1887
Volume 31, Issue 3
  • E-ISSN: 1365-2117

Abstract

[Abstract

Sediment provenance studies have proven to be an effective method to extract the sediment provenance and tectonic process information recorded by detrital minerals. In this contribution, we conducted detrital monazite and zircon U‐Pb geochronology and detrital Cr‐spinel major element chemistry analyses on samples from the Qaidam Basin to reconstruct the spatial and temporal evolution of the Altyn Tagh Range and the Qimen Tagh Range in the northern Tibetan Plateau. Based on the significant variation in [Th/U], [Gd/Lu] and [Eu/Eu*] and the U‐Pb ages of the monazite and zircon, the South Altyn Tagh subduction‐collision belt and the North Qimen Tagh Range were, respectively, the main provenances of the Ganchaigou section and the Dongchaishan‐Weitai section in the Qaidam Basin in the Cenozoic. Paleozoic peak metamorphism, retrograde granulite‐facies metamorphism and amphibolite‐facies metamorphism in the South Altyn Tagh subduction‐collision belt were well recorded by the detrital monazite. In comparison, the detrital zircon is a better indicator of igneous events than detrital monazite. Synthesizing the detrital monazite, zircon and Cr‐spinel data, we concluded that the South Altyn Tagh Ocean and Qimen Tagh Ocean existed in the early Paleozoic and that the Altyn Tagh terrane and Qimen Tagh terrane experienced different Paleozoic tectonothermal histories. The collision between the Qaidam terrane and the Azhong terrane occurred at ca. 500 Ma. The Middle Ordovician was the key period of transformation from the collision‐induced compressional environment to an extensional environment in the area of the South Altyn Tagh Range. In the early Paleozoic, the Qimen Tagh area was characterized by the subduction of oceanic crust.

,

The tectonic evolution model of the South Altyn Tagh Range in the Palaeozoic. The Altyn Tagh Range experienced three major tectonic stages in the Palaeozoic. The collision between the Qaidam terrane and the Azhong terrane occurred at ~500 Ma. The Middle Ordovician was the key period of transformation from the collision‐induced compressional environment to an extensional environment. In the late Silurian‐Middle Devonian, the South Altyn Tagh was in a post‐collisional crustal extension setting.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12333
2019-01-20
2020-05-30
Loading full text...

Full text loading...

References

  1. Andersen, T. (2002). Correction of common lead in U‐Pb analyses that do not report 204Pb. Chemical Geology, 192, 59–79. https://doi.org/10.1016/S0009-2541(02)00195-X
    [Google Scholar]
  2. Arai, S. (1992). Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine, 56, 173–184. https://doi.org/10.1180/minmag.1992.056.383.04
    [Google Scholar]
  3. Barnes, S. J., & Roeder, P. L. (2001). The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42, 2279–2302. https://doi.org/10.1093/petrology/42.12.2279
    [Google Scholar]
  4. Bea, F. (1996). Residence of Ree, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. Journal of Petrology, 37, 521–552. https://doi.org/10.1093/petrology/37.3.521
    [Google Scholar]
  5. Campbell, I. H., Reiners, P. W., Allen, C. M., Nicolescu, S., & Upadhyay, R. (2005). He–Pb double dating of detrital zircons from the Ganges and Indus Rivers: Implication for quantifying sediment recycling and provenance studies. Earth and Planetary Science Letters, 237, 402–432. https://doi.org/10.1016/j.epsl.2005.06.043
    [Google Scholar]
  6. Cao, Y. T., Liu, L., Wang, C., Chen, D. L., & Zhang, A. D. (2009). P‐T path of Early Paleozoic pelitic high‐pressure granulite from Danshuiquan area in Altyn Tagh. Acta Petrologica Sinica, 25, 2260–2270 (in Chinese with English abstract).
    [Google Scholar]
  7. Cao, Y. T., Liu, L., Wang, C., Yang, W. Q., & Zhu, X. H. (2010). Geochemical zircon U‐Pb dating and Hf isotope compositions studies for Tatelekebulake granite in South Altyn Tagh. Acta Petrologica Sinica, 26, 3259–3271 (in Chinese with English abstract).
