar]
  69. Nullo, F.E., Proserpio, C.A. & Blasco de Nullo, G. (1981) El Cretacico de la Cuenca Austral entre el Lago San Martin y RioTurbio. In: Cuencas Sedimentarias del durasico y Cretacico de America del Sur, 1 (Ed. by W.Volkeimer & E.A.Musacchio ), pp. 181–220. Comité Sudamericano del Jurásico y Cretácico, Buenos Aires.
    [Google Scholar]
  70. Nullo, F.E., Haller, M.J., Panza, J.L., Marin, G. & Pardo, M.I. (1993) Basaltos alcalinos eocenos y miocenos de algunas localidades de la Patagonia (Chubut y Santa Cruz). Revista Asociación Geológica Argentina, 48, 23–49.
    [Google Scholar]
  71. Otero, R.A., Torres, T., le Roux, J.P., Hervé, F., Fanning., C.M., Yury‐Yáñez, R.E. & Rubilar‐Rogers, D. (2012) A Late Eocene age proposal for the Loreto Formation (Brunswick Peninsula, southernmost Chile), based on fossil cartilaginous fishes, paleobotany and radiometric evidence. Andean Geology, 39, 180–200.
    [Google Scholar]
  72. Pankhurst, R.J., Riley, T.R., Fanning, C.M. & Kelley, S.P. (2000) Episodic silicic volcanism in Patagonia and Antarctic Peninsula: chronology of magmatism associated with the break‐up of Gondwana. J. Petrol., 41, 605–625.
    [Google Scholar]
  73. Pankhurst, R.J., Rapela, C.W., Loske, W.P., Fanning, C.M. & Márquez, M. (2003) Chronological study of the pre‐Permian basement rocks of southern Patagonia. J. S. Am. Earth Sci., 16, 27–44.
    [Google Scholar]
  74. Pankhurst, R.J., Rapela, C.W., Fanning, C.M. & Márquez, M. (2006) Gondwanide continental collision and the origin of Patagonia. Earth‐Sci. Rev., 76, 235–257.
    [Google Scholar]
  75. Pearson, N.J., Mángano, M.G., Buatois, L.A., Casadío, S. & Raising, R.M. (2012) Ichnology, sedimentology, and sequence stratigraphy of outer‐estuarine and coastal‐plain deposits: Implications for the distinction between allogenic and autogenic expressions of the Glossifungites Ichnofacies. Palaeogeogr. Palaeoclimatol. Palaeoecol., 333, 192–217.
    [Google Scholar]
  76. Press, S.J. (1989) Bayesian Statistics: Principles, Models, and Applications. John Wiley and Sons, New York.
    [Google Scholar]
  77. Rahl, J.M., Reiners, P.W., Campbell, I.H., Nicolescu, S. & Allen, C.M. (2003) Combined single‐grain (U‐Th)/He and U‐Pb dating of detrital zircons from the Navajo Sandstone, Utah. Geology, 31, 761–764.
    [Google Scholar]
  78. Ramírez de Arellano, C., Putlitz, B., Müntener, O. & Ovtcharova, M. (2012) High precision U/Pb zircon dating of the Chaltén Plutonic Complex (Cerro Fitz Roy, Patagonia) and its relationship to arc migration in the southernmost Andes. Tectonics, 31. doi:10.1029/2011TC003048.
    [Google Scholar]
  79. Ramos, V.A. & Kay, S.M. (2002) Southern Patagonian plateau basalts and deformation: backarc testimony to ridge collisions. Tectonophysics, 205, 261–282.
    [Google Scholar]
  80. Reiners, P.W. & Brandon, M.T. (2006) Using thermochronology to understand orogenic erosion, Annu. Rev. Earth Planet. Sci., 34, 419–466.
    [Google Scholar]
  81. Reiners, P.W. & Nicolescu, S. (2006) Measurement of parent nuclides for (U‐Th)/He chronometry by solution sector ICP‐MS, ARHDL Report 1, http://www.geo.arizona.edu/~reiners/arhdl/arhdl.htm
