1887
Volume 32, Issue 4
  • E-ISSN: 1365-2117

Abstract

[

We use a 3D seismic dataset from Offshore Angola to document the salt‐influenced translation and evolution of structures on the margin. We show that salt interaction with base‐salt relief has played a crucial role in the stratigraphic and structural evolution of the basin.

, Abstract

Salt‐influenced passive margins are widespread and commonly hydrocarbon‐rich. However, they can be structurally complex, with their kinematic development being poorly understood. Classic models of salt tectonics divide such margins into updip extensional, mid‐slope translational and downdip contractional kinematic domains. Furthermore the faults, folds, and salt walls associated with each kinematic domain are typically assumed to form perpendicular to the maximum principal stress, which in gravitationally driven systems means broadly perpendicular to base‐salt dip. We use high‐resolution 3D seismic reflection data from the Outer Kwanza Basin, offshore Angola to show that these models cannot explain the diversity of salt structures developing on passive margins, especially those defined by considerable relief on the base‐of‐salt surface. Overburden seismic‐stratigraphic patterns record the basinward translation and rotation, allowing us to reconstruct the origin and evolution of the salt structures. We show structures in the transitional domain of the Outer Kwanza Basin display three dominant trends, each characterised by different structural styles: (a) salt walls perpendicular to the overall base‐salt dip, (b) salt walls parallel to the base‐salt dip and (c) salt walls oblique to the base‐salt dip. We show that each set of walls has a unique history, with synchronous phases of extension and compression occurring in adjacent structures despite their close spatial relationship. Our analysis suggests that, in the Outer Kwanza Basin, the structural evolution of the salt and overburden is predominantly controlled by translation over relief on the base‐salt surface formed above fault scarps associated with a preceding phase of rifting. Changes in the downdip volumetric flux and velocity of the salt over topographic features can cause local extension or contraction of the salt and its overburden, associated with local acceleration or deceleration of the salt, respectively. This interaction with base‐salt relief creates locally variable stress fields that deform the salt and its overburden, overprinting the broader, margin‐scale salt tectonics typically associated with gravity gliding and spreading.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12390
2019-08-28
2024-04-26
Loading full text...

Full text loading...

