1887
Volume 29, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

This article focuses on the reinterpretation of well, seismic reflection, magnetic, gravimetric, surface wave and geological surface data, together with the acquisition of seismic noise data to study the Lower Tagus Cenozoic Basin tectono‐sedimentary evolution. For the first time, the structure of the base of the basin in its distal and intermediate sectors is unravelled, which was previously only known in the areas covered by seismic reflection data (distal and small part of intermediate sectors). A complex geometry was found, with three subbasins delimited by NNE‐SSW faults and separated by WNW‐ESE to NW‐SE oriented horsts. In the area covered by seismic reflection data, four horizons were studied: top of the Upper Miocene, Lower to Middle Miocene top, the top of the Palaeogene and the base of Cenozoic. Seismic data show that the major filling of the basin occurred during Upper Miocene. The fault pattern affecting Neogene and Palaeogene units derived here points to that of a polyphasic basin. In the Palaeogene, the Vila Franca de Xira (VFX) and a NNE‐SSW trending previously unknown structure (ABC fault zone) probably acted as the major strike‐slip fault zones of the releasing bend of a pull‐apart basin, which produced a WNW‐ESE to NW‐SE fault system with transtensional kinematic. During the Neogene, as the stress regime rotated anticlockwise to the present NW‐SE to WNW‐ESE orientation, the VFX and Azambuja fault zones acted as the major transpressive fault zones and Mesozoic rocks overthrusted Miocene sediments. The reactivation of WNW‐ESE to NW‐SE fault systems with a dextral strike‐slip component generated a series of horsts and grabens and the partitioning of the basin into several subbasins. Therefore, we propose a polyphasic model for the area, with the formation of an early pull‐apart basin during the Palaeogene caused by an Iberia–Eurasia plates collision that later evolved into an incipient foreland basin along the Neogene due to a NW‐SE to WNE‐ESE oriented Iberia–Nubia convergence. This convergence is producing uplift in the area since the Quaternary except for the Tagus estuary subbasin around the VFX fault, where subsidence is observed. This may be due to the locking or the development of a larger component of strike‐slip movement of the NNE‐SSW to N‐S thrust fault system with the exception of the VFX fault, which is more favourably oriented to the maximum compressive stress.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12193
2016-04-27
2020-07-15
Loading full text...

Full text loading...

References

  1. Aksu, A.E., Calon, T.J. & Hiscott, R.N. (2000) Anatomy of the North Anatolian fault zone in the Marmara Sea, Western Turkey: extensional basins above a continental transform. GSA Today, 10(6), 3–7.
    [Google Scholar]
  2. Allen, P.A. & Allen, J.R. (2005) Basin Analysis – Principals and Applications, 3rd edn. Wiley‐Blackwell, Oxford, 562 pp.
    [Google Scholar]
  3. Andeweg, B. (2002) Cenozoic tectonic evolution of the Iberian Peninsula: effects and causes of changing stress fields. PhD Thesis, University of Amsterdam, Amsterdam, The Netherlands, 178 pp.
  4. Atmaoui, N., Kukowski, N., Stockhert, B. & Konig, D. (2006) Initiation and development of pull‐apart basins with Riedel shear mechanism: insights from scaled clay experiments. Int. J. Earth Sci., 95, 225–238.
    [Google Scholar]
  5. Atmoui, N. (2005) Development of pull‐apart basins and associated structures by the Riedel shear mechanism: insight from scaled clay analogue models. PhD Thesis, University of Bochum, Bochum, Germany, 94 pp.
  6. Aydin, A. & Nur, A. (1982) Evolution of pull‐apart basins and their scale independence. Tectonics, 1, 91–105.
    [Google Scholar]
  7. Besana‐Ostman, G.M., Vilanova, S.P., Nemser, E.S., Falcão‐Flor, A., Heleno, S., Ferreira, H. & Fonseca, J.D. (2012) Large holocene earthquakes in the Lower Tagus Valley Fault Zone, Central Portugal. Seismol. Res. Lett., 83, 67–76.
    [Google Scholar]
  8. Borges, J.F., Fitas, A.J., Bezzeghoud, M. & Teves‐Costa, P. (2001) Seismotectonics of Portugal and its adjacent Atlantic area. Tectonophysics, 337, 373–387.
