1887
Volume 32, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

In the northwestern sector of the Zagros foreland basin, axial fluvial systems initially delivered fine‐grained sediments from northwestern source regions into a contiguous basin, and later transverse fluvial systems delivered coarse‐grained sediments from northeastern sources into a structurally partitioned basin by fold‐thrust deformation. Here we integrate sedimentologic, stratigraphic, palaeomagnetic and geochronologic data from the northwestern Zagros foreland basin to define the Neogene history of deposition and sediment routing in response to progressive advance of the Zagros fold‐thrust belt. This study constrains the depositional environments, timing of deposition and provenance of nonmarine clastic deposits of the Injana (Upper Fars), Mukdadiya (Lower Bakhtiari) and Bai‐Hasan (Upper Bakhtiari) Formations in the Kurdistan region of Iraq. Sediments of the Injana Formation (~12.4–7.75 Ma) were transported axially (orogen‐parallel) from northwest to southeast by meandering and low‐sinuosity channel belt system. In contrast, during deposition of the Mukdadiya Formation (~7.75–5 Ma), sediments were delivered transversely (orogen‐perpendicular) from northeast to southwest by braided and low‐sinuosity channel belt system in distributive fluvial megafans. By ~5 Ma, the northwestern Zagros foreland basin became partitioned by growth of the Mountain Front Flexure and considerable gravel was introduced in localized alluvial fans derived from growing topographic highs. Foredeep accumulation rates during deposition of the Injana, Mukdadiya and Bai‐Hasan Formations averaged 350, 400 and 600 m/Myr respectively, suggesting accelerated accommodation generation in a rapidly subsiding basin governed by flexural subsidence. Detrital zircon U‐Pb age spectra show that in addition to sources of Mesozoic‐Cenozoic cover strata, the Injana Formation was derived chiefly from Palaeozoic‐Precambrian (including Carboniferous and latest Neoproterozoic) strata in an axial position to the northwest, likely from the Bitlis‐Puturge Massif and broader Eastern Anatolia. In contrast, the Mukdadiya and Bai‐Hasan Formations yield distinctive Palaeogene U‐Pb age peaks, particularly in the southeastern sector of the study region, consistent with transverse delivery from the arc‐related terranes of the Walash and Naopurdan volcano‐sedimentary groups (Gaveh‐Rud domain?) and Urumieh‐Dokhtar magmatic arc to the northeast. These temporal and spatial variations in stratigraphic framework, depositional environments, sediment routing and compositional provenance reveal a major drainage reorganization during Neogene shortening in the Zagros fold‐thrust belt. Whereas axial fluvial systems initially dominated the foreland basin during early orogenesis in the Kurdistan region of Iraq, transverse fluvial systems were subsequently established and delivered major sediment volumes to the foreland as a consequence of the abrupt deformation advance and associated topographic growth in the Zagros.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12391
2019-08-08
2024-04-26
Loading full text...

Full text loading...

References

  1. Abdulla, K. L. (2015). Petrogenesis and geochronology of plagiogranite rocks in Penjween ophiolite, Kurdistan region, NE Iraq. Masters thesis, University of Sulaimaniya, Sulaymaniyah, Iraq.
    [Google Scholar]
  2. Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., … Wortel, R. (2011). Zagros orogeny: A subduction‐dominated process. Geological Magazine, 148, 692–725.
    [Google Scholar]
  3. Al Naqib, K. M. (1960). Geology of the southern area of Kirkuk Liwa, Iraq. 2nd Arab petroleum congress (League of Arab States), Beirut, Vol. II, 49 pp.
  4. Al‐Abbasi, M. W., Sakry, S. I., & Karem, C. A. (2011). A study of Macro Fossils (Bivalvia) From Fat'ha Formation (Middle Miocene) at Shaqlawa area, Northeast of Iraq. Tikrit Journal of Pure Science, 16, 235–241.
    [Google Scholar]
  5. Alavi, M. (1991). Tectonic map of the middle east, ministry of industries and mines, scale, 1, 5,000,000. Tehran, Iran: Ministry of Industries & Mines.
    [Google Scholar]
  6. Alavi, M. (2004). Regional stratigraphy of the Zagros fold‐thrust belt of Iran and its proforeland evolution. American Journal of Science, 304(1), 1–20.
    [Google Scholar]
  7. Al‐Azzawi, N. K. (2013). Paleo and neo‐tectonics of the Mosul fault and its impact on the tectonics of the foreland area of Iraq. Iraqi National Journal of Earth Sciences, 13(1), 59–74.
    [Google Scholar]
  8. Al‐Banna, A. S., Al‐Sagri, K. E., & Humide, L. Z. (2013). The boundary between stable and unstable shelf in Iraq as inferred from using ideal gravity to elevation ratio. Arabian Journal of Geosciences, 6, 187–191.
    [Google Scholar]
  9. Ali, A. R., & Bayiz, D. A. (2016). Clay mineralogy of Mukdadiya formation in Shewasoor area: Northeastern Kirkuk City, Iraq. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 10, 433–438.
    [Google Scholar]
  10. Ali, S. A., Buckman, S., Aswad, K. J., Jones, B. G., Ismail, S. A., & Nutman, A. P. (2012). Recognition of Late Cretaceous Hasanbag ophiolite‐arc rocks in the Kurdistan Region of the Iraqi Zagros suture zone: A missing link in the paleogeography of the closing Neotethys Ocean. Lithosphere, 4, 395–410.
    [Google Scholar]
  11. Ali, S. A., Buckman, S., Aswad, K. J., Jones, B. G., Ismail, S. A., & Nutman, A. P. (2013). The tectonic evolution of a Neo‐Tethyan (Eocene–Oligocene) island‐arc (Walash and Naopurdan groups) in the Kurdistan region of the Northeast Iraqi Zagros Suture Zone. Island Arc, 22, 104–125.
    [Google Scholar]
  12. Ali, S. A., Sleabi, R. S., Talabani, M. J., & Jones, B. G. (2017) Provenance of the Walash‐Naopurdan back‐arc–arc clastic sequences in the Iraqi Zagros Suture Zone. Journal of African Earth Sciences, 125, 73–87.
