1887
Volume 29, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

During the Early Triassic the Jameson Land Basin (Central East Greenland) was located around 30° N, in the Northern arid belt, but by the Early Jurassic was positioned at a latitude of approximately 50° N. This study examines the record of this transition through a largely continental succession using clay mineralogy, sedimentology, petrography and heavy mineralogy. The Jameson Land Basin is aligned north–south and is 280 km long and 80 km wide. Following an Early Triassic marine phase the basin was filled by predominantly continental sediments. The Early‐to‐Late Triassic succession comprises coarse alluvial clastics (Pingo Dal Formation) overlain by a succession of fine‐grained evaporite‐rich playa/lacustrine sediments (Gipsdalen Formation), indicative of arid climatic conditions. The overlying buff, dolomitic and then red lacustrine mudstones with subordinate sandstones (Fleming Fjord Formation) record reduced aridity. The uppermost Triassic grades into dark organic‐rich, and in places coaly, mudstones and buff coarse‐grained sandstones of lacustrine origin that belong to the Kap Stewart Group, which spans the Triassic–Jurassic boundary, and appear to record more humid climatic conditions. Clay mineralogy analyses highlight significant variations in the kaolinite/illite ratio, from both mudstone and sandstone samples, through the Triassic and into the earliest Jurassic. Complementary heavy mineral analyses demonstrate that the variations recognised in clay mineralogy and sandstone maturity through the Triassic–Early Jurassic succession are not a product of major provenance change or the effect of significant diagenetic alteration. The observed variations are consistent with sedimentological evidence for a long‐term trend towards more humid conditions through the Late Triassic to Early Jurassic, and the suggestion of a significant pluvial episode in the mid‐Carnian.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12194
2016-04-06
2024-04-26
Loading full text...

Full text loading...

References

  1. Anderson, R.Y. & Dean, W.E. (1988) Lacustrine varve formation through time. Palaeogeogr. Palaeoclimatol. Palaeoecol., 62, 215–235.
    [Google Scholar]
  2. Andrews, S.D. & Hartley, A. (2015) The response of Lake Margin sedimentary systems to the climatically driven lake level fluctuations: middle Devonian, Orcadian Basin, Scotland. Sedimentology, 62, 1693–1716.
    [Google Scholar]
  3. Andrews, S.D. & Trewin, N.H. (2010) Periodicity determination of lacustrine cycles from the Devonian of Northern Scotland. Scott. J. Geol., 46, 143–155.
    [Google Scholar]
  4. Andrews, S.D. & Trewin, N.H. (2014) Palaeoenvironmental significance of lacustrine stromatolite forms from the middle old red sandstone of the Orcadian Basin. Geol. Mag., 151, 414–429.
    [Google Scholar]
  5. Andrews, S.D., Trewin, N.H., Hartley, A.J. & Weedon, G. (2010) Solar variance recorded in lacustrine deposits from the Devonian and Proterozoic of Scotland. J. Geol. Soc., 167, 847–856.
    [Google Scholar]
  6. Andrews, S.D., Kelly, S.R., Braham, W. & Kaye, M. (2014) Climatic and eustatic controls on the development of a late triassic source rock in the Jameson Land Basin, East Greenland. J. Geol. Soc., 171, 609–619.
    [Google Scholar]
  7. Baudon, C., Fabuel‐Perez, I. & Redfern, J. (2009) Structural style and evolution of a late Triassic rift basin in the Central High Atlas, Morocco: controls on sediment deposition. Geol. J., 44, 677–691.
    [Google Scholar]
  8. Bjørlykke, K. & Jahren, J. (2010) Sandstones and sandstone reservoirs. In: Petroleum Geoscience: From Sedimentary Environments to Rock Physics (Ed. by K.Bjørlykke ), pp. 113–140. Springer‐Verlag, Berlin, Heidelberg.
    [Google Scholar]
  9. Blair, T.C. & McPherson, J.G. (1994) Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J. Sediment. Res. A Sediment. Petrol. Process., 64, 450–489.
    [Google Scholar]
  10. Bromley, R. & Asgaard, U. (1979) Triassic freshwater ichnocoenoses from Carlsberg Fjord, East Greenland. Palaeogeogr. Palaeoclimatol. Palaeoecol., 28, 39–80.
    [Google Scholar]
  11. Buchanan, J.W., Hames, W.E., Andresen, A. & Steltenpohl, M.G. (2008) Permian lamprophyres of Liverpool land, East Greenland. Geological Society of America, Annual Meeting, The Geological Society of America, abstracts. Charlotte, North Carolina, 40, 11.