    [Google Scholar]
  9. Borges, J.F., Torres, R.J.G., Silva, H.G., Caldeira, B., Bezzeghoud, M. & Carvalho, J. (2016) Inversion of ambient seismic noise HVSR to evaluate the velocity and structural model of the Lower Tagus Basin, Portugal. J Seismol. doi: 10.1007/s10950‐016‐9564‐x
    [Google Scholar]
  10. Bott, M.H.P. & Hinze, W.J. (1995) Potential field methods. In: Continental Rifts: Evolution, Structure, Tectonics (Ed. by K.H.Olson ), pp. 93–99. Elsevier, Amsterdam.
    [Google Scholar]
  11. ten Brink, U.S. & Ben‐Avraham, Z. (1989) The anatomy of a Pull‐Apart basin: seismic reflection observations of the Dead Sea Basin. Tectonics, 8(2), 333–350.
    [Google Scholar]
  12. Cabral, J. (1995) Neotectónica em Portugal Continental, 1rst edn. Memórias do Instituto Geológico e Mineiro, Lisboa, 31 pp.
    [Google Scholar]
  13. Cabral, J. (2012) Neotectonics of mainland Portugal: state of the art and future perspectives. J. Iber. Geol., 38(1), 71–84.
    [Google Scholar]
  14. Cabral, J., Moniz, C., Ribeiro, P., Terrinha, P. & Matias, L. (2003) Analysis of seismic reflection data as a tool for the seismotectonic assessment of a low activity intraplate basin‐ the Lower Tagus Valley (Portugal). J. Seismolog., 7, 431–447.
    [Google Scholar]
  15. Cabral, J., Ribeiro, P., Figueiredo, P., Pimentel, N. & Martins, A. (2004) The Azambuja fault: An active structure located in an intraplate basin with significant seismicity (Lower Tagus Valley, Portugal). J. Seismol., 8, 347–362.
    [Google Scholar]
  16. Cabral, J., Moniz, C., Batló, J., Figueiredo, P., Carvalho, J., Matias, L., Teves‐Costa, P., Dias, R. & Simão, N. (2013) The 1909 Benavente (Portugal) earthquake: search for the source. Nat. Hazards, 69, 1211–1227.
    [Google Scholar]
  17. Carvalho, A.M.G., Ribeiro, A. & Cabral, J. (1983–1985) Evolução paleogeográfica da bacia cenozóica do Tejo‐Sado. Bol. Soc. Geol. Portugal, 24, 209–212.
    [Google Scholar]
  18. Carvalho, J., Matias, H., Torres, L., Pereira, R., Manupella, G. & Mendes‐Victor, L. (2005) Reinterpretation of seismic and well data from the Lusitanian Basin, Portugal – implications to its structural and sedimentary evolution. Mar. Pet. Geol., 22(3), 427–453.
    [Google Scholar]
  19. Carvalho, J., Cabral, J., Gonçalves, R., Torres, L. & Mendes‐Victor, L. (2006) Geophysical methods applied to fault characterization and earthquake potential assessment in the Lower Tagus Valley, Portugal. Tectonophysics, 418, 277–297.
    [Google Scholar]
  20. Carvalho, J., Rabeh, T., Carrilho, F., Cabral, J. & Miranda, M. (2008) Geophysical characterization of the Ota‐Vila Franca de Xira‐Lisbon‐Sesimbra fault zone, Portugal. Geophys. J. Int., 174, 567–584.
    [Google Scholar]
  21. Carvalho, J., Rabeh, T., Bielik, M., Szlaiova, E., Torres, L., Silva, M., Carrilho, F., Matias, L. & Miranda, J.M. (2011a) Geophysical study of the Ota‐V.F. Xira‐Lisboa‐Sesimbra fault zone and of the LTCB. J. Geophys. Eng., 8, 395–411.
    [Google Scholar]
  22. Carvalho, J., Sousa, P., Matos, J. & Pinto, C. (2011b) Ore prospecting in the Iberian Pyrite Belt using seismic and potential‐field data. J. Geophys. Eng., 8(2), 142–153.