    [Google Scholar]
  13. Al‐Juboury, A. I. A. (2009). The upper Miocene Injana (upper Fars) formation of Iraq: Insights on provenance history. Arabian Journal of Geosciences, 2, 337.
    [Google Scholar]
  14. Allen, J. R. L. (1983). Studies in fluviatile sedimentation: Bars, bar‐complexes and sandstone sheets (low‐sinuosity braided streams) in the Brownstones (L. Devonian), Welsh Borders. Sedimentary Geology, 33, 237–293.
    [Google Scholar]
  15. Allen, M. B., & Armstrong, H. A. (2008). Arabia‐Eurasia collision and the forcing of mid‐Cenozoic global cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 265(1–2), 52–58.
    [Google Scholar]
  16. Allen, P. A. (2008). Time scales of tectonic landscapes and their sediment routing systems. Geological Society, London, Special Publications, 296(1), 7–28.
    [Google Scholar]
  17. Al‐Riyami, K., Robertson, A., Dixon, J., & Xenophontos, C. (2002). Origin and emplacement of the Late Cretaceous Baer‐Bassit ophiolite and its metamorphic sole in NW Syria. Lithos, 65, 225–260.
    [Google Scholar]
  18. Alsharhan, A. S., & Nairn, A. E. M. (2003). Sedimentary basin and petroleum geology of the middle east. Amsterdam, The Netherlands: Elsevier.
    [Google Scholar]
  19. Altinli, I. E. (1966). Geology of eastern and southeastern Anatolia. Bulletin of the Mineral Research and Exploration Institute of Turkey, 66, 35–75.
    [Google Scholar]
  20. Ameen, M. S. (1992). Effect of basement tectonics on hydrocarbon generation, migration, and accumulation in Northern Iraq. AAPG Bulletin, 76, 356–370.
    [Google Scholar]
  21. Ao, S., Xiao, W., Jafari, M. K., Talebian, M., Chen, L., Wan, B., … Zhang, Z. (2016). U‐Pb zircon ages, field geology and geochemistry of the Kermanshah ophiolite (Iran): From continental rifting at 79 Ma to oceanic core complex at ca. 36 Ma in the southern Neo‐Tethys. Gondwana Research, 31, 305–318.
    [Google Scholar]
  22. ASTER Global Digital Elevation Map (GDEM)
    ASTER Global Digital Elevation Map (GDEM) . (2011) ASTER GDEM is a product of NASA and METI. Retrieved from https://asterweb.jpl.nasa.gov/gdem.asp
    [Google Scholar]
  23. Aswad, K. J. (1999). Arc‐continent collision in Northeastern Iraq as evidenced by Mawat and Penjwin Ophiolite Complexes. Raffidain Journal of Science, 10, 51–61.
    [Google Scholar]
  24. Aswad, K. J., & Elias, E. M. (1988). Petrogenesis, geochemistry and metamorphism of spilitized subvolcanic rocks of the Mawat Ophiolite Complex, NE Iraq. Ofioliti, 13, 95–109.
    [Google Scholar]
  25. Authemayou, C., Chardon, D., Bellier, O., Malekzadeh, Z., Shabanian, E., & Abbassi, M. R. (2006). Late Cenozoic partitioning of oblique plate convergence in the Zagros fold‐and‐thrust belt (Iran). Tectonics, 25. https://doi.org/10.1029/2005TC001860
    [Google Scholar]
  26. Aziz, N. R., Aswad, K. J., & Koyi, H. A. (2011). Contrasting settings of serpentinite bodies in the northwestern Zagros Suture Zone, Kurdistan Region, Iraq. Geological Magazine, 148, 819–837.
    [Google Scholar]
  27. Ballato, P., Mulch, A., Landgraf, A., Strecker, M. R., Dalconi, M. C., Friedrich, A., & Tabatabaei, S. H. (2010). Middle to late Miocene Middle Eastern climate from stable oxygen and carbon isotope data, southern Alborz mountains, N Iran. Earth and Planetary Science Letters, 300, 125–138.
    [Google Scholar]
  28. Ballato, P., & Strecker, M. R. (2014). Assessing tectonic and climatic causal mechanisms in foreland‐basin stratal architecture: Insights from the Alborz Mountains, northern Iran. Earth Surface Processes and Landforms, 39, 110–125.
    [Google Scholar]
  29. Ballato, P., Uba, C. E., Landgraf, A., Strecker, M. R., Sudo, M., Stockli, D. F., … Tabatabaei, S. H. (2011). Arabia‐Eurasia continental collision: Insights from late Tertiary foreland‐basin evolution in the Alborz Mountains, northern, Iran. Bulletin, 123, 106–131.
    [Google Scholar]
  30. Barber, D. E., Stockli, D. F., Horton, B. K., & Koshnaw, R. I. (2018) Cenozoic exhumation and foreland basin evolution of the Zagros orogen during the Arabia‐Eurasia collision, western Iran. Tectonics, 37, 4396–4420.
    [Google Scholar]
  31. Beaumont, C. (1981). Foreland basins. Geophysical Journal of the Royal Astronomy Society, 65, 291–329. https://doi.org/10.1002/9781444303810
    [Google Scholar]
  32. Beaumont, C., Fullsack, P., & Hamilton, J. (1992). Erosional control of active compressional orogens. In K. R.McClay (Ed.), Thrust tectonics (pp. 1–18). Dordrecht, The Netherlands: Springer.
    [Google Scholar]
  33. Berberian, M. (1995). Master ‘blind’ thrust faults hidden under the Zagros folds: Active basement tectonics and surface morphotectonics. Tectonophysics, 241, 193–224.
    [Google Scholar]
  34. Beydoun, Z. R., Hughes Clarke, M. W., & Stoneley, R. (1992). Petroleum in the Zagros basin: A late Tertiary foreland basin overprinted onto the outer edge of a vast hydrocabon‐rich Paleozoic Mesozoic passive margin shelf. In R. W.Macqueen & D. A.Leckie (Eds.), Foreland basins and fold belts (pp. 309–339). Tulsa, OK: American Association of Petroleum Geologists Memoir 55.
