- Home
- A-Z Publications
- Basin Research
- Previous Issues
- Volume 30, Issue 2, 2018
Basin Research - Volume 30, Issue 2, 2018
Volume 30, Issue 2, 2018
-
Cenozoic sediment budget of West Africa and the Niger delta
Authors Jean‐Louis Grimaud, Delphine Rouby, Dominique Chardon and Anicet BeauvaisAbstractLong‐term (106–7 yr) clastic sedimentary fluxes to the ocean provide first‐order constraints on the response of continental surfaces to both tectonic and climatic forcing as well as the supply that builds the stratigraphic record. Here, we use the dated and regionally correlated relict lateritic landforms preserved over Sub‐Saharan West Africa to map and quantify regional denudation as well as the export of main catchments for three time intervals (45–24, 24–11 and 11–0 Ma). At the scale of West Africa, denudation rates are low (ca. 7 m Myr−1) and total clastic export rate represents 18.5 × 103 km3 Myr−1. Export rate variations among the different drainage groups depend on the drainage area and, more importantly, rock uplift. Denuded volumes and offshore accumulations are of the same magnitude, with a noticeably balanced budget between the Niger River delta and its catchment. This supports the establishment of the modern Niger catchment before 29 Ma, which then provided sufficient clastic material to the Niger delta by mainly collecting the erosion products of the Hoggar hotspot swell. Accumulations on the remaining Equatorial Atlantic margin of Africa suggest an apparent export deficit but the sediment budget is complicated by the low resolution of the offshore data and potential lateral sediment supply from the Niger delta. Further distortion of the depositional record by intracontinental transient storage and lateral input or destabilization of sediments along the margin may be identified in several locations, prompting caution when deducing continental denudation rates from accumulation only.
-
Syn‐orogenic fluid flow in the Jaca basin (south Pyrenean fold and thrust belt) from fracture and vein analyses
Authors N. Crognier, G. Hoareau, C. Aubourg, M. Dubois, B. Lacroix, M. Branellec, J. P. Callot and T. VennemannAbstractThis study aims at understanding the origin and nature of syn‐orogenic fluid flow in the Jaca basin from the South Pyrenean fold and thrust‐belt, as recorded in calcite and quartz veins of the Sierras Interiores (Spain) and the turbiditic basin, which cover upper Cretaceous to Late Eocene syntectonic deposits. The fracture network consists of a classical pattern of transverse and longitudinal fractures related to Layer Parallel Shortening (LPS) and folding respectively. Veins filled equally about the third of fractures in the carbonate shelf and turbidites. Carbon and oxygen isotopes of calcite veins mostly indicate precipitation from isotopically buffered water, consistent with high water‐rock interaction. In the Sierras Interiores, petrographical observations and fluid inclusion microthermometry are consistent with two distinct stages of precipitation. The first stage is characterized by relatively low Th and low salinities (155–205 °C and 0.5–3.2 wt% eq. NaCl). The second stage, which was characterized both by the formation of mode‐I joints and by mode‐I reactivation of pre‐existing veins, shows higher Th and salinities (215–270 °C and 2.2–5.7 wt% eq. NaCl). Waters recorded in the second stage are interpreted to have interacted with underlying Triassic evaporites and flowed along major thrusts before vein precipitation, which are locally in thermal disequilibrium with host‐rocks. We suggest the transition from a rather closed hydrological system during the first stage of vein formation, interpreted to have occurred during Eaux‐chaudes thrusting (upper Lutetian‐Bartonian), to a more open hydrological system during the second stage, which likely occurred during Gavarnie thrusting (Priabonian‐early Rupelian). Finally, we also document the migration in space and time of hydrothermal pulses along the South Pyrenean Foreland Basin, related to the westward propagation of major thrusts during the Pyrenean orogeny.