    [Google Scholar]
  23. Carvalho, J., Alves, D., Leote, J. & Ghose, R. (2013) A P‐wave seismic reflection study of an intraplate structure: the Azambuja Fault, Portugal. Second International Conference on Engineering Geophysics, 24–27 November, Al Ain, United Arab Emirates, EG22, 5 pp.
  24. Carvalho, J., Rabeh, T., Dias, R., Dias, R., Pinto, C.C., Oliveira, T., Cunha, T. & Borges, J. (2014) Tectonic and Neotectonic implications of a new basement map of the Lower Tagus Valley, Portugal. Tectonophysics, 617, 88–100.
    [Google Scholar]
  25. Cobbold, P.R., Davy, P., Gapais, D., Rossello, E.A., Sadybakasov, E., Thomas, J.C., Tondji Biyo, J.J. & De Urreiztieta, M. (1993) Sedimentary basins and crustal thickness. Sed. Geol., 86, 77–89.
    [Google Scholar]
  26. Crowell, J.C. (1982) The Violin Breccia, Ridge Basin, southern California. In: Geologic history of Ridge Basin, Southern California, 1st edn (Ed. by J.C.Crowell , M.H.Link ), pp. 89–98. University of California, Santa Barbara, CA.
    [Google Scholar]
  27. Crowell, J.C. (2003) Tectonics of Ridge Basin region, Southern California. In: Geological Society of America Special Papers 367, Evolution of Ridge Basin: An Interplay of Sedimentation and Tectonics (Ed. by J.C.Crowell ), pp. 157–203. The Geological Society of America, Boulder, CO, USA.
    [Google Scholar]
  28. Cunha, P.P., Pais, J. & Legoinha, P. (2009) Evolução geológica de Portugal continental durante o Cenozóico‐sedimentação aluvial e marinha numa margem continental passiva (Ibéria ocidental). 68 Simposio sobre el Margen Ibérico Atlántico MIA09, pp. 11–20.
  29. D'Amato, D., Pace, B., Cabral, J. & Figueiredo, P.M. (2009) The Vale de Santarém Neogene trough in the seismotectonics framework of the Lower Tagus Valley (Portugal). Trabajos de Geología, 29, Universidad de Oviedo, 200–205.
  30. De Vicente, G., Cloetingh, S., van Wees, J.D. & Cunha, P.P. (2011) Tectonic classification of Cenozoic Iberian foreland basins. Tectonophysics, 502, 38–61.
    [Google Scholar]
  31. Dias, R.P., Barbosa, B., Pais, J. & Pimentel, N. (2009) Téctonica Alpina. In: Carta Geológica de Portugal na escala 1:50 000. Notícia Explicativa da Folha 32‐C Avis, Unid. Geol. Cart. Geol., Lab. Nac. Energia e Geologia, pp. 29–32.
    [Google Scholar]
  32. Dias, R.P., Pais, J. & Ressurreição, R. (2010) Alpine reactivation of variscan structures between Montargil and Vila da Mata in the oriental edge of the of the Lower Tagus Basin. e‐Terra, 11 (4), 1–4.
    [Google Scholar]
  33. Dobrin, M.B. & Savitt, C.H. (1988) Introduction to Geophysical Prospecting, 4th edn. Mc Graw‐Hill, Singapore.
    [Google Scholar]
  34. Fonseca, J. (1989) Seismicity and regional tectonics of the Estremadura, SW Portugal. PhD Thesis, University of Durham, Durham, UK, 153 pp.
  35. Fonseca, J.F.B.D. & Long, R.E.(1991) Seismotectonics of SW Iberia: a distributed Plate Margin? In: Seismicity, Seismotectonics and Seismic Risk of the Ibero‐Maghrebian Region (Ed. by J.Mezcua & A.Udias ), pp. 213–225. Memoir no. 8 of the Instituto Geografico Nacional, Madrid.
    [Google Scholar]
  36. GM‐SYS
    GM‐SYS (1995) Gravity and Magnetic Modelling Version 3.6. Northwest Geophysical Association, Inc (NGA), Corvallis, OR, USA.
    [Google Scholar]
  37. GPEP (Gabinete para a Pesquisa e Exploração de Petróleos, now DPEP)
    GPEP (Gabinete para a Pesquisa e Exploração de Petróleos, now DPEP) (1986) Petroleum Potential of Portugal. Ministry of Environment, Planning and Energy, Lisbon, Portugal, 62 pp.