    [Google Scholar]
  35. Bridge, J. S., & Lunt, I. A. (2006) Depositional models of braided rivers. In G. H.Sambrook Smith, J. L.Best, C. S.Bristow, & G. E.Petts (Eds.), Braided rivers: Process, deposits, ecology and management (Vol. 36, pp. 11–50). Special Publication 36: International Association of Sedimentologists. Oxford, UK: Blackwell.
    [Google Scholar]
  36. Burns, C. E., Mountney, N. P., Hodgson, D. M., & Colombera, L. (2017). Anatomy and dimensions of fluvial crevasse‐splay deposits: Examples from the Cretaceous Castlegate Sandstone and Neslen Formation, Utah, USA. Sedimentary Geology, 351, 21–35.
    [Google Scholar]
  37. Bush, M. A., Horton, B. K., Murphy, M. A., & Stockli, D. F. (2016). Detrital record of initial basement exhumation along the Laramide deformation front, southern Rocky Mountains. Tectonics, 35, 2117–2130.
    [Google Scholar]
  38. Cant, D. J., & Walker, R. G. (1978). Fluvial processes and facies sequences in the sandy braided South Saskatchewan River, Canada. Sedimentology, 25, 625–648.
    [Google Scholar]
  39. Chiu, H. Y., Chung, S. L., Zarrinkoub, M. H., Mohammadi, S. S., Khatib, M. M., & Iizuka, Y. (2013). Zircon U‐Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162, 70–87.
    [Google Scholar]
  40. Crampton, S. L., & Allen, P. A. (1995). Recognition of forebulge unconformities associated with early stage foreland basin development: Example from the North AlpineForeland Basin. AAPG Bulletin, 79, 1495–1514.
    [Google Scholar]
  41. Davies, D. K., Williams, B. P. J., & Vessell, R. K. (1992). Models for meandering and braided fluvial reservoirs with examples from the Travis Peak Formation, East Texas. In SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers.
    [Google Scholar]
  42. DeCelles, P. G., & Giles, K. N. (1996). Foreland basin systems. Basin Research, 8, 105–123.
    [Google Scholar]
  43. DeCelles, P. G., & Horton, B. K. (2003). Early to middle Tertiary foreland basin development and the history of Andean crustal shortening in Bolivia. Geological Society of America Bulletin, 115, 58–77.
    [Google Scholar]
  44. Dewey, J. F., Hempton, M. R., Kidd, W. S. F., Saroglu, F. A. M. C., & Şengör, A. M. C. (1986). Shortening of continental lithosphere: The neotectonics of Eastern Anatolia—A young collision zone. Geological Society, London, Special Publications, 19(1), 1–36.
    [Google Scholar]
  45. Dilek, Y., & Sandvol, E. (2009). Seismic structure, crustal architecture and tectonic evolution of the Anatolian‐African plate boundary and the Cenozoic orogenic belts in the Eastern Mediterranean region. Geological Society, London, Special Publications, 327, 127–160.
    [Google Scholar]
  46. Dilek, Y., & Thy, P. (2009). Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: Model for multi‐stage early arc–forearc magmatism in Tethyan subduction factories. Lithos, 113(1), 68–87.
    [Google Scholar]
  47. Dunnington, H. V. (1958). Generation, migration, accumulation and dissipation of oil in northern Iraq. In L. G.Weeks (Ed.), Habitat of oil, a symposium (pp. 1149–1251). Tulsa, OK: American Association of Petroleum Geologists.
    [Google Scholar]
  48. English, J. M., Lunn, G. A., Ferreira, L., & Yacu, G. (2015). Geologic evolution of the Iraqi Zagros, and its influence on the distribution of hydrocarbons in the Kurdistan region. AAPG Bulletin, 99, 231–272.
    [Google Scholar]
  49. Falcon, N. L. (1961). Major earth‐flexuring in the Zagros Mountains of south‐west Iran. Quarterly Journal of the Geological Society, 117, 367–376.
    [Google Scholar]
  50. Flemings, P. B., & Jordan, T. E. (1989). A synthetic stratigraphic model of foreland basin development. Journal of Geophysical Research: Solid Earth, 94, 3851–3866.
    [Google Scholar]
  51. Fouad, S. F. (2015). Tectonic map of Iraq, scale 1: 1000 000. Iraqi Bulletin of Geology and Mining, 11(1), 1–7.
    [Google Scholar]
  52. Gehrels, G. (2000). Introduction to detrital zircons studies of Paleozoic and Triassic strata in western Nevada and northern California. In M. J.Soreghan & G. E.Gehrels (Eds.), Paleozoic and Triassic Paleogeography and Tectonics of Western Nevada and Northern California (pp. 1–18). Boulder, CO: Geological Society of America.
    [Google Scholar]
  53. Göncüoğlu, M. C. (2010) Introduction to the Geology of Turkey: Geodynamic evolution of the pre‐alpine and alpine terranes. MTA Monographs Series. ISBN 978‐605‐4075‐74, 66 pp.
    [Google Scholar]
  54. Göncüoğlu, M. C., Dirik, K., & Kozlu, H. (1997). General characteristics of pre‐Alpine and Alpine Terranes in Turkey: Explanatory notes to the terrane map of Turkey. Annales Geologique De Pays Hellenique, 37, 515–536.
    [Google Scholar]
  55. Grabowski, G. J., & Liu, C. (2010) Strontium‐isotope age dating and correlation of phanerozoic anhydrites and unfossiliferous limestones of Arabia. Manama-Bahrain: American Association of Petroleum Geologists, Middle East Geoscience Conference and Exhibition.
    [Google Scholar]
  56. Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (2012). The Geologic Time Scale 2012. Boston, MA: Elsevier. https://doi.org/10.1016/B978-0-444-59425-9.00004-4
    [Google Scholar]
  57. Griffin, D. L. (2002). Aridity and humidity: two aspects of the late Miocene climate of North Africa and the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 182(1–2), 65–91.
    [Google Scholar]
  58. Gunay, Y., & Senel, M. (2002). Geological map of Turkey‐Cizre, general directorate of mineral research and exploration, Ankara, Turkey, scale 1:500,000. Ankara, Turkey: General Directorate of Mineral Research and Exploration.