    [Google Scholar]
  8. Cao, Y. T., Liu, L., Wang, C., Kang, L., Yang, W. Q., Liang, S., … Wang, Y. W. (2013). Determination and implication of the HP pelitic granulite from the Munabulake area in the South Altyn Tagh. Acta Petrologica Sinica, 29, 1727–1739 (in Chinese with English abstract).
    [Google Scholar]
  9. Chattopadhyay, A., Das, K., Hayasaka, Y., & Sarkar, A. (2015). Syn‐ and post‐tectonic granite plutonism in the Sausar Fold Belt, Central India: Age constraints and tectonic implications. Journal of Asian Earth Sciences, 107, 110–121. https://doi.org/10.1016/j.jseaes.2015.04.006
    [Google Scholar]
  10. Che, Z. C., & Sun, Y. (1996). The age of the Altun granulite facies complex and the basement of the Tarim basin. Reginal Geology of China, 56, 51–57 (in Chinese with English abstract).
    [Google Scholar]
  11. Chen, J., Wang, B. Z., Li, B., Zhang, Z. Q., Qiao, B. X., & Jin, T. T. (2015). Zircon U‐Pb ages, geochemistry, and Sr–Nd–Pb isotopic compositions of middle triassic granodiorites from the Kaimuqi Area, East Kunlun, Northwest China: Implications for slab breakoff. International Geology Review, 57, 257–270. https://doi.org/10.1080/00206814.2014.1003105
    [Google Scholar]
  12. Cheng, F., Jolivet, M., Fu, S., Zhang, C., Zhang, Q., & Guo, Z. (2016). Large‐scale displacement along the altyn tagh fault (North Tibet) since its eocene initiation: Insight from detrital zircon U‐Pb geochronology and subsurface data. Tectonophysics, 677–678, 261–279. https://doi.org/10.1016/j.tecto.2016.04.023
    [Google Scholar]
  13. Cui, M. H. (2012). Petrogenesis of intermediate‐basic igneous rocks and cherts from Yaziquan, Xinjiang Qimantag Mountain. Master thesis, Chinese Academy of Geological Science, China (in Chinese with English abstract).
  14. Cui, M. H., Meng, F. C., & Wu, X. K. (2011). Early Ordovician island arc of Qimantag Mountain, eastern Kunlun: Evidences from geochemistry, Sm‐Nd isotope and geochronology of intermediate‐basic igneous rocks. Acta Petrologica Sinica, 27, 3365–3379 (in Chinese with English abstract).
    [Google Scholar]
  15. Dick, H. J. B., & Bullen, T. (1984). Chromian spinel as a petrogenetic indicator in abyssal and alpine‐type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86, 54–76. https://doi.org/10.1007/BF00373711
    [Google Scholar]
  16. Dilek, Y., & Furnes, H. (2011). Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123, 387–411. https://doi.org/10.1130/B30446.1
    [Google Scholar]
  17. Duan, X. X. (2013). Geological characteristics, geochronology and tectonic significance of the Qingshuiquan ophiolite in the southern Altyn Tagh, Kunlun Mountains. Master thesis, Chang’an University, China (in Chinese with English abstract).
  18. Feng, C. Y., Zhao, Y. M., Li, D. X., Liu, J. N., Xiao, Y., Li, G. C., & Ma, S. C. (2011). Skarn types and mineralogical characteristics of the Fe‐Cu‐polymetallic skarn deposits in the Qimantage Area, Western Qinghai Province. Acta Geologica Sinica, 85, 1108–1115 (in Chinese with English abstract).
    [Google Scholar]
  19. Foster, G., Kinny, P., Vance, D., Prince, C., & Harris, N. (2000). The significance of monazite U‐Th‐Pb age data in metamorphic assemblages; a combined study of monazite and garnet chronometry. Earth and Planetary Science Letters, 181, 327–340. https://doi.org/10.1016/S0012-821X(00)00212-0
    [Google Scholar]
  20. Gao, Y., & Li, W. (2011). Petrogenesis of granites containing tungsten and tin ores in the Baiganhu deposit, Qimantage, Nw China: Constraints from petrology, chronology and geochemistry. Geochimica (Beijing), 40, 324–336.