-
The genesis of mud volcano conduits through thick evaporite sequences
Authors C. Kirkham, J. Cartwright, C. Hermanrud and C. JebsenAbstractThis study documents the seismic expression of the conduits underlying over 350 mud volcanoes that were erupted in an area of the western Nile Cone in the past 5.3 Myr. The study is based on a c. 4300 km2 3D seismic survey. The conduits are interpreted to transect the >1000‐m‐thick Messinian Evaporite succession, demonstrating that the eruptive process is sufficiently dynamic to breach the formidable seal represented by the evaporites. The mud volcano conduits are remarkably similar in geometry and seismic characteristics to many previously described examples of fluid escape pipes. They are vertical to subvertical structures with a crudely cylindrical geometry, but that can either widen or narrow upwards towards their upper terminations in the mud volcano edifices. Imaging at depth within the Messinian Evaporites and pre‐evaporite successions is more uncertain, but direct sampling of mud from surface volcanoes suggests a pre‐Messinian source, confirming the seismic interpretation that they root within presalt stratigraphy. A conceptual model for the genesis of these mud volcano conduits through salt is proposed, for which hydraulic fracturing is driven by high overpressures that developed in the presalt source stratigraphy as a response to the Messinian Salinity Crisis. Dissolution and removal of evaporites resulting in fracturing and collapse via a stoping mechanism is a slow process by comparison to hydraulic fracturing but is argued to potentially contribute to conduit formation. The analysis presented here demonstrates the potential for bypassing a >1‐km‐thick unit of sealing evaporites via focused fluid and sediment mobilisation from deeper overpressured cells in other salt basins worldwide, and has significant implications for hydrocarbon exploration, CO2 sequestration and nuclear waste disposal.
-
Link between growth faulting and initiation of a mass transport deposit in the northern Taranaki Basin, New Zealand
Authors Nuttakarn Panpichityota, Christopher K. Morley and Jaydeep GhoshAbstractThe Neogene section in the northern Taranaki Basin, offshore New Zealand, displays an interaction among prograding clinoforms, listric growth faults formed at the base of slope and mass transport deposits that fill the growth fault depocentres. This study focuses on one of these systems, the Karewa Fault and mass transport deposit (MTD), in order to understand the genetic relationship between the fault and the MTD in its hangingwall depocentre, i.e. did the MTD fill existing accommodation space? Did the MTD trigger growth fault displacement? Or is there some other relationship? Most mass transport deposits are elongate in the transport direction and exhibit a length:width aspect ratio of more than 1. However, the 90 km2 Karewa Fault MTD is at least three times wider than it is long, which is atypical for MTDs reported in the literature, where ~80% have a length:width ratio >1. The transport direction of the MTD is to the WNW, as indicated by the location and internal structure of the compressional toe and the headwall scarp region of the Karewa Fault. The structural and sequence geometries on seismic reflection data indicate the MTD formed during the late stage of growth fault activity, and locally truncates the upper part of the Karewa Fault. The MTD is inferred to have originated by local destabilization of the sediment package overlying the Karewa Fault related to the escape of overpressured fluids along the fault. The resulting MTD was translated locally by only a few kilometres. This unusual cause for an MTD also resulted in its atypical length–width–thickness aspect ratios.
-
Basin‐axial progradation of a sediment supply driven distributive fluvial system in the Late Cretaceous southern Utah foreland
Authors Jonathan W. Primm, Cari L. Johnson and Michael StearnsAbstractThe Turonian‐Coniacian Smoky Hollow Member of the Straight Cliffs Formation in the Kaiparowits basin of southern Utah records a stratigraphic transition from isolated fluvial channel bodies to increasingly amalgamated channel belts capped by the Calico bed, a sheet‐like sand‐gravel unit. Characteristics of the Smoky Hollow Member are consistent with a prograding distributive fluvial system including: up‐section increases in average grain size, bed thickness, channel‐body amalgamation, a fan‐shaped planform morphology and a downstream increase in channel sinuosity. The system prograded to the northeast based on thickness and facies patterns, and palaeocurrent indicators. This basin‐axial sediment‐dispersal trend, which was approximately parallel to the fold‐thrust belt at this latitude, is supported by provenance data including detrital zircons and modal sandstone compositions indicating sediment derivation mainly from the Mogollon Highlands and Cordilleran magmatic arc to the southwest, with episodic input from the more proximal Sevier fold‐thrust belt to the west. Progradation occurred during a eustatic still‐stand, relatively stable climatic conditions, and continuous tectonic subsidence, thus suggesting increased extrabasinal sediment supply as a primary control on basin‐fill. Progradation of the Smoky Hollow Member fluvial system culminated in a ~2–3 My hiatus at the top of the lower Calico bed. Correlation with the Notom delta of the Ferron Sandstone, 80 km northeast in the Henry basin, is proposed on the basis of facies relationships and geochronology. The Calico bed unconformity is linked to regional tectonically driven tilting and erosion observed in both basins.