    [Google Scholar]
  59. Gupta, S. (1997). Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin. Geology, 25, 11–14.
    [Google Scholar]
  60. Haghipour, A. (2009). International Geological Map of the Middle East. Subcommission for the middle east, scale 1:5,000,000 (2nd ed.). Paris, France: Commission for the Geological Map of the World.
    [Google Scholar]
  61. Haghipour, A., & Aghanabati, A. (1989). Geological Map of Iran, scale 1:2,500,000 (2nd ed.). Tehran, Iran: Ministry of Mines and Metals, Geological Survey of Iran.
    [Google Scholar]
  62. Hampton, B. A., & Horton, B. K. (2007). Sheetflow fluvial processes in a rapidly subsiding basin, Altiplano plateau, Bolivia. Sedimentology, 54, 1121–1148.
    [Google Scholar]
  63. Hart, N. R., Stockli, D. F., & Hayman, N. W. (2016). Provenance evolution during progressive rifting and hyperextension using bedrock and detrital zircon U‐Pb geochronology, Mauléon Basin, western Pyrenees. Geosphere, 12, 1166–1186.
    [Google Scholar]
  64. Hartley, A. J. (1993). Sedimentological response of an alluvial system to source area tectonism: The Seilao Member of the Late Cretaceous to Eocene Purilactis Formation of northern Chile. Alluvial Sedimentation, 489–500. https://doi.org/10.1002/9781444303995.ch31
    [Google Scholar]
  65. Hassanzadeh, J., & Wernicke, B. P. (2016). The Neotethyan Sanandaj‐Sirjan zone of Iran as an archetype for passive margin‐arc transitions. Tectonics, 35, 586–621.
    [Google Scholar]
  66. Hawramy, O. A., & Khalaf, S. K. (2013). Ostracoda of Fatha Formation (Middle Miocene) from (Darbandikhan and Aghjalar) sections, Sulaimani‐Kurdistan Region/Northeastern Iraq. Journal of Zankoy Sulaimani‐Part A, 15(3), 3.
    [Google Scholar]
  67. Heller, P. L., Angevine, C. L., Winslow, N. S., & Paola, C. (1988). Two‐phase stratigraphic model of foreland‐basin sequences. Geology, 16, 501–504.
    [Google Scholar]
  68. Heller, P. L., & Liu, L. (2016). Dynamic topography and vertical motion of the US Rocky Mountain region prior to and during the Laramide orogeny. GSA Bulletin, 128, 973–988. https://doi.org/10.1130/B31431.1
    [Google Scholar]
  69. Hessami, K., Koyi, H. A., Talbot, C. J., Tabasi, H., & Shabanian, E. (2001). Progressive unconformities within an evolving foreland fold–thrust belt, Zagros Mountains. Journal of the Geological Society, 158, 969–981.
    [Google Scholar]
  70. Heward, A. P. (1978). Alluvial fan and lacustrine sediments from the Stephanian A and B (La Magdalena, Cinera—Matallana and Sabero) coalfields, Northern Spain. Sedimentology, 25, 451–488.
    [Google Scholar]
  71. Hickson, T. A., Sheets, B. A., Paola, C., & Kelberer, M. (2005). Experimental test of tectonic controls on three‐dimensional alluvial facies architecture. Journal of Sedimentary Research, 75, 710–722.
    [Google Scholar]
  72. Homke, S., Vergés, J., Garcés, M., Emami, H., & Karpuz, R. (2004). Magnetostratigraphy of Miocene‐Pliocene Zagros foreland deposits in the front of the Push‐e Kush arc (Lurestan Province, Iran). Earth and Planetary Science Letters, 225, 397–410.
    [Google Scholar]
  73. Homke, S., Vergés, J., Serra‐Kiel, J., Bernaola, G., Sharp, I., Garcés, M., … Goodarzi, M. H. (2009) Late Cretaceous‐Paleocene formation of the proto–Zagros foreland basin, Lurestan Province, SW Iran. Geological Society of America Bulletin, 121, 963–978.
    [Google Scholar]
  74. Horton, B. K. (1999). Erosional control on the geometry and kinematics of thrust belt development in the central Andes. Tectonics, 18, 1292–1304.
    [Google Scholar]
  75. Horton, B. K. (2005). Revised deformation history of the central Andes: Inferences from Cenozoic foredeep and intermontane basins of the Eastern Cordillera, Bolivia. Tectonics, 24. https://doi.org/10.1029/2003TC001619
    [Google Scholar]
  76. Horton, B. K. (2012). Cenozoic evolution of hinterland basins in the Andes and Tibet. In C.Busby & A.Azor (Eds.), Tectonics of sedimentary basins: Recent advances (pp. 427–444). Oxford, UK: Wiley‐Blackwell.
    [Google Scholar]
  77. Horton, B. K. (2018). Sedimentary record of Andean mountain building. Earth‐Science Reviews, 178, 279–309. https://doi.org/10.1016/j.earscirev.2017.11.025
    [Google Scholar]
  78. Horton, B. K., & DeCelles, P. G. (2001). Modern and ancient fluvial megafans in the foreland basin system of the central Andes, southern Bolivia: Implications for drainage network evolution in fold‐thrust belts. Basin Research, 13, 43–63.
    [Google Scholar]
  79. Horton, B. K., Hassanzadeh, J., Stockli, D. F., Axen, G. J., Gillis, R. J., Guest, B., … Grove, M. (2008). Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics. Tectonophysics, 451, 97–122.
    [Google Scholar]
  80. Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation‐inductively coupled plasma‐mass spectrometry to in situ U‐Pb zircon geochronology. Chemical Geology, 211(1), 47–69.
    [Google Scholar]
  81. Jassim, S. Z., & Buday, T. (2006) Units of the unstable shelf and the Zagros Suture. In S. Z.Jassim & J. C.Goff (Eds.), The geology of Iraq (pp. 45–56). Prague and Brno, Czech Republic: Dolin and Moravian Museum.