    [Google Scholar]
  21. Hietpas, J., Samson, S., Moecher, D., & Schmitt, A. K. (2010). Recovering tectonic events from the sedimentary record: Detrital monazite plays in high fidelity. Geology, 38, 167–170. https://doi.org/10.1130/G30265.1
    [Google Scholar]
  22. Hoskin, P. W. O., & Black, L. P. (2000). Metamorphic zircon formation by solid‐state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18, 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.x
    [Google Scholar]
  23. Hu, X. M., An, W., Wang, J., Garzanti, E., & Guo, R. H. (2014). Himalayan detrital chromian spinel and timing of Indus‐Yarlung ophiolite erosion. Tectonophysics, 621, 60–68.
    [Google Scholar]
  24. Iizuka, T., McCulloch, M. T., Komiya, T., Shibuya, T., Ohta, K., Ozawa, H., … Collerson, K. D. (2010). Monazite geochronology and geochemistry of meta‐sediments in the Narryer Gneiss Complex, Western Australia: Constraints on the tectonothermal history and provenance. Contributions to Mineralogy and Petrology, 160, 803–823. https://doi.org/10.1007/s00410-010-0508-0
    [Google Scholar]
  25. Itano, K., Iizuka, T., Chang, Q., Kimura, J. I., & Maruyama, S. (2016). U‐Pb chronology and geochemistry of detrital monazites from major African rivers: Constraints on the timing and nature of the pan‐African orogeny. Precambrian Research, 282, 139–156. https://doi.org/10.1016/j.precamres.2016.07.008
    [Google Scholar]
  26. Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation‐inductively coupled plasma‐mass spectrometry to in Situ U‐Pb zircon geochronology. Chemical Geology, 211, 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017
    [Google Scholar]
  27. Ji, J. L., Zhang, K. X., Clift, P. D., Zhuang, G. S., Song, B. W., Ke, X., & Xu, Y. D. (2017). High‐resolution magnetostratigraphic study of the Paleogene‐Neogene Strata in the Northern Qaidam Basin: Implications for the growth of the Northeastern Tibetan Plateau. Gondwana Research, 46, 141–155. https://doi.org/10.1016/j.gr.2017.02.015
    [Google Scholar]
  28. Kamenetsky, V. S., Crawford, A. J., & Meffre, S. (2001). Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr‐spinel and melt inclusions from primitive rocks. Journal of Petrology, 42, 655–671. https://doi.org/10.1093/petrology/42.4.655
    [Google Scholar]
  29. Kang, L., Liu, L., Cao, Y. T., Wang, C., Yang, W. Q., & Liang, S. (2013). Geochemistry, zircon U‐Pb age and its geological significance of the gneissic granite from the eastern segment of the Tatelekebulake composite granite in the south Altyn Tagh. Acta Petrologica Sinica, 29, 3039–3048 (in Chinese with English abstract).
    [Google Scholar]
  30. Kang, L., Liu, L., Cao, Y. T., Wang, C., Yang, W. Q., & Zhu, X. H. (2011). Geochemistry, zircon LA‐ICP‐MS U‐Pb ages and Hf isotopes of Hongliugou moyite from north Altyn Tagh tectonic belt. Geological Bulletin of China, 30, 1066–1076 (in Chinese with English abstract).
    [Google Scholar]
  31. Kang, L., Xiao, P. X., Gao, X. F., Xi, R. G., & Yang, Z. C. (2016). Early paleozoic magmatism and collision orogenic process of the south altyn. Acta Geologica Sinica, 90, 2527–2550 (in Chinese with English abstract).
