1887
Volume 30, Issue 2
  • E-ISSN: 1365-2117
PDF

Abstract

Abstract

Spatio‐temporal analysis of basins formed along sheared margins has received much less attention than those formed along orthogonally extended margins. Knowledge about the structural evolution of such basins is important for petroleum exploration but there has been a lack of studies that document these based on 3D seismic reflection data. In this study, we demonstrate how partitioning of strain during deformation of the central and southern part of the Sørvestsnaget Basin along the Senja Shear Margin, Norwegian Barents Sea, facilitated coeval shortening and extension. This is achieved through quantitative analysis of syn‐kinematic growth strata using 3D seismic data. Our results show that during Cenozoic extensional faulting, folds and thrusts developed coevally and orthogonal to sub‐orthogonal to normal faults. We attribute this strain partitioning to be a result of the right‐lateral oblique plate motions along the margin. Rotation of fold hinge‐lines and indications of hinge‐parallel extension indicate that the dominating deformation mechanism in the central and southern Sørvestsnaget Basin during opening along the Senja Shear Margin was transtensional. We also argue that interpretation of shortening structures attributed to inversion along the margin should consider that partitioning of strain may result in shortening structures that are coeval with extensional faults and not a result of a separate compressional phase.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12253
2017-08-22
2020-07-10
Loading full text...

Full text loading...

/deliver/fulltext/bre/30/2/bre12253.html?itemId=/content/journals/10.1111/bre.12253&mimeType=html&fmt=ahah