  12. Clemmensen, L.B. (1978a) Alternating aeolian, sabkha and shallow‐lake deposits from middle Triassic Gipsdalen Formation, Scoresby Land, East Greenland. Palaeogeogr. Palaeoclimatol. Palaeoecol., 24, 111–135.
    [Google Scholar]
  13. Clemmensen, L.B. (1978b) Lacustrine facies and stromatolites from middle Triassic of East Greenland. J. Sediment. Petrol., 48, 1111–1127.
    [Google Scholar]
  14. Clemmensen, L.B. (1980a) Triassic rift sedimentation and palaeogeography of Central East Greenland. Grønl. Geol. Unders. Bull., 136, 1–72.
    [Google Scholar]
  15. Clemmensen, L.B. (1980b) Triassic lithostratigraphy of East Greenland between Scoresby Sund and Kejser Franz Josephs Fjord. Grønl. Geol. Unders. Bull., 139, 1–56.
    [Google Scholar]
  16. Clemmensen, L.B., Kent, D.V. & Jenkins, F.A.J. (1998) A late Triassic lake system in East Greenland: facies, depositional cycles and palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 140, 135–159.
    [Google Scholar]
  17. Dal Corso, J., Mietto, P., Newton, R.J., Pancost, R.D., Preto, N., Roghi, G. & Wignall, P.B. (2012) Discovery of a major negative Δ13c spike in the Carnian (Late Triassic) linked to the Eruption of Wrangellia flood basalts. Geology, 40, 79–82.
    [Google Scholar]
  18. Dam, G. (1989) Sedimentological studies of the upper Triassic to lower Jurassic succession in the Jameson Land Basin, Central East Greenland. Grønl. Geol. Unders. Rapp., 145, 75–78.
    [Google Scholar]
  19. Dam, G. & Christiansen, F.G. (1990) Organic geochemistry and source potential of the lacustrine shales of the upper Triassic‐lower Jurassic Kap Stewart Formation, East Greenland. Mar. Pet. Geol., 7, 428–443.
    [Google Scholar]
  20. Dam, G. & Surlyk, F. (1992) Forced regressions in a large wave‐ and storm‐dominated anoxic lake, Rhaetian‐Sinemurian Kap Stewart Formation, East Greenland. Geology, 20, 749–752.
    [Google Scholar]
  21. Dam, G. & Surlyk, F. (1993) Cyclic sedimentation in a large wave‐ and storm‐dominated anoxic lake; Kap Stewart Formation (Rhaetian‐Sinemurian), Jameson Land, East Greenland. In: Sequence Stratigraphy and Facies Associations (Ed. by PosamentierH.W. , SummerhayesC.P. , HaqB.U. & AllenG.P. ) IAS Spec. Publ., 18, 419–448.
    [Google Scholar]
  22. Dam, G. & Surlyk, F. (1998) Stratigraphy of the Neill Klinter Group: a lower‐lower middle Jurassic tidal embayment succession, Jameson Land, East Greenland. Bull. Grønl. Geol. Unders., 175, 1–80.
    [Google Scholar]
  23. Donovan, R.N. & Foster, R.J. (1972) Subaqueous shrinkage cracks from the Caithness flagstone Series (Middle Devonian) of North East Scotland. J. Sediment. Petrol., 42, 309–317.
    [Google Scholar]
  24. Ehrenberg, S. & Nadeau, P. (1989) Formation of diagenetic illite in sandstones of the Garn Formation, Haltenbanken Area, Mid‐Norwegian Continental Shelf. Clay Miner., 24, 233–253.
    [Google Scholar]
  25. Ehrenberg, S., Aagard, P., Wilson, M., Fraser, A. & Duthie, D. (1993) Depth dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf. Clay Miner., 28, 325–352.
    [Google Scholar]
  26. Folk, R.L. (1968) Petrology of Sedimentary Rocks. Hemphill Publishing, Austin, TX.
    [Google Scholar]
  27. Galehouse, J.S. (1971) Point‐counting. In: Procedures in Sedimentary Petrology (Ed. by R.E.Carver ), pp. 385–407. Wiley‐Interscience, New York.
    [Google Scholar]
  28. Gawthorpe, R.L. & Leeder, M.R. (2000) Tectono‐sedimentary evolution of active extensional basins. Basin Res., 12, 195–218.