    [Google Scholar]
  82. Jassim, S. Z., & Goff, J. C. (2006) Phanerozoic development of the northern Arabian Plate. In S. Z.Jassim & J. C.Goff (Eds.), The geology of Iraq (pp. 45–56). Prague and Brno, Czech Republic: Dolin and Moravian Museum.
    [Google Scholar]
  83. Johnson, P. R. (2014). An expanding Arabian‐Nubian Shield geochronologic and isotopic dataset: Defining limits and confirming the tectonic setting of a Neoproterozoic accretionary orogen. The Open Geology Journal, 8(1), 3–33.
    [Google Scholar]
  84. Johnson, P. R., Carten, R. B., & Jastaniah, A. (1997). Tabulation of previously published U‐Pb, Rb‐Sr, and Sm‐Nd numerical age data for the Precambrian of Northeast Africa and Arabia (2nd ed.). Saudi Arabian Deputy Ministry for Mineral Resources Open‐File Report USGS‐OF‐97‐1, 15 p.
    [Google Scholar]
  85. Jordan, T. E. (1981). Thrust loads and foreland basin evolution, Cretaceous, Western United States. American Association of Petroleum Geologists Bulletin, 65, 2506–2520.
    [Google Scholar]
  86. Jordan, T. E. (1995). Retroarc foreland and related basins. In C. J.Busby & R. V.Ingersoll (Eds.), Tectonics of Sedimentary Basins (pp. 331–362). Cambridge, MA: Blackwell Science.
    [Google Scholar]
  87. Kolodner, K., Avigad, D., McWilliams, M., Wooden, J. L., Weissbrod, T., & Feinstein, S. (2006). Provenance of north Gondwana Cambrian‐Ordovician sandstone: U‐Pb SHRIMP dating of detrital zircons from Israel and Jordan. Geological Magazine, 143, 367–391. https://doi.org/10.1017/S0016756805001640
    [Google Scholar]
  88. Konert, G., Afifi, A. M., Al‐Hajri, S. A., de Groot, K., Al Naim, A. A., & Droste, H. J. (2001) Paleozoic stratigraphy and hydrocarbon habitat of the Arabian Plate. In M. W.Downey, J. C.Threet, & W. A.Morgan (Eds.), Petroleum provinces of the twenty‐first century (pp. 483–515). Tulsa, OK: AAPG Memoir 74.
    [Google Scholar]
  89. Koshnaw, R. I., Horton, B. K., Stockli, D. F., Barber, D. E., Tamar‐Agha, M. Y., & Kendall, J. J. (2017). Neogene shortening and exhumation of the Zagros fold‐thrust belt and foreland basin in the Kurdistan region of northern Iraq. Tectonophysics, 694, 332–355. https://doi.org/10.1016/j.tecto.2016.11.016
    [Google Scholar]
  90. Koshnaw, R. I., Stockli, D. F., & Schlunegger, F. (2018). Timing of the Arabia‐Eurasia continental collision—Evidence from detrital zircon U‐Pb geochronology of the Red Bed Series strata of the northwest Zagros hinterland, Kurdistan region of Iraq. Geology, 47(1), 47–50. https://doi.org/10.1130/G45499.1
    [Google Scholar]
  91. Lamsdell, J. C., Hoşgör, İ., & Selden, P. A. (2013). A new Ordovician eurypterid (Arthropoda: Chelicerata) from southeast Turkey: Evidence for a cryptic Ordovician record of Eurypterida. Gondwana Research, 23, 354–366. https://doi.org/10.1016/j.gr.2012.04.006
    [Google Scholar]
  92. Lawton, T. F., & Bradford, B. A. (2011). Correlation and provenance of Upper Cretaceous (Campanian) fluvial strata, Utah, U.S.A., from zircon U‐Pb geochronology and petrography. Journal of Sedimentary Research, 81, 495–512. https://doi.org/10.2110/jsr.2011.45
    [Google Scholar]
  93. Lawton, T. F., Schellenbach, W. L., & Nugent, A. E. (2014). Late Cretaceous fluvial‐megafan and axial‐river systems in the southern Cordilleran foreland basin: Drip Tank Member of Straight Cliffs Formation and adjacent strata, southern Utah, USA. Journal of Sedimentary Research, 84, 407–434. https://doi.org/10.2110/jsr.2014.33
    [Google Scholar]
  94. Le Garzic, E., Vergés, J., Sapin, F., Saura, E., Meresse, F., & Ringenbach, J. C. (2019). Evolution of the NW Zagros Fold-and-Thrust Belt in Kurdistan Region of Iraq from balanced and restored crustal-scale sections and forward modeling. Journal of Structural Geology, 124, 51–69.
    [Google Scholar]
  95. Li, L., & Fan, M. (2018). Cenozoic sediment provenance in the northern Great Plains corresponds to four episodes of tectonic and magmatic events in the central North American Cordillera. Tectonics, 37, 4018–4036. https://doi.org/10.1029/2018TC005213
    [Google Scholar]
  96. Ma’ala, K. A. (2008). Geological map of the Sulaimaniyah Quadrangle, sheet NJ‐38‐3, scale 1:250000. Baghdad, Iraq: State Company of Geological Survey and Mining.
    [Google Scholar]
  97. McQuarrie, N., & van Hinsbergen, D. J. (2013). Retrodeforming the Arabia‐Eurasia collision zone: Age of collision versus magnitude of continental subduction. Geology, 41, 315–318. https://doi.org/10.1130/G33591.1
    [Google Scholar]
  98. Miall, A. D. (Ed.) (1977). Lithofacies types and vertical profile models in braided river deposits: a summary. In Fluvial sedimentology. Canadian Society of Petroleum Geologists Memoir, 5, 597–604.
    [Google Scholar]
  99. Miall, A. D. (2006). The geology of fluvial deposits: Sedimentary facies, basin analysis, and petroleum geology. Berlin, Germany: Springer.