References

  1. Badley, M.E., Price, J.D., Dahl, C.R. & Agdestein, T. (1988) The structural evolution of the northern Viking Graben and its bearing upon extensional modes of basin formation. J. Geol. Soc., 145(3), 455–472.
    [Google Scholar]
  2. Basile, C. & Brun, J.P. (1999) Transtensional faulting patterns ranging from pull‐apart basins to transform continental margins: an experimental investigation. J. Struct. Geol., 21(1), 23–37.
    [Google Scholar]
  3. Baudon, C. & Cartwright, J. (2008a) Early stage evolution of growth faults: 3‐D seismic insights from the Levant Basin, Eastern Mediterranean. J. Struct. Geol., 30(7), 888–898.
    [Google Scholar]
  4. Baudon, C. & Cartwright, J. (2008b) The kinematics of reactivation of normal faults using high resolution throw mapping. J. Struct. Geol., 30(8), 1072–1084.
    [Google Scholar]
  5. Baudon, C. & Cartwright, J.A. (2008c) 3‐D seismic characterisation of an array of blind normal faults in the Levant Basin, Eastern Mediterranean. J. Struct. Geol., 30(6), 746–760.
    [Google Scholar]
  6. Bell, R.E., McNeill, L.C., Bull, J.M., Henstock, T.J., Collier, R.E.L. & Leeder, M.R. (2009) Fault architecture, basin structure and evolution of the Gulf of Corinth Rift, central Greece. Basin Res., 21(6), 824–855.
    [Google Scholar]
  7. Bird, D. (2001) Shear margins: continent‐ocean transform and fracture zone boundaries. Lead. Edge, 20(2), 150–159.
    [Google Scholar]
  8. Bouroullec, R., Cartwright, J.A., Johnson, H.D., Lansigu, C., Quémener, J.‐M. & Savanier, D. (2004) Syndepositional faulting in the Grès d'Annot Formation, SE France: high‐resolution kinematic analysis and stratigraphic response to growth faulting. Geol. Soc. Lond. Spec. Publ., 221(1), 241–265.
    [Google Scholar]
  9. Breivik, A.J., Faleide, J.I. & Gudlaugsson, S.T. (1998) Southwestern Barents Sea margin: late Mesozoic sedimentary basins and crustal extension. Tectonophysics, 293(1), 21–44.
    [Google Scholar]
  10. Breivik, A.J., Verhoef, J. & Faleide, J.I. (1999) Effect of thermal contrasts on gravity modeling at passive margins: results from the western Barents Sea. J. Geophys. Res. Solid Earth, 104(B7), 15293–15311.
    [Google Scholar]
  11. Cartwright, J., Bouroullec, R., James, D. & Johnson, H. (1998) Polycyclic motion history of some Gulf Coast growth faults from high‐resolution displacement analysis. Geology, 26(9), 819–822.
    [Google Scholar]
  12. Childs, C., Watterson, J. & Walsh, J.J. (1995) Fault overlap zones within developing normal fault systems. J. Geol. Soc., 152(3), 535–549.
    [Google Scholar]
  13. Childs, C., Nicol, A., Walsh, J.J. & Watterson, J. (2003) The growth and propagation of synsedimentary faults. J. Struct. Geol., 25(4), 633–648.
    [Google Scholar]
  14. Christie‐Blick, N. & Biddle, K.T. (1985) Deformation and basin formation along strike‐slip faults. SEPM Spec. Publ., 37, 1–34.
    [Google Scholar]
  15. Clegg, P. & Holdsworth, R.E. (2005) Complex deformation as a result of strain partitioning in transpression zones: an example from the Leinster Terrane, SE Ireland. J. Geol. Soc., 162(1), 187–202.
    [Google Scholar]
  16. Clift, P.D., Lorenzo, J., Carter, A., Hurford, A.J. & ODP LEG 159 Scientific Party (1997) Transform tectonics and thermal rejuvenation on the Côte d'Ivoire‐Ghana margin, west Africa. J. Geol. Soc., 154 (3), 483–489.
    [Google Scholar]
  17. Corti, G., Van Wijk, J., Bonini, M., Sokoutis, D., Cloetingh, S., Innocenti, F. & Manetti, P. (2003) Transition from continental break‐up to punctiform seafloor spreading: how fast, symmetric and magmatic. Geophys. Res. Lett., 30(12).
    [Google Scholar]
  18. De Paola, N., Holdsworth, R.E., McCaffrey, K.J. & Barchi, M.R. (2005) Partitioned transtension: an alternative to basin inversion models. J. Struct. Geol., 27(4), 607–625.
    [Google Scholar]