    [Google Scholar]
  29. Girty, G.H. (1991) A note on the composition of plutoniclastic sand produced in different climatic belts: short note. J. Sediment. Res., 61, 428–433.
    [Google Scholar]
  30. Glenn, C.R. & Kelts, K. (1991) Sedimentary rhythms in lake deposits. In: Cycles and Events in Stratigraphy (Ed. by G.Einsele , W.Richen & A.Seilacher ), 6th edn, pp. 188–221. Springer‐Verlag, Berlin.
    [Google Scholar]
  31. Gustavson, T.C. (1991) Buried vertisols in lacustrine facies of the Pliocene Fort‐Hancock Formation, Hueco Bolson, West Texas and Chihuahua, Mexico. Geol. Soc. Am. Bull., 103, 448–460.
    [Google Scholar]
  32. Haas, J., Budai, T. & Raucsik, B. (2012) Climatic controls on sedimentary environments in the Triassic of the Transdanubian Range (Western Hungary). Palaeogeogr. Palaeoclimatol. Palaeoecol., 353, 31–44.
    [Google Scholar]
  33. Hesselbo, S.P., Robinson, S.A., Surlyk, F. & Piasecki, S. (2002) Terrestrial and marine extinction at the Triassic‐Jurassic boundary synchronized with major carbon‐cycle perturbation: a link to initiation of massive volcanism?Geology, 30, 251–254.
    [Google Scholar]
  34. Hochuli, P.A. & Vigran, J.O. (2010) Climate variations in the Boreal Triassic – inferred from palynological records from the Barents Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol., 290, 20–42.
    [Google Scholar]
  35. Hornung, J. & Aigner, T. (2002) Reservoir architecture in a terminal alluvial plain: an outcrop analogue study (Upper Triassic, Southern Germany) part II: cyclicity, controls and models. J. Pet. Geol, 25, 151–178.
    [Google Scholar]
  36. Hurst, A. & Irwin, H. (1982) Geological modelling of clay diagenesis in sandstones. Clay Miner., 17, 5–22.
    [Google Scholar]
  37. Jenkins, F.A.J., Shubin, N., Amaral, W., Gatesy, S., Schaff, C., Clemmensen, L.B., Downs, W., Davidson, A., Bonde, N. & Osbæck, F. (1994) Late Triassic continental vertebrates and depositional environments of the Fleming Fjord Formation, Jameson Land, East Greenland. Meddelelser Grønl. Geosci., 32, 25.
    [Google Scholar]
  38. Jenkins, F.A.Jr, Shubin, N.H., Gatesy, S.M. & Warren, A. (2008) Gerrothorax pulcherrimus from the Upper Triassic Fleming Fjord Formation of East Greenland and a reassessment of head lifting in temnospondyl feeding. J. Vertebr. Paleontol., 28, 935–950.
    [Google Scholar]
  39. Kelts, K. & Hsü, K.J. (1978) Freshwater carbonate sedimentation. In: Lakes: Chemistry, Geology and Physics (Ed. by A.Lerman ), pp. 295–323. Springer‐Verlang, New York.
    [Google Scholar]
  40. Kent, D.V. & Clemmensen, L.B. (1996) Paleomagnetism and cycle stratigraphy of the Triassic Fleming Fjord and Gipsdalen Formations of East Greenland. Bull. Geol. Soc. Den., 42, 121–136.
    [Google Scholar]
  41. Leleu, S. & Hartley, A.J. (2010) Controls on the stratigraphic development of the Triassic Fundy Basin, Nova Scotia: implications for the tectonostratigraphic evolution of Triassic Atlantic Rift Basins. J. Geol. Soc., 167, 437–454.
    [Google Scholar]
  42. Mack, G.H. & Leeder, M.R. (1999) Climatic and tectonic controls on alluvial‐fan and axial‐fluvial sedimentation in the plio‐pleistocene palomas half graben, southern Rio Grande rift. J. Sediment. Res., 69, 635–652.
    [Google Scholar]
  43. Mange, M.A. & Maurer, H.F.W. (1992) Heavy Minerals in Colour. Chapman and Hall, London.
    [Google Scholar]
  44. Marriott, S.B. & Wright, V.P. (1993) Paleosols as indicators of geomorphic stability in 2 old red sandstone alluvial suites, South Wales. J. Geol. Soc., 150, 1109–1120.