  82. Reiners, P.W., Spell, T.L., Nicolescu, S. & Zanetti, K.A. (2004) Zircon (U‐Th)/He thermochronometry: he diffusion and comparisons with 40Ar/39Ar dating. Geochim. Cosmochim. Acta, 68, 1857–1887.
    [Google Scholar]
  83. Reiners, P.W., Campbell, I.H., Nicolescu, S., Allen, C.A., Hourigan, J.K., Garver, J.I., Mattinson, J.M. & Cowan, D.S. (2005) (U‐Th)/(He‐Pb) “double‐dating” of detrital zircons. Am. J. Sci., 305, 259–311.
    [Google Scholar]
  84. Riccardi, A.C. & Rolleri, E.O. (1980) Cordillera Patagónica Austral. Actas Segundo Simposio de Geología Regional Argentina, 2, 1173–1306.
    [Google Scholar]
  85. Romans, B.W., Fildani, A., Graham, S.A., Hubbard, S.M. & Covault, J.A. (2010) Importance of predecessor basin history on sedimentary fill of a retroarc foreland basin: provenance analysis of the Cretaceous Magallanes basin, Chile (50°52'S). Basin Res., 22, 640–658.
    [Google Scholar]
  86. Romans, B.W., Hubbard, S.M. & Graham, S.A. (2009) Stratigraphic evolution of an outcropping continental slope system, Tres Pasos Formation at Cerro Divisadero, Chile. Sedimentology, 56, 737–764.
    [Google Scholar]
  87. Romans, B.W., Fildani, A., Hubbard, S.M., Covault, J.A., Fosdick, J.C. & Graham, S.A. (2011) Evolution of deep‐water stratigraphic architecture, Magallanes basin, Chile. Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2010.05.002.
    [Google Scholar]
  88. Russo, A., Flores, M.A. & di Benedetto, H. (1980) Patagonia Austral Extraandina. Segundo Simposio de Geología Regional Argentina Actas, 2, 1431–1462.
    [Google Scholar]
  89. Saylor, J.E., Stockli, D.F., Horton, B.K., Nie, J. & Mora, A. (2012) Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: implications for the tectonic history of the eastern Cordillera, Colombia. Geol. Soc. Am. Bull., 124, 762–779.
    [Google Scholar]
  90. Schmitt, J.G. & Steidtmann, J.R. (1990) Interior ramp‐supported uplifts: implications for sediment provenance in foreland basins. Geol. Soc. Am. Bull., 102, 494–501.
    [Google Scholar]
  91. Schwartz, T., Malkowski, M. & Graham, S.A. (2012) Evaluation of the Close‐Out of Deep‐Marine Deposition in the Magallanes/Austral Basin, Patagonian Chile and Argentina. AAPG Search and Discovery Article #90142.
  92. Scott, K.M. (1966) Sedimentology and dispersal patterns of a Cretaceous flysch sequence, Patagonian Andes, southern Chile. Am. Assoc. Pet. Geol. Bull., 50, 72–107.
    [Google Scholar]
  93. Shuster, D.L., Flowers, R.M. & Farley, K.A. (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett., 249, 148–161.
    [Google Scholar]
  94. Skarmeta, J.J. & Castelli, J.C. (1997) Syntectonic intrusion of the Torres del Paine granite, Patagonian Andes. Chile . Rev. Geol. Chile, 24, 55–74.
    [Google Scholar]
  95. Steidtmann, J.R. & Schmitt, J.G. (1988) Provenances and dispersal of tectogenic sediments in thin‐skinned, thrusted terrains. In: New Perspectives in Basin Analysis (Ed. by K.Kleinspehn , C.Paola ), pp. 353–366. Springer, Berlin.
    [Google Scholar]
  96. Suttner, L.J. (1974) Sedimentary petrographic provinces – An evaluation. SEPM Spec. Publ., 20, 75–84.
    [Google Scholar]
  97. Thomson, S.N., Hervé, F. & Stockhert, B. (2001) The Mesozoic‐Cenozoic denudation history of the Patagonian Andes (southern Chile) and its correlation to different subduction processes. Tectonics, 20, 693–711.