    [Google Scholar]
  32. Kelts, A. B., Ren, M. H., & Anthony, E. Y. (2008). Monazite occurrence, chemistry, and chronology in the granitoid rocks of the Lachlan Fold Belt, Australia: An electron microprobe study. American Mineralogist, 93, 373–383. https://doi.org/10.2138/am.2008.2600
    [Google Scholar]
  33. Lee, Y. I. (1999). Geotectonic significance of detrital chromian spinel: A review. Geosciences Journal, 3, 23–29. https://doi.org/10.1007/BF02910231
    [Google Scholar]
  34. Lenaz, D., Kamenetsky, V. S., Crawford, A. J., & Princivalle, F. (2000). Melt inclusions in detrital spinel from the Se Alps (Italy–Slovenia): A new approach to provenance studies of sedimentary basins. Contributions to Mineralogy and Petrology, 139, 748–758. https://doi.org/10.1007/s004100000170
    [Google Scholar]
  35. Li, L., Wu, C., & Yu, X. (2018). Cenozoic evolution of the Altyn Tagh and East Kunlun fault zones inferred from detrital garnet, tourmaline and rutile in Southwestern Qaidam Basin (Northern Tibetan Plateau). Basin Research, 30, 35–58. https://doi.org/10.1111/bre.12241
    [Google Scholar]
  36. Li, W., Neubauer, F., Liu, Y. J., Genser, J., Ren, S. M., Han, G. Q., & Liang, C. Y. (2013). Paleozoic evolution of the Qimantagh Magmatic Arcs, Eastern Kunlun Mountains: Constraints from zircon dating of granitoids and modern river sands. Journal of Asian Earth Sciences, 77, 183–202. https://doi.org/10.1016/j.jseaes.2013.08.030
    [Google Scholar]
  37. Li, X. M., Ma, Z. P., Sun, J. M., Xu, X. Y., Lei, Y. X., Wang, L. S., & Duan, X. X. (2009). Characteristics and age study about the Yuemakeqi mafic‐ultramafic rock in the southern Altyn Fault. Acta Petrologica Sinica, 25, 862–872 (in Chinese with English abstract).
    [Google Scholar]
  38. Liu, G., Zhang, Y., Xue, J., Wu, G., & Chen, Y. (2014). Zircon La‐Icpms U‐Pb dating and geochemistry of basement granites from North Kunlun Faults Zone, Western Qaidam Basin and their geological implications. Acta Petrologica Sinica, 30, 1615–1627.
    [Google Scholar]
  39. Liu, J. N., Feng, C. Y., Zhao, Y. M., Li, D. X., Xiao, Y., Zhou, J. H., & Ma, Y. S. (2013). Characteristics of intrusive rock, metasomatites, mineralization and atteration in Yemaquan skarn Fe‐Zn polymetallic deposit, Qinghai Province. Mineral Deposits, 32, 77–93 (in Chinese with English abstract).
    [Google Scholar]
  40. Liu, L., Che, Z. C., Wang, Y., Luo, J. H., Wang, J. Q., & Gao, Z. J. (1998). The evidence of Sm‐Nd isochron age for the early Paleozoic ophiolite in Mangya area, Altun Mountains. Chinese Science Bulletin, 43, 754–756. https://doi.org/10.1007/BF02898953
    [Google Scholar]
  41. Liu, L., Chen, D. L., Zhang, A. D., Sun, Y., Wang, Y., Yang, J. X., & Luo, J. H. (2005). Ultrahigh pressure (>7 GPa) gneissic K‐feldspar (‐bearing) garnet clinopyroxenite in the Altyn Tagh, NW China: Evidence from clinopyroxene exsolution in garnet. Science in China Ser. D Earth Sciences, 48, 1000–1010.
    [Google Scholar]
  42. Liu, L., Kang, L., Cao, Y. T., & Yang, W. Q. (2015). Early Paleozoic granitic magmatism related to the processes from subduction to collision in South Altyn, NW China. Science China: Earth Sciences, 58, 1513–1522. https://doi.org/10.1007/s11430-015-5151-1
    [Google Scholar]
  43. Liu, L., Wang, C., Chen, D., Zhang, A., & Liou, J. G. (2009). Petrology and geochronology of HP–UHP rocks from the South Altyn Tagh, Northwestern China. Journal of Asian Earth Sciences, 35, 232–244. https://doi.org/10.1016/j.jseaes.2008.10.007
    [Google Scholar]
  44. Liu, L., Yang, J. X., Chen, D. L., Wang, C., Zhang, C. L., Yang, W. Q., & Cao, Y. T. (2010). Progress and controversy in the study of HP‐UHP metamorphic terranes in the west and middle central China orogen. Journal of Earth Science, 21, 581–597. https://doi.org/10.1007/s12583-010-0128-7
    [Google Scholar]
  45. Liu, Y. S., Hu, Z. C., Gao, S., Gunther, D., Xu, J., Gao, C. G., & Chen, H. H. (2008). In situ analysis of major and trace elements of anhydrous minerals by La‐Icp‐Ms without applying an internal standard. Chemical Geology, 257, 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    [Google Scholar]
  46. Lu, S. N., Li, H. K., Zhang, C. L., & Niu, G. H. (2008). Geological and geochronological evidence for the precambrian evolution of the tarim craton and surrounding continental fragments. Precambrian Research, 160, 94–107. https://doi.org/10.1016/j.precamres.2007.04.025
    [Google Scholar]
  47. Ludwig, K. R. (2003). ISOPLOT 3: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Centre Special Publication, 4, 74.