    [Google Scholar]
  45. McElwain, J.C., Popa, M.E., Hesselbo, S.P., Haworth, M. & Surlyk, F. (2007) Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the Triassic/Jurassic boundary in East Greenland. Paleobiology, 33, 547–573.
    [Google Scholar]
  46. McKee, E.D. (1979) Ancient sandstones considered to be aeolian. In: A Study of Glolbal Sand Seas (Ed. by E.D.McKee ), United States Government Printing Office, Washington, DC.
    [Google Scholar]
  47. Millot, G. (1964) Géologie Des Argiles. Masson & Cie, Paris.
    [Google Scholar]
  48. Morton, A. (2012) Value of heavy minerals in sediments and sedimentary rocks for provenance, transport history and stratigraphic correlation. In: Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks (Ed. by P.Sylvester ), pp. 133–165. Mineralogical Association of Canada Short Course Series, Canada.
    [Google Scholar]
  49. Morton, A.C. & Hallsworth, C.R. (1994) Identifying provenance specific‐features of detrital heavy mineral assemblages in sandstones. Sed. Geol., 90, 241–256.
    [Google Scholar]
  50. Mueller, S., Veld, H., Nagy, J. & Kürschner, W.M. (2014) Depositional history of the upper Triassic Kapp Toscana Group on Svalbard, Norway, inferred from palynofacies analysis and organic geochemistry. Sed. Geol., 310, 16–29.
    [Google Scholar]
  51. Mueller, S., Hounslow, M.W. & Kürschner, W.M. (2015) Integrated stratigraphy and palaeoclimate history of the carnian pluvial event in the Boreal Realm; New Data from the Upper Triassic Kapp Toscana Group in Central Spitsbergen (Norway). J. Geol. Soc.. doi:10.1144/jgs2015‐028.
    [Google Scholar]
  52. Mueller, S., Krystyn, L. & Kürschner, W.M. (2016) Climate variability during the carnian pluvial phase – a quantitative palynological study of the carnian sedimentary succession at Lunz Am See, Northern Calcareous Alps, Austria. Palaeogeogr. Palaeoclimatol. Palaeoecol., 441, 198–211.
    [Google Scholar]
  53. Muir, M., Lock, D., Von Der Borch, C.C., Zenger, D.H., Dunham, J.B. & Ethington, R.L. (1980) The Coorong model for penecontemporaneous dolomite formation in the middle Proterozoic Mcarthur Group, Northern Teritory, Australia. In: Concepts and Models of Dolimitization (Ed. by ZengerD.H. , DunhamJ.B. & EthingtonR.L. ) SEPM Spec. Publ., 28, 51–67.
    [Google Scholar]
  54. Mutti, M. & Weissert, H. (1995) Triassic monsoonal climate and its signature in ladinian‐carnian carbonate platforms (Southern Alps, Italy). J. Sediment. Res., 65, 357–367.
    [Google Scholar]
  55. Nystuen, J.P., Kjemperud, A.V., Müller, R., Adestàl, V. & Schomacker, E. (2014) Late Triassic–Early Jurassic climatic change, Northern North Sea Region: impact on alluvial architecture, paleosols and clay mineralogy. In: From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin (Ed. by MartiniusA.W. , RavnåsR. , HowellJ.A. , SteelR.J. & WonhamJ.P. ). Int. Assoc. Sedimentol., Spec. Publ., 46, 59–99.
    [Google Scholar]
  56. Olsen, P.E., Koeberl, C., Huber, H., Montanari, A., Fowell, S.J., Et‐Touhami, M. & Kent, D.V. (2002) Continental Triassic‐Jurassic boundary in Central Pangea: recent progress and discussion of an Ir anomaly. In: Catastrophic Events and Mass Extinctions: Impacts and Beyond (Ed. by KoeberlC. & MacLeodK.G. ), Boulder, Colorado, Geol. Soc. Am. Spec. Paper, 356, 505–522.
    [Google Scholar]
  57. Osborne, M., Haszeldine, R.S. & Fallick, A.E. (1994) Variation in kaolinite morphology with growth temperature in isotopically mixed pore‐fluids, Brent Group, UK North Sea. Clay Miner., 29, 591–608.
    [Google Scholar]
  58. Perch‐Nielsen, K., Birkenmajer, K., Birkelund, T. & Aellen, M. (1974) Revision of the Triassic stratigraphy of the scoresby land and the Jameson Land Region, East Greenland. Grønl. Geol. Unders. Bull., 109, 1–51.