  19. Dewey, J.F., Holdsworth, R.E. & Strachan, R.A. (1998) Transpression and transtension zones. Geol. Soc. Lond. Spec. Publ., 135(1), 1–14.
    [Google Scholar]
  20. Doré, A.G. (1991) The structural foundation and evolution of Mesozoic seaways between Europe and the Arctic. Palaeogeogr. Palaeoclimatol. Palaeoecol., 87(1–4), 441–492.
    [Google Scholar]
  21. Doré, A.G. & Lundin, E.R. (1996) Cenozoic compressional structures on the NE Atlantic margin; nature, origin and potential significance for hydrocarbon exploration. Petrol. Geosci., 2(4), 299–311.
    [Google Scholar]
  22. Doré, A.G., Lundin, E.R., Jensen, L.N., Birkeland, Ø., Eliassen, P.E. & Fichler, C. (1999) Principal tectonic events in the evolution of the northwest European Atlantic margin. In Geological society, London, petroleum geology conference series (Vol. 5, pp. 41‐61). Geological Society of London.
  23. Doré, A.G., Lundin, E.R., Gibbons, A., Sømme, T.O. & Tørudbakken, B.O. (2015) Transform margins of the Arctic: a synthesis and re‐evaluation. Geol. Soc. Lond. Spec. Publ., 431, SP431–SP438.
    [Google Scholar]
  24. Ebinger, C.J. (1989) Geometric and kinematic development of border faults and accommodation zones, Kivu‐Rusizi Rift, Africa. Tectonics, 8(1), 117–133.
    [Google Scholar]
  25. Eldholm, O., Faleide, J.I. & Myhre, A.M. (1987) Continent‐ocean transition at the western Barents Sea/Svalbard continental margin. Geology, 15(12), 1118–1122.
    [Google Scholar]
  26. Eldholm, O., Tsikalas, F. & Faleide, J.I. (2002) Continental margin off Norway 62–75° N: Palaeogene tectono‐magmatic segmentation and sedimentation. Geol. Soc. Lond. Spec. Publ., 197(1), 39–68.
    [Google Scholar]
  27. Faleide, J.I., Bjørlykke, K. & Gabrielsen, R.H. (2010) Geology of the norwegian continental shelf. Petroleum Geoscience, pp. 467–499. Springer, Berlin.
    [Google Scholar]
  28. Faleide, J.I., Gudlaugsson, S.T. & Jacquart, G. (1984) Evolution of the western Barents Sea. Mar. Pet. Geol., 1(2).
    [Google Scholar]
  29. Faleide, J.I., Myhre, A.M. & Eldholm, O. (1988) Early Tertiary volcanism at the western Barents Sea margin. Geol. Soc. Lond. Spec. Publ., 39(1), 135–146.
    [Google Scholar]
  30. Faleide, J.I., Gudlaugsson, S.T., Eldholm, O., Myhre, A.M. & Jackson, H.R. (1991) Deep seismic transects across the sheared western Barents Sea‐Svalbard continental margin. Tectonophysics, 189(1), 73–89.
    [Google Scholar]
  31. Faleide, J.I., Vågnes, E. & Gudlaugsson, S.T. (1993a) Late Mesozoic‐Cenozoic evolution of the south‐western Barents Sea in a regional rift‐shear tectonic setting. Mar. Pet. Geol., 10(3), 186–214.
    [Google Scholar]
  32. Faleide, J.I., Vågnes, E. & Gudlaugsson, S.T. (1993b) Late Mesozoic–Cenozoic evolution of the southwestern Barents Sea. In Geological Society, London, Petroleum Geology Conference series (Vol. 4, pp. 933‐950). Geological Society of London.
  33. Faleide, J.I., Solheim, A., Fiedler, A., Hjelstuen, B.O., Andersen, E.S. & Vanneste, K. (1996) Late Cenozoic evolution of the western Barents Sea‐Svalbard continental margin. Global Planet. Change, 12(1), 53–74.
    [Google Scholar]
  34. Faleide, J.I., Tsikalas, F., Breivik, A.J., Mjelde, R., Ritzmann, O., Engen, O., Wilson, J. & Eldholm, O. (2008) Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes, 31(1), 82–91.
    [Google Scholar]
  35. Fossen, H., Teyssier, C. & Whitney, D.L. (2013) Transtensional folding. J. Struct. Geol., 56, 89–102.
    [Google Scholar]
  36. Gabrielsen, R.H. (1984) Long‐lived fault zones and their influence on the tectonic development of the southwestern Barents Sea. J. Geol. Soc., 141(4), 651–662.
    [Google Scholar]
  37. Gabrielsen, R.H., Færseth, R.B., Jensen, L.N., Kalheim, J.E. & Riis, F. (1990) Structural elements of the Norwegian continental shelf. Part I: the Barents Sea region. Norw. Petrol. Direct. Bull., 6, 1–33.
    [Google Scholar]