    [Google Scholar]
  48. Mange, M. A., & Morton, A. C. (2007). Geochemistry of heavy minerals. In M. A. Mange & D. T. Wright (Eds.), Heavy minerals in use. Elsevier. Developments in Sedimentology, 58, 345–391.
    [Google Scholar]
  49. Meng, F., Cui, M., Wu, X., & Ren, Y. (2015). Heishan mafic‐ultramafic rocks in the Qimantag area of Eastern Kunlun, Nw China: Remnants of an early paleozoic incipient island arc. Gondwana Research, 27, 745–759. https://doi.org/10.1016/j.gr.2013.09.023
    [Google Scholar]
  50. Meng, F. C., Cui, M. H., Wu, X. K., Wu, J. F., & Wang, J. H. (2013). Magmatic and metamorphic events recorded in granitic gneisses from the Qimantag, East Kunlun Mountains, Northwest China. Acta Petrologica Sinica, 29, 2107–2122.
    [Google Scholar]
  51. Mo, X. X., Hou, Z. Q., Niu, Y. L., Dong, G. C., Qu, X. M., Zhao, Z. D., & Yang, Z. M. (2007). Mantle contributions to crustal thickening during continental collision: Evidence from cenozoic igneous rocks in southern Tibet. Lithos, 96, 225–242. https://doi.org/10.1016/j.lithos.2006.10.005
    [Google Scholar]
  52. Najman, Y., & Garzanti, E. (2000). Reconstructing early Himalayan tectonic evolution and paleogeography from tertiary foreland basin sedimentary rocks, northern India. Geological Society of America Bulletin, 112, 435–449.
    [Google Scholar]
  53. Pearce, J. A., & Robinson, P. T. (2010). The troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Research, 18, 60–81. https://doi.org/10.1016/j.gr.2009.12.003
    [Google Scholar]
  54. Pyle, J. M., Spear, F. S., Rudnick, R. L., & McDonough, W. F. (2001). Monazite–Xenotime–Garnet equilibrium in metapelites and a new monazite‐garnet thermometer. Journal of Petrology, 42, 2083–2107. https://doi.org/10.1093/petrology/42.11.2083
    [Google Scholar]
  55. Qi, S., Deng, J., Ye, Z., Liu, R., & Wang, G. (2013). La‐Icp‐Ms zircon U‐Pb dating of late Devonian diabase dike swarms in Qimantag Area. Geological Bulletin of China, 32, 1385–1393.
    [Google Scholar]
  56. Sawka, W. N., Banfield, J. F., & Chappell, B. W. (1986). A weathering‐related origin of widespread monazite in S‐type granites. Geochimica Et Cosmochimica Acta, 50, 171–175. https://doi.org/10.1016/0016-7037(86)90062-1
    [Google Scholar]
  57. She, H. Q., Zhang, D. Q., Jing, X. Y., Guan, J., Zhu, H. P., Feng, C. Y., & Li, D. X. (2007). Geological characteristics and genesis of the Ulan Uzhur porphyry copper deposit in Qinghai. Geology in China, 2, 013.
    [Google Scholar]
  58. Song, T. Z., Zhao, H. X., Zhang, W. K., Bai, X. D., An, S. W., & Yang, M. (2010). The geological features of Shizigou Ophiolites in Qimantage Area. Northwestern Geology, 43, 124–133 (in Chinese with English abstract).
    [Google Scholar]
  59. Spandler, C., Hermann, J., Arculus, R., & Mavrogenes, J. (2003). Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies; Implications for deep subduction‐zone processes. Contributions to Mineralogy and Petrology, 146, 205–222. https://doi.org/10.1007/s00410-003-0495-5
    [Google Scholar]
  60. Štípská, P., Hacker, B., Racek, M., Holder, R., Kylander‐Clark, A., Schulmann, K., & Hasalová, P. (2015). Monazite dating of prograde and retrograde P‐T–D paths in the barrovian terrane of the thaya window, bohemian massif. Journal of Petrology, 56, 1007–1035. https://doi.org/10.1093/petrology/egv026
    [Google Scholar]
  61. Sun, S. S., & McDonough, W. S. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42, 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
    [Google Scholar]
  62. Tan, S. X., Bai, Y. S., Chang, G. H., Tong, H. K., & Bao, G. P. (2004). Discovery and geological significance of metamorphic and intrusive rock (system) of Qimantage region in Jinning epoch. Northwestern Geology, 37, 69–73.