    [Google Scholar]
  59. Plummer, P.S. & Gostin, V.A. (1981) Shrinkage cracks: desiccation or synaeresis?J. Sediment. Petrol., 51, 1147–1156.
    [Google Scholar]
  60. Price, S.P., Brodie, J.A., Whitham, A.G. & Kent, R. (1997) Mid‐tertiary rifting and magmatism in the Traill Ø Region, East Greenland. J. Geol. Soc. Lond., 154, 419–434.
    [Google Scholar]
  61. Rostási, Á., Raucsik, B. & Varga, A. (2011) Palaeoenvironmental controls on the clay mineralogy of carnian sections from the Transdanubian Range (Hungary). Palaeogeogr. Palaeoclimatol. Palaeoecol., 300, 101–112.
    [Google Scholar]
  62. Scotese, C.R. (2002) http://www.scotese.com. (PALEOMAP website).
  63. Seidler, L., Steel, R., Stemmerik, L. & Surlyk, F. (2004) North Atlantic marine rifting in the early Triassic: new evidence from East Greenland. J. Geol. Soc. London, 161, 583–592.
    [Google Scholar]
  64. Simms, M.J. & Ruffell, A.H. (1989) Synchroneity of climatic change and extinctions in the late Triassic. Geology, 17, 265–268.
    [Google Scholar]
  65. Smoot, J.P. (1991) Sedimentary facies and depositional‐environments of early Mesozoic Newark Supergroup Basins, Eastern North‐America. Palaeogeogr. Palaeoclimatol. Palaeoecol., 84, 369–423.
    [Google Scholar]
  66. Stefani, M., Furin, S. & Gianolla, P. (2010) The changing climate framework and depositional dynamics of Triassic Carbonate Platforms from the Dolomites. Palaeogeogr. Palaeoclimatol. Palaeoecol., 290, 43–57.
    [Google Scholar]
  67. Stemmerik, L., Vigran, J.O. & Piasecki, S. (1991) Dating of late paleozoic rifting events in the North Atlantic: new biostratigraphic data from the uppermost Devonian and Carboniferous of East Greenland. Geology, 19, 218–221.
    [Google Scholar]
  68. Surlyk, F. (1990) Timing, style and sedimentary evolution of late palaeozoic‐mesozoic extensional basins of East Greenland. In: Tectonic Events Responsible for Britain's Oil and Gas Reserves (Ed. by HardmanR.P.F. & BrooksJ. ) Geol. Soc. Spec. Publ., 55, 107–125.
    [Google Scholar]
  69. Surlyk, F. (2003) The Jurassic of East Greenland: a sedimentary record of thermal subsidence, onset and culmination of rifting. In: The Jurassic of Denmark and Greenland (Ed. by J.R.Ineson & F.Surlyk ), pp. 659–720. Geological Survey of Denmark and Greenland, Copenhagen.
    [Google Scholar]
  70. Surlyk, F., Hurst, J.M., Piasecki, S., Rolle, F., Scholle, P.A., Stemmerik, L. & Thomsen, E. (1986) The Permian of the western margin of the Greenland Sea – a future exploration target. Am. Assoc. Pet. Geol. Mem., 40, 629–659.
    [Google Scholar]
  71. Whitham, A.G., Price, S.P., Koraini, A.M. & Kelly, S.R.A. (1999) Cretaceous (post‐valanginian) sedimentation and rift events in the Ne Greenland (71°–77°N). In: Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference (Ed. by A.Fleet , S.Boldy ), pp. 325–336. Geological Society of London, London.
    [Google Scholar]
  72. Wignall, P.B. & Myers, K.J. (1988) Interpreting benthic oxygen levels in Mudrocks – a new approach. Geology, 16, 452–455.
    [Google Scholar]
  73. Wignall, P.B. & Ruffell, A.H. (1990) The influence of a sudden climatic change on marine deposition in the kimmeridgian of Northwest Europe. J. Geol. Soc., 147, 365–371.
    [Google Scholar]
  74. Wilkinson, M., Milliken, K.L. & Haszeldine, R.S. (2001) Systematic destruction of K‐feldspar in deeply buried rift and passive margin sandstones. J. Geol. Soc., 158, 675–683.
    [Google Scholar]
  75. Withjack, M.O., Schlische, R.W. & Baum, M.S. (2009) Extensional development of the Fundy Rift Basin, Southeastern Canada. Geol. J., 44, 631–651.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12194
Loading
/content/journals/10.1111/bre.12194
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error