  38. Gabrielsen, R.H., Grunnaleite, I. & Rasmussen, E. (1997) Cretaceous and tertiary inversion in the Bjørnøyrenna Fault Complex, south‐western Barents Sea. Mar. Pet. Geol., 14, 165–178.
    [Google Scholar]
  39. Giba, M., Walsh, J.J. & Nicol, A. (2012) Segmentation and growth of an obliquely reactivated normal fault. J. Struct. Geol., 39, 253–267.
    [Google Scholar]
  40. Gudlaugsson, S.T., Faleide, J.I., Johansen, S.E. & Breivik, A.J. (1998) Late Palaeozoic structural development of the south‐western Barents Sea. Mar. Pet. Geol., 15(1), 73–102.
    [Google Scholar]
  41. Higgins, S., Clarke, B., Davies, R.J. & Cartwright, J. (2009) Internal geometry and growth history of a thrust‐related anticline in a deep water fold belt. J. Struct. Geol., 31(12), 1597–1611.
    [Google Scholar]
  42. Holdsworth, R.E., Tavarnelli, E., Clegg, P., Pinheiro, R.V.L., Jones, R.R. & McCaffrey, K.J.W. (2002) Domainal deformation patterns and strain partitioning during transpression: an example from the Southern Uplands terrane, Scotland. J. Geol. Soc., 159(4), 401–415.
    [Google Scholar]
  43. Huggins, P., Watterson, J., Walsh, J.J. & Childs, C. (1995) Relay zone geometry and displacement transfer between normal faults recorded in coal‐mine plans. J. Struct. Geol., 17, 1741–1755.
    [Google Scholar]
  44. Huismans, R.S., Podladchikov, Y.Y. & Cloetingh, S.A.P.L. (2001) Dynamic modeling of the transition from passive to active rifting, application to the Pannonian basin. Tectonics, 20(6), 1021–1039.
    [Google Scholar]
  45. Jackson, C.A.L. & Rotevatn, A. (2013) 3‐D seismic analysis of the structure and evolution of a salt‐influenced normal fault zone: a test of competing fault growth models. J. Struct. Geol., 54, 215–234.
    [Google Scholar]
  46. Jackson, H.R., Faleide, J.I. & Eldholm, O. (1990) Crustal structure of the sheared southwestern Barents Sea continental margin. Mar. Geol., 93, 119–146.
    [Google Scholar]
  47. Jackson, C.A.L., Bell, R., Rotevatn, A. & Tvedt, A.B. (2017) Techniques to determine the kinematics of synsedimentary normal faults and implications for fault growth models. Geol. Soc. Lond. Spec. Publ., 439, SP439–22. ISO 690.
    [Google Scholar]
  48. Jones, R.R., Holdsworth, R.E., Clegg, P., McCaffrey, K. & Tavarnelli, E. (2004) Inclined transpression. J. Struct. Geol., 26(8), 1531–1548.
    [Google Scholar]
  49. Kearey, P. & Vine, F.J. (1996) Global Tectonics, 2nd edn. 333 pp. Blackwell, New York, NY.
    [Google Scholar]
  50. Knutsen, S.M. & Larsen, K.I. (1997) The late Mesozoic and Cenozoic evolution of the Sørvestsnaget Basin: a tectonostratigraphic mirror for regional events along the Southwestern Barents Sea margin?Mar. Pet. Geol., 14(1), 27–54.
    [Google Scholar]
  51. Leever, K.A., Gabrielsen, R.H., Faleide, J.I. & Braathen, A. (2011) A transpressional origin for the West Spitsbergen fold‐and‐thrust belt: insight from analog modeling. Tectonics, 30(2).
    [Google Scholar]
  52. Lehner, P. & De Ruiter, P.A.C. (1977) Structural history of Atlantic margin of Africa. AAPG Bull., 61(7), 961–981.
    [Google Scholar]
  53. Lorenzo, J.M. (1997) Sheared continent–ocean margins: an overview. Geo‐Mar. Lett., 17(1), 1–3.
    [Google Scholar]
  54. Mansfield, C.S. & Cartwright, J.A. (1996) High resolution fault displacement mapping from three‐dimensional seismic data: evidence for dip linkage during fault growth. J. Struct. Geol., 18(2), 249–263.
    [Google Scholar]
  55. McClay, K.R., Dooley, T., Whitehouse, P. & Mills, M. (2002) 4‐D evolution of rift systems: Insights from scaled physical models. AAPG Bull., 86(6), 935–960.
    [Google Scholar]
  56. Mjelde, R., Breivik, J.A., Elstad, H., Ryseth, A.E., Skilbrei, J.G.O., Shimamura, H., Murai, Y. & Nishimura, Y. (2002) Geological development of the Sørvestsnaget Basin, SW Barents Sea, from ocean bottom seismic, surface seismic and potential field data. Nor. Geol. Tidsskr., 82, 183–202.
    [Google Scholar]