    [Google Scholar]
  100. Moghadam, H. S., Corfu, F., & Stern, R. J. (2013). U‐Pb zircon ages of Late Cretaceous Nain‐Dehshir ophiolites, central Iran. Journal of the Geological Society, 170, 175–184. https://doi.org/10.1144/jgs2012-066
    [Google Scholar]
  101. Mohajjel, M., & Fergusson, C. L. (2014). Jurassic to Cenozoic tectonics of the Zagros orogen in northwestern Iran. International Geology Review, 56, 263–287. https://doi.org/10.1080/00206814.2013.853919
    [Google Scholar]
  102. Monie, P., & Agard, P. (2009). Coeval blueschist exhumation along thousands of kilometers: Implications for subduction channel processes. Geochemistry, Geophysics, Geosystems, 10. https://doi.org/10.1029/2009GC002428
    [Google Scholar]
  103. Mouthereau, F., Lacombe, O., & Vergés, J. (2012). Building the Zagros collisional orogen: Timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics, 532, 27–60. https://doi.org/10.1016/j.tecto.2012.01.022
    [Google Scholar]
  104. Navabpour, P., Angelier, J., & Barrier, E. (2008). Stress state reconstruction of oblique collision and evolution of deformation partitioning in W‐Zagros (Iran, Kermanshah). Geophysical Journal International, 175, 755–782. https://doi.org/10.1111/j.1365-246X.2008.03916.x
    [Google Scholar]
  105. Nichols, G. J., & Fisher, J. A. (2007). Processes, facies and architecture of fluvial distributary system deposits. Sedimentary Geology, 195, 75–90. https://doi.org/10.1016/j.sedgeo.2006.07.004
    [Google Scholar]
  106. Okay, A. I., Zattin, M., & Cavazza, W. (2010). Apatite fission‐track data for the Miocene Arabia‐Eurasia collision. Geology, 38(1), 35–38. https://doi.org/10.1130/G30234.1
    [Google Scholar]
  107. Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G., & Jolivet, L. (2008). Arc‐magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences. Lithos, 106, 380–398. https://doi.org/10.1016/j.lithos.2008.09.008
    [Google Scholar]
  108. Pirouz, M. (2018). Post‐collisional deposits in the Zagros foreland basin: Implications for diachronous underthrusting. International Journal of Earth Sciences, 107, 1603–1621. https://doi.org/10.1007/s00531-017-1561-y
    [Google Scholar]
  109. Pirouz, M., Avouac, J. P., Hassanzadeh, J., Kirschvink, J. L., & Bahroudi, A. (2017). Early Neogene foreland of the Zagros, implications for the initial closure of the Neo‐Tethys and kinematics of crustal shortening. Earth and Planetary Science Letters, 477, 168–182. https://doi.org/10.1016/j.epsl.2017.07.046
    [Google Scholar]
  110. Pirouz, M., Simpson, G., Bahroudi, A., & Azhdari, A. (2011). Neogene sediments and modern depositional environments of the Zagros foreland basin system. Geological Magazine, 148, 838–853. https://doi.org/10.1017/S0016756811000392
    [Google Scholar]
  111. Pirouz, M., Simpson, G., Castelltort, S., Gorin, G., & Bahroudi, A. (2016). Controls on the sequence stratigraphic architecture of the Neogene Zagros foreland basin. Geol. Soc. Am. Spec. Pap., 525, SPE525‐512. https://doi.org/10.1130/2016.2525(12)
    [Google Scholar]
  112. Pirouz, M., Simpson, G., & Chiaradia, M. (2015). Constraint on foreland basinmigration in the Zagros mountain belt using Sr isotope stratigraphy. Basin Research, 27, 714–728. https://doi.org/10.1111/bre.12097
    [Google Scholar]
  113. Pollastro, R. M., Karshbaum, A. S., & Viger, R. J. (1998) Maps showing geology, oil and gas fields and geologic provinces of the Arabian Peninsula. U.S. Geological Survey, open file report 97–470B.
    [Google Scholar]
  114. Pollastro, R. M., Persits, F. M., & Steinshouer, D. W. (1996) Map showing geology, oil and gas fields and geologic provinces of Iran. U.S. Geological Survey, open file report 97–470G.
    [Google Scholar]
  115. Primm, J. W., Johnson, C. L., & Stearns, M. (2018). Basin‐axial progradation of a sediment supply driven distributive fluvial system in the Late Cretaceous southern Utah foreland. Basin Research, 30, 249–278.
    [Google Scholar]
  116. Raines, M. K., Hubbard, S. M., Kukulski, R. B., Leier, A. L., & Gehrels, G. E. (2013). Sediment dispersal in an evolving foreland: Detrital zircon geochronology from Upper Jurassic and lowermost Cretaceous strata, Alberta Basin, Canada. Geological Society of America Bulletin, 125, 741–755. https://doi.org/10.1130/B30671.1
    [Google Scholar]
  117. Ramsay, P. J., Cooper, J. A. G., Wright, C. I., & Mason, T. R. (1989). The occurrence and formation of ladderback ripples in subtidal, shallow‐marine sands, Zululand, South Africa. Marine Geology, 86, 229–235. https://doi.org/10.1016/0025-3227(89)90051-0
    [Google Scholar]
  118. Reddering, J. S. V. (1987). Subtidal occurrences of ladder‐back ripples: Their significance in palaeo‐environmental reconstruction. Sedimentology, 34, 253–257. https://doi.org/10.1111/j.1365-3091.1987.tb00775.x
    [Google Scholar]
  119. Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., … Karam, G. (2006). GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111. https://doi.org/10.1029/2005JB004051
    [Google Scholar]
  120. Rust, B. R., & Gibling, M. R. (1990). Braidplain evolution in the Pennsylvanian South Bar Formation, Sydney Basin, Nova Scotia, Canada. Journal of Sedimentary Research, 60(1), 59–72.