    [Google Scholar]
  38. Gutscher, M.‐A., Malod, J., Rehault, J.‐P., Contrucci, I., Klingelhoefer, F., Spakman, W. & Mendes‐Victor, L. (2002) Evidence for active subduction beneath Gibraltar. Geology, 30(12), 1071–1074.
    [Google Scholar]
  39. Hale, D. (1984) Dip‐moveout by Fourier transform. Geophysics, 49, 741–757.
    [Google Scholar]
  40. Harbert, W. (1991) Late Neogene relative motion of the Pacific and North America Plates. Tectonics, 10, 1–15.
    [Google Scholar]
  41. Harding, T.J. (1985) Seismic characteristics and identification of negative flower structures, positive flower structures, and positive structural inversion. Am. Assoc. Pet. Geol. Bull., 69, 582–600.
    [Google Scholar]
  42. Herak, M. (2008) ModelHVSR – a Matlab® tool to model horizontal‐to‐vertical spectral ratio of ambient noise. Comput. Geosci., 34, 1514–1526.
    [Google Scholar]
  43. Kanbur, Z., Alptekin, O., Utkucu, M. & Kanbur, S. (2007) Imaging the basin and fault geometry from the multichannel seismic reflection data in the Tekirda˘g Basin, Marmara Sea, Turkey. Geophys. J. Int., 169, 659–666.
    [Google Scholar]
  44. LNEG
    LNEG (2010) Geological Map of Portugal Scale 1: 1 000 000. Laboratório Nacional de Energia e Geologia, Lisboa, Portugal.
    [Google Scholar]
  45. Lowrie, W. (2007) Fundamentals of Geophysics., 2nd edn Cambridge University Press, New York, USA, 392 pp.
    [Google Scholar]
  46. Martins, H.C.B., Sant'ovaia, H., Eusébio, N. & Noronha, F. (2004) Magnetic susceptibility and Zircon tipology of a magnetite and ilmenite type‐granites (Northern Portugal), Abstracts of GoldSchmidt 2004, Copenhagen, A658.
  47. Matias, L. (1996) A sismologia experimental na modelação da estrutura da crusta em Portugal continental. PhD thesis, University of Lisbon, Lisboa, Portugal, 398 pp.
  48. May, S.R., Ehman, D.K., Gray, G.G. & Crowell, J.C. (1993) A new angle on the tectonic evolution of the Ridge Basin, a “strike‐slip” basin in southern California. Geol. Soc. Am. Bull., 105, 1357–1372.
    [Google Scholar]
  49. Moniz, C. (2010) Contribution to the knowledge of the Pinhal Novo‐Alcochete fault in the context of the Lower Tagus Valley Neotectonics. MsC thesis (in Portuguese), University of Lisbon, Lisboa, Portugal, 128 pp.
  50. Montenat, C., Guery, F. & Jamet, M. (1988) Mesozoic evolution of the Lusitanian Basin: comparison with the adjacent margin. In: Proceedings of the Ocean Drilling Program, Scientific Results (Ed. by G.Boillot & E.L.Winterer ), 103, pp. 757–775, Ocean Drilling Program, Washington, College Station, TX.
    [Google Scholar]
  51. Nakamura, Y. (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q Rep. RTRI, 30(1), 25–33.
    [Google Scholar]
  52. Okay, A., Kaşlilar‐Özcan, A., Imren, C., Boztepe‐Güney, A., Demirbağ, E. & Kuşçu, İ. (2000) Active faults and evolving strike‐slip basins in the Marmara Sea, northwest Turkey: a multichannel seismic reflection study. Tectonophysics, 321, 189–218.
    [Google Scholar]
  53. Oliveira, T. (coord.) (1992) Geological Map of Portugal, 1: 500. 000 Scale. Serviços Geológicos dePortugal.
    [Google Scholar]
  54. Pais, J., Silva Lopes, C., Legoinha, P., Ramalho, E., Ferreira, J., Ribeiro, I., Amado, A.R., Sousa, L., Torres, L., Baptista, R. & Pena Dos Reis, R. (2003) Sondagem de Belverde (Bacia do Baixo Tejo, península de Setúbal, Portugal) (abstract in English). Ciências da Terra (UNL), Lisboa, Spec. n° V, A99‐A102.