    [Google Scholar]
  98. Thomson, S.N., Brandon, M.T., Reiners, P.W., Tomkin, J.H., Vásquez, C. & Wilson, N.J. (2010) Glaciation as a destructive and constructive control on mountain building. Nature, 467, 313–317.
    [Google Scholar]
  99. Waschbusch, P.J. & Royden, L.H. (1992) Spatial and temporal evolution of foredeep basins: lateral strength variations and inelastic yielding in continental lithosphere. Basin Res., 4, 179–195.
    [Google Scholar]
  100. Wilson, T.J. (1983) Stratigraphic and structural evolution of the Ultima Esperanza foreland fold‐thrust belt, Patagonian Andes, Southern Chile [Ph.D. thesis]. Columbia University, New York.
  101. Wilson, T.J. (1991) Transition from back‐arc to foreland basin development in southernmost Andes: stratigraphic record from the Ultima Esperanza District, Chile. Geol. Soc. Am. Bull., 103, 98–111.
    [Google Scholar]
  102. Winn, R.D., Jr. & Dott, R.H., Jr. (1979) Deep‐water fan‐channel conglomerates of late Cretaceous age, southern Chile. Sedimentology, 26, 203–228.
    [Google Scholar]
  103. Wolf, R.A., Farley, K.A. & Silver, L.T. (1996) Helium diffusion and low‐temperature thermochronometry of apatite. Geochim. Cosmochim. Acta, 60, 4231–4240.
    [Google Scholar]
  104. Yrigoyen, M. (1969) Problemas estratigráficos del Terciano de Argentina. Ameghiniana, 6, 315–329.
    [Google Scholar]
  105. Zahid, K.M. & Barbeau, D.L. (2010) Provenance of eastern magallanes foreland basin sediments: heavy mineral analysis reveals paleogene tectonic unroofing of the fuegian Andes Hinterland. Sed. Geol., 229, 64–74.
    [Google Scholar]
  106. Zeitler, P.K., Herczeg, A.L., McDougall, I. & Honda, M. (1987) U‐Th‐He dating of apatite; a potential thermochronometer. Geochim. Cosmochim. Acta, 51, 2865–2868.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12088
Loading
/content/journals/10.1111/bre.12088
Loading

Data & Media loading...

Supplements

Sample location information for detrital zircon thermochronology samples. Detrital zircon U–Pb geochronologic analyses by LA‐ICP‐MS analysis. The * indicates radiogenic Pb (corrected for common Pb). All errors are reported at the 1σ level. Combined zircon U–Pb and He data from subset of selected detrital zircons. is the alpha‐ejection correction after Farley (2002). Samples in italics indicate discordant grains that are not included in probability distribution calculations. Thermal modelling input parameters for calculating forward modelled He dates. Parameters used for decompacted sedimentation and erosion rates.

Tera‐Wasserburg Concordia diagrams for zircon U–Pb data. All plots were made with Isoplot (Ludwig, 2008).

PDF

Cumulative probability distributions for modelled zircon He dates calculated from best‐fit thermal histories. Best‐fit distributions are shown for thermal models that pass the Kolmogorov–Smirnoff statistical test (K–S) with probability values >0.68 and >0.95 compared to measured cumulative distribution of He dates (black line). Top: Maastrichtian Dorotea Formation (samples 09‐208 and 09‐226). Bottom: Miocene Santa Cruz Formation (for > 65 Ma grains from samples 09‐235 and 09‐207). See text for details.

PDF

 

WORD
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error