    [Google Scholar]
  121. Saura, E., Garcia‐Castellanos, D., Casciello, E., Parravano, V., Urruela, A., & Vergés, J. (2015). Modeling the flexural evolution of the Amiran and Mesopotamian foreland basins of NW Zagros (Iran‐Iraq). Tectonics, 34, 377–395. https://doi.org/10.1002/2014TC003660
    [Google Scholar]
  122. Saylor, J. E., Horton, B. K., Nie, J., Corredor, J., & Mora, A. (2011). Evaluating foreland basin partitioning in the northern Andes using Cenozoic fill of the Floresta basin, Eastern Cordillera, Colombia. Basin Research, 23, 377–402. https://doi.org/10.1111/j.1365-2117.2010.00493.x
    [Google Scholar]
  123. Schlunegger, F., Jordan, T. E., & Klaper, E. M. (1997). Controls of erosional denudation in the orogen on foreland basin evolution: The Oligocene central Swiss Molasse Basin as an example. Tectonics, 16, 823–840. https://doi.org/10.1029/97TC01657
    [Google Scholar]
  124. Sepehr, M., & Cosgrove, J. W. (2004). Structural framework of the Zagros Fold–Thrust Belt, Iran. Marine and Petroleum Geology, 21, 829–843. https://doi.org/10.1016/j.marpetgeo.2003.07.006
    [Google Scholar]
  125. Shakerardakani, F., Neubauer, F., Fariborz Masoudi, F., Mehrabi, B., Liu, X., Dong, Y., … Friedl, G. (2015). Panafrican basement and Mesozoic gabbro in the Zagros orogenic belt in the Dorud‐Azna region (NW Iran): Laser‐ablation ICP–MS zircon ages and geochemistry. Tectonophysics, 647, 146–171. https://doi.org/10.1016/j.tecto.2015.02.020
    [Google Scholar]
  126. Sharland, P. R., Archer, R., Casey, D. M., Davies, R. B., Hall, S. H., Heward, A. P., … Simmons, M. D. (2001). Arabian plate sequence stratigraphy. Geo Arabia Special Publication, p 2.
    [Google Scholar]
  127. Sharman, G. R., Hubbard, S. M., Covault, J. A., Hinsch, R., Linzer, H. G., & Graham, S. A. (2017). Sediment routing evolution in the North Alpine Foreland Basin, Austria: Interplay of transverse and longitudinal sediment dispersal. Basin Research, 30, 426–447. https://doi.org/10.1111/bre.12259
    [Google Scholar]
  128. Shawkat, M. G., & Tucker, M. E. (1978). Stromatolites and sabkha cycles from the Lower Fars Formation (Miocene) of Iraq. Geologische Rundschau, 67(1), 1–14. https://doi.org/10.1007/BF01803253
    [Google Scholar]
  129. Siks, B. C., & Horton, B. K. (2011). Growth and fragmentation of the Andean foreland basin during eastward advance of fold‐thrust deformation, Puna plateau and Eastern Cordillera, northern Argentina. Tectonics, 30. https://doi.org/10.1029/2011TC002944
    [Google Scholar]
  130. Simpson, G. D. (2006). Modelling interactions between fold‐thrust belt deformation, foreland flexure and surface mass transport. Basin Research, 18, 125–143. https://doi.org/10.1111/j.1365-2117.2006.00287.x
    [Google Scholar]
  131. Simpson, G. (2014). Decoupling of foreland basin subsidence from topography linked to faulting and erosion. Geology, 42, 775–778. https://doi.org/10.1130/G35749.1
    [Google Scholar]
  132. Sinclair, H. (2011). Thrust wedge/foreland basin systems. In C.Busby & A.Azor (Eds.), Tectonics of sedimentary basins: Recent advances. (pp. 522–537). Oxford, UK: Wiley‐Blackwell.
    [Google Scholar]
  133. Sissakian, V. K. (1997). Geological map of Arbeel and Mahabad quadrangles sheets NJ‐38‐14 and NJ‐38‐15, scale 1:250,000. Baghdad, Iraq: State Establishment of Geological Survey and Mining.
    [Google Scholar]
  134. Sissakian, V. K. (2000). Geological map of Iraq, scale, 1:1,000,000. Baghdad, Iraq: State Company of Geological Survey and Mining.
    [Google Scholar]
  135. Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., … Whitehouse, M. J. (2008). Plešovice zircon—a new natural reference material for U‐Pb and Hf isotopic microanalysis. Chemical Geology, 249(1), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
    [Google Scholar]
  136. Smith, N. D., Cross, T. A., Dufficy, J. P., & Clough, S. R. (1989). Anatomy of an avulsion. Sedimentology, 36(1), 1–23. https://doi.org/10.1111/j.1365-3091.1989.tb00817.x
    [Google Scholar]
  137. Stampfli, G. M., & Borel, G. D. (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1), 17–33. https://doi.org/10.1016/S0012-821X(01)00588-X
    [Google Scholar]
  138. Stear, W. M. (1978). Sedimentary structures related to fluctuating hydrodynamic conditions in flood plain deposites of the Beaufort Group near Beaufort West, Cape. South African Journal of Geology, 81, 393–399.
    [Google Scholar]
  139. Stern, R. J., & Johnson, P. (2010). Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis. Earth‐Science Reviews, 101(1), 29–67. https://doi.org/10.1016/j.earscirev.2010.01.002
    [Google Scholar]
  140. Stern, R. J., Ren, M., Ali, K., Förster, H. J., Al Safarjalani, A., Nasir, S., … Romer, R. L. (2014). Early Carboniferous (∼357 Ma) crust beneath northern Arabia: Tales from Tell Thannoun (southern Syria). Earth and Planetary Science Letters, 393, 83–93. https://doi.org/10.1016/j.epsl.2014.02.043
    [Google Scholar]
  141. Szwarc, T. S., Johnson, C. L., Stright, L. E., & McFarlane, C. M. (2015). Interactions between axial and transverse drainage systems in the Late Cretaceous Cordilleran foreland basin: Evidence from detrital zircons in the Straight Cliffs, southern Utah, USA. Geological Society of America Bulletin, 127, 372–392.
    [Google Scholar]
  142. Tamar‐Agha, M. Y., & Salman, N. A. (2015a). Facies and Depositional Environments of Injana Formation in Zawita, Amadia and Zakho Areas, Northern Iraq. Iraqi Bulletin of Geology and Mining, 11(3), 39–59.
    [Google Scholar]
  143. Tamar‐Agha, M. Y., & Salman, N. A. (2015b). Petrology of the Injana Formation (Upper Miocene) at Zawita, Amadiya and Zakho Area, Northern Iraq. Iraqi Journal of Science, 56, 1061–1075.