    [Google Scholar]
  63. Tomascak, P. B., Krogstad, E. J., & Walker, R. J. (1996). U‐Pb monazite geochronology of granitic rocks from Maine: Implications for late Paleozoic tectonics in the northern appalachians. The Journal of Geology, 104, 185–195. https://doi.org/10.1086/629813
    [Google Scholar]
  64. Wang, B. Z. (2012). The study and investigation on the assembly and coupling Petrotectonic assemblage during Paleozoic‐Mesozoic period at Qimantage geological corridor domain. PhD thesis, China University of Geosciences (Beijing), China. (in Chinese with English abstract).
  65. Wang, C. (2011). Precambrian tectonic of south margin of Tarim Basin, NW China. PhD thesis, Northwest University, China (in Chinese with English abstract).
  66. Wang, C., Liu, L., Chen, D., & Cao, Y. (2011). Petrology, geochemistry, geochronology, and metamorphic evolution of garnet peridotites from South Altyn Tagh Uhp Terrane, Northwestern China: Records related to crustal slab subduction and exhumation history. Ultrahigh Pressure Metamorphism, 541–577.
  67. Wang, C., Liu, L., Xiao, P. X., Cao, Y. T., Yu, H. Y., Meert, J. G., & Liang, W. T. (2014). Geochemical and geochronologic constraints for Paleozoic magmatism related to the orogenic collapse in the Qimantagh‐South Altyn Region, Northwestern China. Lithos, 202, 539–20. https://doi.org/10.1016/j.lithos.2014.05.016
    [Google Scholar]
  68. Wang, C., Liu, L., Yang, W. Q., Zhu, X. H., Cao, Y. T., Kang, L., … He, S. P. (2013). Provenance and ages of the altyn complex in Altyn Tagh: Implications for the early neoproterozoic evolution of northwestern China. Precambrian Research, 230, 193–208. https://doi.org/10.1016/j.precamres.2013.02.003
    [Google Scholar]
  69. Wang, J., Wu, C., Li, Z., Zhu, W., Chen, Y., Li, Q., … Chen, R. (2017). Geochronology and geochemistry of volcanic rocks in the arbasay formation, Xinjiang Province (Northwest China): Implications for the tectonic evolution of the north Tianshan. International Geology Review, 59, 1324–1343. https://doi.org/10.1080/00206814.2016.1185750
    [Google Scholar]
  70. Wang, Y., Liu, L., Che, Z. C., Chen, D. L., & Luo, J. H. (1999). Geochemical characteristics of early paleozoic ophiolite in Mangya area, Altun Mountains. Geological Review, 45, 1010–1014 (in Chinese with English abstract).
    [Google Scholar]
  71. Wawrzenitz, N., Krohe, A., Rhede, D., & Romer, R. L. (2012). Dating rock deformation with monazite: The impact of dissolution precipitation creep. Lithos, 134, 52–74. https://doi.org/10.1016/j.lithos.2011.11.025
    [Google Scholar]
  72. Wu, C. L., Lei, M., Wu, D., Zhang, X., Cheng, H. J., & Li, T. X. (2016). Zircon U‐Pb dating of Paleozoic granite from south Altun and response of the magmatic activity to the tectonic evolution of the Altun orogenic belt. Acta Geologica Sinica, 90, 2276–2315 (in Chinese with English abstract).
    [Google Scholar]
  73. Wu, C. L., Yang, J. S., Yao, S. Z., Zeng, L. S., Chen, S. Y., Li, H. B., … Mazdab, F. K. (2005). Characteristics of the granitoid complex and its zircon SHRIMP dating at the south margin of the Bashikaogong Basin, North Altun, NW China. Acta Petrologica Sinica, 21, 846–858 (in Chinese with English abstract).
    [Google Scholar]
  74. Xie, L., Wang, R., Wang, D., & Qiu, J. (2006). A Survey of accessory mineral assemblages in peralkaline and more aluminous a‐type granites of the southeast coastal area of China.