-
Structural evolution of sheared margin basins: the role of strain partitioning. Sørvestsnaget Basin, Norwegian Barents Sea
AbstractSpatio‐temporal analysis of basins formed along sheared margins has received much less attention than those formed along orthogonally extended margins. Knowledge about the structural evolution of such basins is important for petroleum exploration but there has been a lack of studies that document these based on 3D seismic reflection data. In this study, we demonstrate how partitioning of strain during deformation of the central and southern part of the Sørvestsnaget Basin along the Senja Shear Margin, Norwegian Barents Sea, facilitated coeval shortening and extension. This is achieved through quantitative analysis of syn‐kinematic growth strata using 3D seismic data. Our results show that during Cenozoic extensional faulting, folds and thrusts developed coevally and orthogonal to sub‐orthogonal to normal faults. We attribute this strain partitioning to be a result of the right‐lateral oblique plate motions along the margin. Rotation of fold hinge‐lines and indications of hinge‐parallel extension indicate that the dominating deformation mechanism in the central and southern Sørvestsnaget Basin during opening along the Senja Shear Margin was transtensional. We also argue that interpretation of shortening structures attributed to inversion along the margin should consider that partitioning of strain may result in shortening structures that are coeval with extensional faults and not a result of a separate compressional phase.
-
Holocene Brahmaputra River path selection and variable sediment bypass as indicators of fluctuating hydrologic and climate conditions in Sylhet Basin, Bangladesh
Authors Ryan Sincavage, Steven Goodbred and Jennifer PickeringAbstractThe Holocene stratigraphy of Sylhet basin, a tectonically influenced sub‐basin within the Ganges‐Brahmaputra‐Meghna delta (GMBD), provides evidence for autogenic and allogenic controls on fluvial system behaviour. Using Holocene lithology and stratigraphic architecture from a dense borehole network, patterns of bypass‐dominated and extraction‐enhanced modes of sediment transport and deposition have been reconstructed. During a ~3‐kyr mid‐Holocene occupation of Sylhet basin by the Brahmaputra River, water and sediment were initially (~7.5–6.0 ka) routed along the basin's western margin, where limited downstream facies changes reflect minimal mass extraction and bypass‐dominated transport to the basin outlet. Sediment‐dispersal patterns became increasingly depositional ~6.0–5.5 ka with the activation of a large (~2250 km2) splay that prograded towards the basin centre while maintaining continued bypass along the western pathway. Beginning ~5.0 ka, a second splay system constructed an even larger (~3800 km2) lobe into the most distal portions of the basin along the Shillong foredeep. This evolution from a bypass‐dominated system to one of enhanced mass extraction is well reflected in (i) the rapid downstream fining of deposited sand and (ii) a change in facies from amalgamated channel deposits to mixed sands and muds within discrete depositional lobes. The persistence of sediment bypass suggests that seasonal flooding of the basin by local runoff exerts a hydrologic barrier to overbank flow and is thus a principal control on river path selection. This control is evidenced by (i) repeated, long‐term preference for occupying a course along the basin margin rather than a steeper path to the basin centre and (ii) the persistence of an under‐filled, topographically low basin despite sediment load sufficient to fill the basin within a few hundred years. The progradation of two 10–20‐m thick, sandy mega‐splays into the basin interior reflects an alternative mode of sediment dispersal that appears to have operated only in the mid‐Holocene (~6.0–4.0 ka) during a regional weakening of the summer monsoon. The reduced water budget at that time would have lowered seasonal water levels in the basin, temporarily lessening the hydrologic barrier effect and facilitating splay development into the basin interior. Overall, these results place basin hydrology as a first‐order control on fluvial system behaviour, strongly modifying the perceived dominance of tectonic subsidence. Such coupling of subsidence, fluvial dynamics and local hydrology have been explored through tank experiments and modelling; this field study demonstrates that complex, emergent behaviours can also scale to the world's largest fluvial system.