    [Google Scholar]
  144. Tolluoğlu, A. Ü., Eral, M., Aytaş, Ş., Akyil, S., Işik, M. A., Aslani, M. A. A., …Yüksel, A. (2004) Relationship between Natural Radioactivity and Rock Type in The VAN Lake Basin‐TURKEY. International Symposium Insinume 2004—In Situ Nuclear Metrology As a Tool of Radioecology, Radioprotection of The Environment, Albena, BULGARIA, Abstract Book, p. 19, 27–30 September 2004.
    [Google Scholar]
  145. Ustaömer, P. A., Ustaömer, T., Collins, A. S., & Robertson, A. H. (2009). Cadomian (Ediacaran–Cambrian) arc magmatism in the Bitlis Massif, SE Turkey: Magmatism along the developing northern margin of Gondwana. Tectonophysics, 473, 99–112. https://doi.org/10.1016/j.tecto.2008.06.010
    [Google Scholar]
  146. Ustaömer, P. A., Ustaömer, T., Gerdes, A., Robertson, A. H., & Collins, A. S. (2012). Evidence of Precambrian sedimentation/magmatism and Cambrian metamorphism in the Bitlis Massif, SE Turkey utilising whole‐rock geochemistry and U‐Pb LA‐ICP‐MS zircon dating. Gondwana Research, 21, 1001–1018. https://doi.org/10.1016/j.gr.2011.07.012
    [Google Scholar]
  147. Ustaömer, T., Robertson, A. H. F., Ustaömer, P. A., & Gerdes, A. (2012). Constraints on Variscan and Cimmerian magmatism and metamorphism in the Pontides (Yusufeli‐Artvin area), NE Turkey from U‐Pb dating and granite geochemistry. In A. H. F.Robertson, O.Parlak, & U. C.Unlugenc (Eds.), Geological Development of Anatolia and the Easternmost Mediterranean Region. London, UK: Geological Society. Special Publications, 372. https://doi.org/10.1144/SP372.13
    [Google Scholar]
  148. Ustaömer, T., Ustaömer, P. A., Robertson, A. H., & Gerdes, A. (2016). Implications of U‐Pb and Lu–Hf isotopic analysis of detrital zircons for the depositional age, provenance and tectonic setting of the Permian‐Triassic Palaeotethyan Karakaya Complex, NW Turkey. International Journal of Earth Sciences, 105(1), 7–38. https://doi.org/10.1007/s00531-015-1225-8
    [Google Scholar]
  149. Verdel, C., Wernicke, B. P., Hassanzadeh, J., & Guest, B. (2011). A Paleogene extensional arc flare‐up in Iran. Tectonics, 30. https://doi.org/10.1029/2010TC002809
    [Google Scholar]
  150. Vergés, J. (2007) Drainage responses to oblique and lateral thrust ramps: a review. In G.Nichols, C.Paola, & E.Williams (Eds.), Sedimentary processes, environments and basins: A tribute to peter friend (Chapter 3, Vol. 38, Chapter 3 pp. 29–47). IAS Spec. Publ. Hoboken, NJ: Blackwell Publishing.
    [Google Scholar]
  151. Vergés, J., Emami, H., Garcés, M., Beamud, E., Homke, S., & Skott, P. (2018). Zagros Foreland fold belt timing across Lurestan to constrain Arabia‐Iran collision. In A. F.Saein (Ed.), Developments in structural geology and tectonics (Vol. 3, pp. 29–52). Elsevier. https://doi.org/10.1016/b978-0-12-815048-1.00003-2
    [Google Scholar]
  152. Vergés, J., Saura, E., Casciello, E., Fernàndez, M., Villaseñor, A., Jiménez‐Munt, I., & García‐Castellanos, D. (2011). Crustal‐scale cross‐sections across the NW Zagros belt: Implications for the Arabian margin reconstruction. Geological Magazine, 148, 739–761. https://doi.org/10.1017/S0016756811000331
    [Google Scholar]
  153. Vernant, P. H., Nilforoushan, F., Hatzfeld, D., Abbassi, M. R., Vigny, C., Masson, F., … Chéry, J. (2004). Present‐day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157, 381–398. https://doi.org/10.1111/j.1365-246X.2004.02222.x
    [Google Scholar]
  154. Waschbusch, P. J., & Royden, L. H. (1992). Episodicity in foredeep basins. Geology, 20, 915–918.
    [Google Scholar]
  155. Watts, A. B. (1992). The effective elastic thickness of the lithosphere and the evolution of foreland basins. Basin Research, 4, 169–178. https://doi.org/10.1111/j.1365-2117.1992.tb00043.x
    [Google Scholar]
  156. Weissmann, G. S., Hartley, A. J., Nichols, G. J., Scuderi, L. A., Olson, M., Buehler, H., & Banteah, R. (2010). Fluvial form in modern continental sedimentary basins: Distributive fluvial systems. Geology, 38(1), 39–42. https://doi.org/10.1130/G30242.1
    [Google Scholar]
  157. Whipple, K. X. (2009). The influence of climate on the tectonic evolution of mountain belts. Nature Geoscience, 2, 97.
    [Google Scholar]
  158. Yazgan, E. (1984, September). Geodynamic evolution of the Eastern Taurus region. In Geology of the Taurus Belt. Proceedings of International Symposium. Mineral Research and Exploration Institute of Turkey (MTA), Ankara, Turkey (Vol. 199, p. 208).
    [Google Scholar]
  159. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.
    [Google Scholar]
  160. Zadeh, P. G., Adabi, M. H., Hisada, K. I., Hosseini‐Barzi, M., Sadeghi, A., & Ghassemi, M. R. (2017). Revised version of the Cenozoic Collision along the Zagros Orogen, Insights from Cr‐spinel and Sandstone Modal Analyses. Scientific Reports, 7, 10828. https://doi.org/10.1038/s41598-017-11042-1
    [Google Scholar]
  161. Ziegler, M. A. (2001). Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoArabia, 6, 445–504.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12391
Loading
/content/journals/10.1111/bre.12391
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error