References

  1. Bally, A. W. (1981). Thoughts on the tectonics of folded belts. Geological Society, London, Special Publications, 9(1), 13–32.
    [Google Scholar]
  2. Brice, S. E., Cochran, M. D., Pardo, G., & Edwards, A. D. (1982). Tectonics and sedimentation of the South Atlantic rift sequence: Cabinda, Angola. In W. A.Drake (Ed.), Studies in continental margin geology (pp. 5–18). AAPG Memoir.
    [Google Scholar]
  3. Brink, A. H. (1974). Petroleum geology of Gabon basin. AAPG Bulletin, 58(2), 216–235.
    [Google Scholar]
  4. Brown, A. R. (2011). Interpretation of Three-Dimensional Seismic Data. Tulsa, OK: AAPG Memoir 42, Society of Exploration Geophysicists and American Association of Petroleum Geologists.
    [Google Scholar]
  5. Brun, J. P., & Fort, X. (2011). Salt tectonics at passive margins: Geology versus models. Marine and Petroleum Geology, 28(6), 1123–1145.
    [Google Scholar]
  6. Burollet, P. F. (1975). Tectonique en radeaux en Angola. Bulletin De La Société Géologique De France, 7(4), 503–504.
    [Google Scholar]
  7. Cobbold, P. R., & Szatmari, P. (1991). Radial gravitational gliding on passive margins. Tectonophysics, 188(3–4), 249–289.
    [Google Scholar]
  8. Dooley, T. P., & Hudec, M. R. (2017). The effects of base‐salt relief on salt flow and suprasalt deformation patterns—Part 2: Application to the eastern Gulf of Mexico. Interpretation, 5(1), SD25–SD38.
    [Google Scholar]
  9. Dooley, T. P., Hudec, M. R., Carruthers, D., Jackson, M. P., & Luo, G. (2017). The effects of base‐salt relief on salt flow and suprasalt deformation patterns—Part 1: Flow across simple steps in the base of salt. Interpretation, 5(1), SD1–SD23.
    [Google Scholar]
  10. Dooley, T. P., Hudec, M. R., Pichel, L. M., & Jackson, M. P. (2018). The impact of base‐salt relief on salt flow and suprasalt deformation patterns at the autochthonous, paraautochthonous and allochthonous level: Insights from physical models. Geological Society, London, Special Publications, 476, SP473–SP476.
    [Google Scholar]
  11. Duffy, O. B., Dooley, T. P., Hudec, M. R., Jackson, M. P., Fernandez, N., Jackson, C. A., & Soto, J. I. (2018). Structural evolution of salt‐influenced fold‐and‐thrust belts: A synthesis and new insights from basins containing isolated salt diapirs. Journal of Structural Geology, 114, 206–221. https://doi.org/10.1016/j.jsg.2018.06.024
    [Google Scholar]
  12. Duval, B., Cramez, C., & Jackson, M. P. A. (1992). Raft tectonics in the Kwanza basin, Angola. Marine and Petroleum Geology, 9(4), 389–404. https://doi.org/10.1016/0264-8172(92)90050-O
    [Google Scholar]
  13. Evans, R. (1978). Origin and significance of evaporites in basins around Atlantic margin. AAPG Bulletin, 62(2), 223–234. https://doi.org/10.1306/C1EA481A-16C9-11D7-8645000102C1865D
    [Google Scholar]
  14. Fort, X., Brun, J. P., & Chauvel, F. (2004). Contraction induced by block rotation above salt (Angolan margin). Marine and Petroleum Geology, 21(10), 1281–1294. https://doi.org/10.1016/j.marpetgeo.2004.09.006
    [Google Scholar]
  15. Gaullier, V., Brun, J. P., Gue, G., & Lecanu, H. (1993). Raft tectonics: The effects of residual topography below a salt decollement. Tectonophysics, 228(3–4), 363–381. https://doi.org/10.1016/0040-1951(93)90349-O
    [Google Scholar]
  16. Hudec, M. R., & Jackson, M. P. (2002). Structural segmentation, inversion, and salt tectonics on a passive margin: Evolution of the Inner Kwanza Basin, Angola. Geological Society of America Bulletin, 114(10), 1222–1244. https://doi.org/10.1130/0016-7606(2002)114<1222:SSIAST>2.0.CO;2
    [Google Scholar]
  17. Hudec, M. R., & Jackson, M. P. (2004). Regional restoration across the Kwanza Basin, Angola: Salt tectonics triggered by repeated uplift of a metastable passive margin. AAPG Bulletin, 88(7), 971–990. https://doi.org/10.1306/02050403061
    [Google Scholar]
  18. Hudec, M. R., Norton, I. O., Jackson, M. P., & Peel, F. J. (2013). Jurassic evolution of the Gulf of Mexico salt basin. AAPG Bulletin, 97(10), 1683–1710. https://doi.org/10.1306/04011312073
    [Google Scholar]
  19. Jackson, M. P., & Hudec, M. R. (2005). Stratigraphic record of translation down ramps in a passive‐margin salt detachment. Journal of Structural Geology, 27(5), 889–911. https://doi.org/10.1016/j.jsg.2005.01.010
    [Google Scholar]
  20. Jackson, M. P., & Hudec, M. R. (2017). Salt tectonics: Principles and practice. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  21. Jackson, M. P., Hudec, M. R., Fraenkl, R., Sikkema, W., Binga, L., & Da Silva, J. (2001). Minibasins translating down a basement ramp in the deepwater monocline province of the Kwanza Basin, Angola [abs.]. In American Association of Petroleum Geologists. Annual Meeting Official Program (Vol., 10, p. A99).
    [Google Scholar]
  22. Jackson, C. A., Jackson, M. P., Hudec, M. R., & Rodriguez, C. (2014). Internal structure, kinematics, and growth of a salt wall: Insights from 3-D seismic data. Geology, 42(4), 307–310.