  57. Mount, V.S. & Suppe, J. (1987) State of stress near the San Andreas fault: implications for wrench tectonics. Geology, 15 (12), 1143–1146. Vol. 82, pp. 183‐202.
    [Google Scholar]
  58. Moustafa, A.R. (1993) Structural characteristics and tectonic evolution of the east‐margin blocks of the Suez rift. Tectonophysics, 223(3–4), 381–399.
    [Google Scholar]
  59. Myhre, A.M., Eldholm, O. & Sundvor, E. (1982) The margin between Senja and Spitsbergen fracture zones: implications from plate tectonics. Tectonophysics, 89(1), 33–50.
    [Google Scholar]
  60. Naliboff, J. & Buiter, S.J. (2015) Rift reactivation and migration during multiphase extension. Earth Planet. Sci. Lett., 421, 58–67.
    [Google Scholar]
  61. Nicol, A., Watterson, J., Walsh, J.J. & Childs, C. (1996) The shapes, major axis orientations and displacement patterns of fault surfaces. J. Struct. Geol., 18(2), 235–248.
    [Google Scholar]
  62. Nøttvedt, A., Berglund, L.T., Rasmussen, E. & Steel, R.J. (1988) Some aspects of Tertiary tectonics and sedimentation along the western Barents Shelf. Geol. Soc. Lond. Spec. Publ., 39(1), 421–425.
    [Google Scholar]
  63. Oldow, J.S. (2003) Active transtensional boundary zone between the western Great Basin and Sierra Nevada block, western US Cordillera. Geology, 31(12), 1033–1036.
    [Google Scholar]
  64. Osmundsen, P.T. & Andersen, T.B. (2001) The middle Devonian basins of western Norway: sedimentary response to large‐scale transtensional tectonics?Tectonophysics, 332, 51–68.
    [Google Scholar]
  65. Perez‐Garcia, C., Safronova, P.A., Mienert, J., Berndt, C. & Andreassen, K. (2013) Extensional rise and fall of a salt diapir in the Sørvestsnaget Basin, SW Barents Sea. Mar. Pet. Geol., 46, 129–143.
    [Google Scholar]
  66. Petersen, K., Clausen, O. & Korstgård, J. (1992) Evolution of a salt‐related listric growth fault near the D‐1 well, block 5605, Danish North Sea: displacement history and salt kinematics. J. Struct. Geol., 14, 565–577.
    [Google Scholar]
  67. Ravnås, R. & Steel, R.J. (1997) Contrasting styles of Late Jurassic syn‐rift turbidite sedimentation: a comparative study of the Magnus and Oseberg areas, northern North Sea. Mar. Pet. Geol., 14(4), 417–449.
    [Google Scholar]
  68. Reksnes, P.A. & Vågnes, E. (1985) Evolution of the Greenland Sea and Eurasia basin. Cand. Scient. Thesis. University of Oslo, Oslo.
  69. Ritzmann, O. & Faleide, J.I. (2007) Caledonian basement of the western Barents Sea. Tectonics, 26(5).
    [Google Scholar]
  70. Rykkelid, E. & Fossen, H. (2002) Layer rotation around vertical fault overlap zones: observations from seismic data, field examples, and physical experiments. Mar. Pet. Geol., 19(2), 181–192.
    [Google Scholar]
  71. Ryseth, A., Augustson, J.H., Charnock, M., Haugerud, O., Knutsen, S.‐M., Midbøe, P.S., Oppsal, J.G. & Sundsbø, G. (2003) Cenozoic stratigraphy and evolution of the Sørvestsnaget Basin, southwestern Barents Sea. Nor. J. Geol./Norsk Geologisk Forening, 83(2).
    [Google Scholar]
  72. Sanderson, D.J. & Marchini, W.R.D. (1984) Transpression. J. Struct. Geol., 6(5), 449–458.
    [Google Scholar]
  73. Scrutton, R.A. (1979) On sheared passive continental margins. Tectonophysics, 59(1), 293–305.
    [Google Scholar]
  74. Seiler, C., Fletcher, J.M., Quigley, M.C., Gleadow, A.J. & Kohn, B.P. (2010) Neogene structural evolution of the Sierra San Felipe, Baja California: evidence for proto‐gulf transtension in the Gulf Extensional Province?Tectonophysics, 488(1), 87–109.
    [Google Scholar]
  75. Seiler, C., Quigley, M.C., Fletcher, J.M., Phillips, D., Gleadow, A.J.W. & Kohn, B.P. (2013) Stratigraphy and 40Ar/39Ar geochronology of the Santa Rosa basin, Baja California: dynamic evolution of a constrictional rift basin during oblique extension in the Gulf of California. Basin Res., 25, 388–418.
    [Google Scholar]