-
Response of unconfined turbidity current to relay‐ramp topography: insights from process‐based numerical modelling
Authors Zhiyuan Ge, Wojciech Nemec, Rob L. Gawthorpe, Atle Rotevatn and Ernst W. M. HansenAbstractThis natural‐scale experimental study combines structural modelling of soft‐linked normal‐fault relays with a CFD (computational fluid dynamics) numerical simulation of a range of unconfined turbidity currents overrunning the relay‐system topography. The flow, released from an upslope inlet gate 2000‐m wide and 50‐m to 100‐m high, rapidly expands and adjusts its thickness, velocity and sediment load to the substrate slope of 1.5°. A lower initial sediment concentration or smaller thickness renders the quasi‐steady flow slower and its sediment‐transport capacity lower. A 3D pattern of large interfering Kelvin‐Helmholtz waves causes fluctuations of the local flow velocity magnitude and sediment concentration. Four zones of preferential sediment deposition are recognized: a near‐gate zone of abrupt flow expansion and self‐regulation; a flow‐transverse zone on the counter‐slope of fault footwall edges; a flow‐transverse zone at the fault‐scarp toes and a similar transverse zone near the crest of the hanging wall counter‐slopes. The sand deposited on the counter‐slope tends to be re‐entrained and fed back to the current by a secondary reverse underflow. The spatial extent and sediment accumulation capacity of depozones depend upon the released current volume. The impact of relay system on an overrunning current depends upon the fault separation distance and stage of tectonic evolution. An early‐stage relay system, with small vertical displacement and little overlap of faults, is bypassed by the current with minimum flow disturbance and no pronounced deposition. An advanced‐stage system, with greater fault displacement and overlap, gives a similar hydraulic effect as a single fault segment if the fault separation is small. If the separation is relatively large, the flow tends to be internally redirected sideways from the ramp into the hanging wall synclinal depressions. Since normal‐fault relays are common features in extensional basins, the study bears important implications for turbiditic slope‐fan models and for the spatial sand prediction in subsurface exploration of faulted submarine slopes.
-
Exogenic forcing and autogenic processes on continental divide location and mobility
Authors Andrew J. Moodie, Frank J. Pazzaglia and Claudio BertiAbstractThe position and mobility of drainage divides is an expression of exogenic landscape forcing and autogenic channel network processes integrated across a range of scales. At the large scale, represented by major rivers and continental drainage divides, the organization of drainage patterns and divide migration reflects the long‐wavelength gradients of the topography, which are exogenically influenced by tectonics, isostasy, and/or dynamic topography. This analysis utilizes long‐wavelength topography synthesized by a low‐pass filter, which provides a novel framework for predicting the direction of divide movement as well as an estimate of the ultimate divide location that is complementary to recent studies that have focused on the χ channel metric. The Gibraltar Arc active plate boundary and Appalachian stable plate interior, two tectonically diverse settings with ongoing drainage system reorganization, are chosen to explore the length scales of exogenic forcings that influence continental drainage divide location and migration. The major watersheds draining both the active‐ and decay‐phase orogens studied here are organized by topographic gradients that are expressed in long‐wavelength low‐pass filtered topography (λ ≥ 100 km). In contrast, the river network and divide location is insensitive to topographic gradients measured over filtered wavelengths <100 km that are set by local crustal structures and rock type. The lag time between exogenic forcing and geomorphic response and feedbacks cause divide migration to be unsteady, and occur through pulses of drainage capture and drainage network reorganization that are recorded in sedimentological, geomorphic, or denudation data.
Volumes & issues
-
Volume 35 (2023)
-
Volume 34 (2022)
-
Volume 33 (2021)
-
Volume 32 (2020)
-
Volume 31 (2019)
-
Volume 30 (2018)
-
Volume 29 (2017)
-
Volume 28 (2016)
-
Volume 27 (2015)
-
Volume 26 (2014)
-
Volume 25 (2013)
-
Volume 24 (2012)
-
Volume 23 (2011)
-
Volume 22 (2010)
-
Volume 21 (2009)
-
Volume 20 (2008)
-
Volume 19 (2007)
-
Volume 18 (2006)
-
Volume 17 (2005)
-
Volume 16 (2004)
-
Volume 15 (2003)
-
Volume 14 (2002)
-
Volume 13 (2001)
-
Volume 12 (2000)
-
Volume 11 (1999)
-
Volume 10 (1998)
-
Volume 9 (1997)
-
Volume 8 (1996)
-
Volume 7 (1994)
-
Volume 6 (1994)
-
Volume 5 (1993)
-
Volume 4 (1992)
-
Volume 3 (1991)
-
Volume 2 (1989)
-
Volume 1 (1988)
Most Read This Month