  55. Pais, J., Cunha, P.P., Pereira, D., Legoinha, P., Dias, R., Moura, D., Silveira, A.B., Kullberg, J.C. & González‐Delgado, J.A. (2012) The Paleogene and Neogene of Western Iberia (Portugal): A Cenozoic Record in the European Atlantic Domain, 1st edn. Springer, Berlin Heidelberg, Germany, 156 pp.
    [Google Scholar]
  56. Pais, J., Cunha, P., Legoinha, P., Dias, R.P., Pereira, D. & Ramos, A. (2013) Cenozóico das Bacias do Douro (sector ocidental), Mondego, Baixo Tejo e Alvalade. In: Geologia de Portugal (Vol. II Geologia Meso‐cenozoica de Portugal), 1st edn (Ed. by R.Dias , A.Araújo , P.Terrinha & J.C.Kullberg ), pp. 461–532. Escolar Editora, Lisboa, Portugal.
    [Google Scholar]
  57. Pinto, C.C. (2011) Identification of potentially seismogenic structures in the Lower Tagus Valley region. MsC thesis, University of Évora, Évora. http://repositorio.lneg.pt/handle/10400.9/1398.
  58. Rasmussen, E.S., Lomholt, S., Anderson, C. & Vejbaek, O.V. (1998) Aspects of the structural evolution of the Lusitanian Basin in Portugal and the shelf and slope area offshore Portugal. Tectonophysics, 300, 199–225.
    [Google Scholar]
  59. Reches, Z. (1987) Mechanical aspect of pull‐apart basins and push‐up swells with applications of the Dead Sea transform. Tectonophysics, 141, 75–88.
    [Google Scholar]
  60. Ribeiro, A. (2002) Soft Plate and Impact Tectonics, 1st edn. Springer, New York, NY, 324 pp.
    [Google Scholar]
  61. Ribeiro, A., Kullberg, M.C., Kullberg, J.C., Manupella, G. & Phipps, S. (1990) A review of Alpine tectonics in Portugal: foreland detachment in basement and cover rocks. Tectonophysics, 184, 357–366.
    [Google Scholar]
  62. Ribeiro, A., Cabral, J., Baptista, R. & Matias, L. (1996) Stress pattern in Portugal mainland and the adjacent Atlantic region, West Iberia. Tectonics, 15, 641–659.
    [Google Scholar]
  63. Ribeiro, I., Ramalho, E., Torres, L. & Pais, J. (2003) Sondagem de Belverde (Cenozóico, península de Setúbal, Portugal) Diagrafias. Ciências da Terra (UNL), 15, 219–230.
    [Google Scholar]
  64. Ribeiro, A., Munhá, J., Dias, R., Mateus, A., Pereira, E., Ribeiro, L., Fonseca, P., Araújo, A., Oliveira, T., Romão, J., Chaminé, H., Coke, C. & Pedro, J. (2007) Geodynamic evolution of the SW Europe Variscides. Tectonics, 26, TC6009.
    [Google Scholar]
  65. Rocha, R.B., Marques, B. & Kullberg, J.C.et al. (1996) The 1st and 2nd rifting phases of the Lusitanian Basin: stratigraphy, sequence analysis and sedimentary evolution. Final Report, Proj. MILUPOBAS, Contract No. JOU‐CT94‐0348, UNLIS, Lisbon, 80 pp.
  66. Rosenbaum, G., Lister, G.S. & Duboz, C. (2002) Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics, 359, 117–129.
    [Google Scholar]
  67. Sant'Ovaia, C.H. & Noronha, F. (2005) Classification of Portuguese Hercynian granites based on petrophysical characteristics. Cadernos Lab. Xeolóxico de Laxe, 30, Coruña, 75–86.
  68. Scholz, C.A., Rosendal, B.R. & Scott, D.L. (1990) Development of coarse‐grained facies in lacustrine rift basins: examples from East Africa. Geology, 18, 140–144.
    [Google Scholar]
  69. Simões, M. (1998) Contribuição para o Conhecimento Hidrogeológico do Cenozóico na Bacia do Baixo Tejo. PhD thesis, Universidade Nova de Lisboa, Monte de Caparica (Lisboa), Portugal, 310 pp.