    [Google Scholar]
  23. Jackson, M. P., Vendeville, B. C., & Schultz‐Ela, D. D. (1994). Structural dynamics of salt systems. Annual Review of Earth and Planetary Sciences, 22(1), 93–117.
    [Google Scholar]
  24. Lunde, G., Aubert, K., Lauritzen, O., & Lorange, E. (1992). Tertiary uplift of the Kwanza Basin in Angola (pp. 99–117). Géologie Africaine: Coll. Géol. Libreville, Recueil des Communications. Elf Aquitaine, Boussens, France.
    [Google Scholar]
  25. Lundin, E. R. (1992). Thin‐skinned extensional tectonics on a salt detachment, northern Kwanza Basin, Angola. Marine and Petroleum Geology, 9(4), 405–411.
    [Google Scholar]
  26. Marton, L. G., Tari, G. C., & Lehmann, C. T. (2000). Evolution of the Angolan passive margin, West Africa, with emphasis on post‐salt structural styles. Geophysical Monograph‐American Geophysical Union, 115, 129–150.
    [Google Scholar]
  27. Mauduit, T., Guerin, G., Brun, J. P., & Lecanu, H. (1997). Raft tectonics: The effects of basal slope angle and sedimentation rate on progressive extension. Journal of Structural Geology, 19(9), 1219–1230.
    [Google Scholar]
  28. Peel, F. J. (2014). The engines of gravity‐driven movement on passive margins: Quantifying the relative contribution of spreading vs. gravity sliding mechanisms. Tectonophysics, 633, 126–142.
    [Google Scholar]
  29. Peel, F., Jackson, M., & Ormerod, D. (1998). Influence of major steps in the base of salt on the structural style of overlying thin‐skinned structures in deep water Angola. In American Association of Petroleum Geologists International Conference and Exhibition, Rio de Janeiro, Brazil, November, Extended Abstracts Volume (pp. 366–367).
    [Google Scholar]
  30. Pichel, L. M., Jackson, C. A. L., Peel, F., & Dooley, T. P. (2019). Base‐salt relief controls on salt‐tectonic structural style, São Paulo Plateau, Santos Basin, Brazil. Basin Research. https://doi.org/10.1111/bre.12375
    [Google Scholar]
  31. Pichel, L. M., Peel, F., Jackson, C. A., & Huuse, M. (2018). Geometry and kinematics of salt‐detached ramp syncline basins. Journal of Structural Geology, 115, 208–230.
    [Google Scholar]
  32. Price, N. J., & Cosgrove, J. W. (1990). Analysis of geological structures. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  33. Quirk, D. G., Schødt, N., Lassen, B., Ings, S. J., Hsu, D., Hirsch, K. K., & Von Nicolai, C. (2012). Salt tectonics on passive margins: Examples from Santos, Campos and Kwanza basins. Geological Society, London, Special Publications, 363(1), 207–244. https://doi.org/10.1144/SP363.10
    [Google Scholar]
  34. Rowan, M. G., Peel, F. J., Vendeville, B. C., & Gaullier, V. (2012). Salt tectonics at passive margins: Geology versus models–Discussion. Marine and Petroleum Geology, 37(1), 184–194. https://doi.org/10.1016/j.marpetgeo.2012.04.007
    [Google Scholar]
  35. Schultz‐Ela, D. D. (2001). Excursus on gravity gliding and gravity spreading. Journal of Structural Geology, 23(5), 725–731. https://doi.org/10.1016/S0191-8141(01)00004-9
    [Google Scholar]
  36. Spathopoulos, F. (1996). An insight on salt tectonics in the Angola Basin, South Atlantic. Geological Society, London, Special Publications, 100(1), 153–174. https://doi.org/10.1144/GSL.SP.1996.100.01.11
    [Google Scholar]
  37. Tadeu dos Reis, A., Gorini, C., Weibull, W., Perovano, R., Mepen, M., & Ferreira, É. (2008). Radial gravitational gliding indicated by subsalt relief and salt‐related structures: The example of the Gulf of Lions, western Mediterranean. Revista Brasileira De Geofísica, 26(3), 347–365.
    [Google Scholar]
  38. Van Gent, H., Urai, J. L., & De Keijzer, M. (2011). The internal geometry of salt structures–A first look using 3D seismic data from the Zechstein of the Netherlands. Journal of Structural Geology, 33(3), 292–311.
    [Google Scholar]
  39. Vendeville, B. C., & Jackson, M. P. (1992a). The rise of diapirs during thin‐skinned extension. Marine and Petroleum Geology, 9(4), 331–354. https://doi.org/10.1016/0264-8172(92)90047-I
    [Google Scholar]
  40. Vendeville, B. C., & Jackson, M. P. A. (1992b). The fall of diapirs during thin‐skinned extension. Marine and Petroleum Geology, 9(4), 354–371. https://doi.org/10.1016/0264-8172(92)90048-J
    [Google Scholar]
  41. von Nicolai, C. (2011). The interplay of salt movements and regional tectonics at the passive continental margin of the South Atlantic, Kwanza Basin. Unpublished PhD thesis. Universität Potsdam. [https://goo.gl/8LwQBY]
    [Google Scholar]
  42. Weijermars, R., Jackson, M. T., & Vendeville, B. (1993). Rheological and tectonic modeling of salt provinces. Tectonophysics, 217(1–2), 143–174. https://doi.org/10.1016/0040-1951(93)90208-2
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12390
Loading
/content/journals/10.1111/bre.12390
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): passive margins; rift basins; structure; tectonics and sedimentation

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error