  75. Yang, P., & Rivers, T. (2002). The origin of Mn and Y annuli in garnet and the thermal dependence of P in garnet and Y in apatite in calc‐pelite and pelite, gagnon terrane, western Labrador. Geological Materials Research, 4, 539–35.
    [Google Scholar]
  76. Yang, W. Q., Liu, L., Ding, H. B., Xiao, P. X., Cao, Y. T., & Kang, L. (2012). Geochemistry, geochronology and zircon Hf isotopes of the Dimunalike granite in South Altyn Tagn and its geological significance. Acta Petrologica Sinica, 28, 4139–4150 (in Chinese with English abstract).
    [Google Scholar]
  77. Yu, H. F., Lu, S. N., Liu, Y. S., Xiu, Q. Y., & Li, Q. (2002). Composing of the Altyn Tagh Formation‐complex and its tectonic signification. Geological Bulletin of China, 21, 834–840 (in Chinese with English abstract).
    [Google Scholar]
  78. Yu, M. (2013). Geochemistry and Zonation of the Galinge Iron deposit, Qinghai Province. Master Thesis, China University of Geosciences (Beijing), China (in Chinese with English abstract).
  79. Yu, M., Feng, C. Y., Santosh, M., Mao, J. W., Zhu, Y. F., Zhao, Y. M., … Li, B. (2017). The qiman tagh orogen as a window to the crustal evolution in northern Qinghai‐Tibet Plateau. Earth‐Science Reviews, 167, 103–123. https://doi.org/10.1016/j.earscirev.2017.02.008
    [Google Scholar]
  80. Zack, T., von Eynatten, H., & Kronz, A. (2004). Rutile geochemistry and its potential use in quantitative provenance studies. Sedimentary Geology, 171, 37–58. https://doi.org/10.1016/j.sedgeo.2004.05.009
    [Google Scholar]
  81. Zhang, J. X., Mattinson, C. G., Meng, F. C., & Wan, Y. S. (2005). An early palaeozoic Hp/Ht granulite‐garnet peridotite association in the south altyn tagh, Nw China: P‐T history and U‐Pb geochronology. Journal of Metamorphic Geology, 23, 491–510. https://doi.org/10.1111/j.1525-1314.2005.00585.x
    [Google Scholar]
  82. Zhang, J. X., Meng, F. C., Yu, S. Y., Chen, W., & Chen, S. Y. (2007). 39Ar‐40Ar geochronology of high‐ pressure/low‐ temperature blueschist and eclogite in the North Altyn Tagh and their tectonic implications. Geology in China, 34, 558–564 (in Chinese with English abstract).
    [Google Scholar]
  83. Zhang, J. X., Zhang, Z. M., Xu, Z. Q., Yang, J. S., & Cui, J. W. (2000). Discovery of khondalite series from the western segment of Altyn Tagh and their petrological and geochronological studies. Science in China Series D: Earth Sciences, 43, 308–316. https://doi.org/10.1007/BF02906827
    [Google Scholar]
  84. Zhang, J. X., Zhang, Z. M., Xu, Z. Q., Yang, J. S., & Cui, J. W. (2001). Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China. Lithos, 56, 187–206. https://doi.org/10.1016/S0024-4937(00)00052-9
    [Google Scholar]
  85. Zheng, Z., Chen, Y. J., Deng, X. H., Yue, S. W., & Chen, H. J. (2016). Muscovite 40Ar/39Ar dating of the Baiganhu W‐Sn orefield, Qimantag, East Kunlun Mountains, and its geological implications. Geology in China, 43, 1341–1352 (in Chinese with English abstract).
    [Google Scholar]
  86. Zhu, W., Wu, C., Wang, J., Zhou, T., Li, J., Zhang, C., & Li, L. (2017). Heavy mineral compositions and zircon U‐Pb ages of cenozoic sandstones in the Sw Qaidam Basin, Northern Tibetan Plateau: implications for provenance and tectonic setting. Journal of Asian Earth Sciences, 146, 233–250. https://doi.org/10.1016/j.jseaes.2017.05.023
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12333
Loading
/content/journals/10.1111/bre.12333
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Cr‐spinel , monazite , northern Tibetan Plateau , tectonics and sedimentation and zircon
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error