  70. Smit, J., Brun, J.‐P., Cloetingh, S. & Ben‐Avraham, Z. (2008) Pull‐apart basin formation and development in narrow transform zones with application to the Dead Sea Basin. Tectonics, 27, TC6018.
    [Google Scholar]
  71. Talwani, M. & Ewing, M. (1960) Rapid computation of gravitational attraction of three‐dimensional bodies of arbitrary shape. Geophysics, 25, 203–225.
    [Google Scholar]
  72. Tapponier, P. (1977) Evolution tectonique du systéme alpin en Méditerrané: poinçonnement et écrasement rigide‐plastique. Bull. Soc. Geol. France, 29, 437–460.
    [Google Scholar]
  73. Telford, W.M., Geldart, L.P. & Sheriff, R.E. (1990) Applied Geophysics, 2nd edn. Cambridge University Press, Cambridge, UK, 792 pp.
    [Google Scholar]
  74. Terrinha, P., L. Matias, L., Vicente, J., Duarte, J., Luís, J., Pinheiro, L., Lourenço, N., Diez, S., Rosas, F., Magalhães, V., Valadares, V., Zitellini, N., Roque, C., Mendes Víctor, L. & Matespro Team (2009) Morphotectonics and strain partitioning at the Iberia–Africa plate boundary from multibeam and seismic reflection data. Mar. Geol., 267 (3–4), 156–174.
    [Google Scholar]
  75. Teves‐Costa, P., Matias, L., Oliveira, C.S. & Mendes‐Victor, L.A. (1996) Shallow crustal models in the Lisbon area from explosion data using body and surface wave analysis. Tectonophysics, 258, 171–193.
    [Google Scholar]
  76. Tsoulis, D. & Stary, B. (2003) First results towards an isostatically compensated reference earth model. In: A Window of the Future of Geodesy, 1st edn (Ed. by F.Sansò ), pp. 354–360. Springer, Berlin Heidelberg, Germany.
    [Google Scholar]
  77. Vail, P.R., Jr Mitchum, R.M., Todd, R.G., Widmier, J.M., Thompson, IIIS., Sangree, J.B., Bubb, J.N. & Hatlelid, W.G. (1977) Seismic stratigraphy and global changes of sea level. In: Seismic Stratigraphy –Applications to Hydrocarbon Exploration, 1st edn (Ed. C.E.Payton ), pp. 49–212, AAPG Memoir 26, Tulsa, OK, USA.
    [Google Scholar]
  78. Vilanova, S.P. & Fonseca, J.F.B.D. (2004) Seismic hazard impact of the Lower Tagus Valley Fault Zone (SW Iberia). J. Seismolog., 8, 331–345.
    [Google Scholar]
  79. Walker, D.J. (1982) Final Report – Seismic Interpretation for Petrogal Concession Areas 45, 46, 47/48. GPEP, Lisbon.
    [Google Scholar]
  80. Webb, S.J., Cawthorn, R.G., Nguuri, T.K. & James, D.E. (2004) Gravity modeling of Bushveld Complex connectivity supported by Southern African Seismic Experiment results. South Afr. J. Geol., 107, 207–218.
    [Google Scholar]
  81. Wilson, R.C.L., Hiscott, R.N., Willis, M.G. & Gradstein, F.M. (1989) The Lusitanian Basin of west central Portugal: mesozoic and tertiary tectonics, stratigraphy and subsidence history. In: Extensional Tectonics and Stratigraphy of the North Atlantic Margins, 1st edn (Ed. A.J.Tankard & H.Balkwill ), pp. 341–361, Amer. Assoc. Petrol. Geol. Memoir, 46, Tulsa, OK, USA.
    [Google Scholar]
  82. Zitellini, N., Gràcia, E., Matias, L., Terrinha, P., Abreu, M.A., Dealteriis, G., Henriet, J.P., Dañobeitia, J.J., Masson, D.G., Mulder, T., Ramella, R., Somoza, L. & Diez, S. (2009) The quest for the Africa‐Eurasia plate boundary west of the Strait of Gibraltar. Earth Planet. Sci. Lett., 280, 13–50.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12193
Loading
/content/journals/10.1111/bre.12193
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error