  76. Sharp, I.R., Gawthorpe, R.L., Underhill, J.R. & Gupta, S. (2000) Fault‐propagation folding in extensional settings: examples of structural style and synrift sedimentary response from the Suez rift, Sinai, Egypt. Geol. Soc. Am. Bull., 112(12), 1877–1899.
    [Google Scholar]
  77. Spathopoulos, F. (1996) An insight on salt tectonics in the Angola Basin, South Atlantic. Geol. Soc. Lond. Spec. Publ., 100(1), 153–174.
    [Google Scholar]
  78. Storti, F. & Poblet, J. (1997) Growth stratal architectures associated to decollement folds and fault‐propagation folds, Inferences on fold kinematics. Tectonophysics, 282(1), 353–373.
    [Google Scholar]
  79. Suppe, J., Chou, G.T. & Hook, S.C. (1992) Rates of folding and faulting determined from growth strata. In: Thrust Tectonics (Ed. by K.R.McClay ), pp. 105–121. Chapman and Hall, New York.
    [Google Scholar]
  80. Sylvester, A.G. (1988) Strike‐slip faults. Geol. Soc. Am. Bull., 100(11), 1666–1703.
    [Google Scholar]
  81. Talwani, M. & Eldholm, O. (1977) Evolution of the Norwegian‐Greenland sea. Geol. Soc. Am. Bull., 88(7), 969–999.
    [Google Scholar]
  82. Thorsen, C.E. (1963) Age of growth faulting in southeast Louisiana. Gulf Coast Assoc. Geol. Soc. Trans., 13, 103–110.
    [Google Scholar]
  83. Tsikalas, F., Faleide, J.I. & Eldholm, O. (2001) Lateral variations in tectono‐magmatic style along the Lofoten‐Vesterålen volcanic margin off Norway. Mar. Pet. Geol., 18(7), 807–832.
    [Google Scholar]
  84. Tsikalas, F., Eldholm, O. & Faleide, J.I. (2002) Early Eocene sea floor spreading and continent‐ocean boundary between Jan Mayen and Senja fracture zones in the Norwegian‐Greenland Sea. Mar. Geophys. Res., 23(3), 247–270.
    [Google Scholar]
  85. Tvedt, A.B.M., Rotevatn, A., Jackson, C.A.L., Fossen, H. & Gawthorpe, R.L. (2013) Growth of normal faults in multilayer sequences: a 3‐D seismic case study from the Egersund Basin, Norwegian North Sea. J. Struct. Geol., 55, 1–20.
    [Google Scholar]
  86. Tvedt, A.B., Rotevatn, A. & Jackson, C.A. (2016) Supra‐salt normal fault growth during the rise and fall of a diapir: perspectives from 3D seismic reflection data, Norwegian North Sea. J. Struct. Geol., 91, 1–26.
    [Google Scholar]
  87. Vågenes, E. (1997) Uplift at thermo‐mechanically coupled ocean–continent transforms: modeled at the Senja fracture zone, southwestern Barents Sea. Geo‐Mar. Lett., 17(1), 100–109.
    [Google Scholar]
  88. Venkat‐Ramani, M. & Tikoff, B. (2002) Physical models of transtensional folding. Geology, 30(6), 523–526.
    [Google Scholar]
  89. Walsh, J.J., Nicol, A. & Childs, C. (2002) An alternative model for the growth of faults. J. Struct. Geol., 24(11), 1669–1675.
    [Google Scholar]
  90. Walsh, J.J., Bailey, W.R., Childs, C., Nicol, A. & Bonson, C.G. (2003) Formation of segmented normal faults: a 3‐D perspective. J. Struct. Geol., 25(8), 1251–1262.
    [Google Scholar]
  91. Wilson, P., Elliott, G.M., Gawthorpe, R.L., Jackson, C.A.L., Michelsen, L. & Sharp, I.R. (2013) Geometry and segmentation of an evaporite‐detached normal fault array: 3D seismic analysis of the southern Bremstein Fault Complex, offshore mid‐Norway. J. Struct. Geol., 51, 74–91.
    [Google Scholar]
  92. Withjack, M.O., Schlische, R.W. & Olsen, P.E. (1998) Diachronous rifting, drifting, and inversion on the passive margin of central eastern North America: an analog for other passive margins. AAPG Bull., 82(5), 817–835.
    [Google Scholar]
  93. Ziegler, P.A. (1992) North Sea rift system. Tectonophysics, 208(1), 55–75.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12253
Loading
/content/journals/10.1111/bre.12253
Loading

Data & Media loading...

Supplements

Uninterpreted seismic sections from Fig. 2.

Uninterpreted seismic sections from Fig. 7.

IMAGE

Uninterpreted seismic sections from Fig. 8.

Uninterpreted seismic sections from Fig. 10.

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error