1887
Volume 32, Issue 5
  • E-ISSN: 1365-2117

Abstract

[Abstract

The Celtic Sea basins lie on the continental shelf between Ireland and northwest France and consist of a series of ENE–WSW trending elongate basins that extend from St George’s Channel Basin in the east to the Fastnet Basin in the west. The basins, which contain Triassic to Neogene stratigraphic sequences, evolved through a complex geological history that includes multiple Mesozoic rift stages and later Cenozoic inversion. The Mizen Basin represents the NW termination of the Celtic Sea basins and consists of two NE–SW‐trending half‐grabens developed as a result of the reactivation of Palaeozoic (Caledonian, Lower Carboniferous and Variscan) faults. The faults bounding the Mizen Basin were active as normal faults from Early Triassic to Late Cretaceous times. Most of the fault displacement took place during Berriasian to Hauterivian (Early Cretaceous) times, with a NW–SE direction of extension. A later phase of Aptian to Cenomanian (Early to Late Cretaceous) N–S‐oriented extension gave rise to E–W‐striking minor normal faults and reactivation of the pre‐existing basin bounding faults that propagated upwards as left‐stepping arrays of segmented normal faults. In common with most of the Celtic Sea basins, the Mizen Basin experienced a period of major erosion, attributed to tectonic uplift, during the Paleocene. Approximately N–S Alpine regional compression‐causing basin inversion is dated as Middle Eocene to Miocene by a well‐preserved syn‐inversion stratigraphy. Reverse reactivation of the basin bounding faults was broadly synchronous with the formation of a set of near‐orthogonal NW–SE dextral strike‐slip faults so that compression was partitioned onto two fault sets, the geometrical configuration of which is partly inherited from Palaeozoic basement structure. The segmented character of the fault forming the southern boundary of the Mizen Basin was preserved during Alpine inversion so that Cenozoic reverse displacement distribution on syn‐inversion horizons mirrors the earlier extensional displacements. Segmentation of normal faults therefore controls the geometry and location of inversion structures, including inversion anticlines and the back rotation of earlier relay ramps.

,

Reverse displacements during inversion mirror normal displacements during extension. Inversion occurred by coeval reverse reactivation of normal faults and dextral strike‐slip faulting. The throw profiles are stepped where they intersect the larger strike‐slip faults increases in throw across the branchpoints with the dextral strike‐slip faults.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12402
2020-09-26
2020-10-29
Loading full text...

Full text loading...

References

  1. Anderson, H., Walsh, J. J., & Cooper, M. (2016). Faults, intrusions and flood basalts: the Cenozoic structure of the North of Ireland. In M. E.Young (Ed.), Unearthed: impacts of the tellus surveys of the North of Ireland (pp. 180–189). Royal Irish Academy, Dublin. DOI:10.3318/978‐1‐908996‐88‐6.ch14.).
    [Google Scholar]
  2. Anderson, H., Walsh, J. J., & Cooper, M. R. (2018). The development of a regional‐scale intraplate strike‐slip fault System; alpine deformation in the North of Ireland. Journal of Structural Geology, 116, 47–63. https://doi.org/10.1016/j.jsg.2018.07.002
    [Google Scholar]
  3. Anell, I., Thybo, H., & Artemieva, I. (2009). Cenozoic uplift and subsidence in the North Atlantic region: Geological evidence revisited. Tectonophysics, 474, 78–105. https://doi.org/10.1016/j.tecto.2009.04.006
    [Google Scholar]
  4. Bally, A. W. (1984). Tectogenese Et Sismique Reflexion. Bulletin de la. Société Géologique De France, S7‐XXVI, 279–285. https://doi.org/10.2113/gssgfbull.S7-XXVI.2.279
    [Google Scholar]
  5. Barr, K., Colter, V., & Young, R. (1981). The Geology of the Cardigan Bay‐St. George's Channel Basin. Petroleum geology of the continental shelf of North‐West Europe (pp. 432–443).
  6. BIRPS & ECORS
    BIRPS & ECORS (1986). Deep seismic reflection profiling between England, France and Ireland. Journal of the Geological Society, 143, 45–52.
    [Google Scholar]
  7. Bonini, M., Sani, F., & Antonielli, B. (2012). Basin inversion and contractional reactivation of inherited normal faults: A review based on previous and new experimental models. Tectonophysics, 522, 55–88. https://doi.org/10.1016/j.tecto.2011.11.014
    [Google Scholar]
  8. Buchanan, J. G., & Buchanan, P. G. (Eds.), (1995). Basin Inversion (Vol. 88). London: Geological Society London.
    [Google Scholar]
  9. Carboni, V., Walsh, J., Stewart, D., Güven, J., & Eliopoulos, D. (2003). Timing and Geometry of Normal Faults and Associated Structures at the Lisheen Zn‐Pb Deposit, Ireland‐Investigating Their Role in the Transport and the Trapping of Metals. Mineral. Exploration and Sustainable Development: Proceedings of the 7th Biennial SGA Meeting.
  10. Caston, V. (1995). The Helvick Oil Accumulation, Block 49/9, North Celtic Sea Basin. Geological Society, London, Special Publications, 93, 209–225. https://doi.org/10.1144/GSL.SP.1995.093.01.15
    [Google Scholar]
  11. Caston, V., Dearnley, R., Harrison, R., Rundle, C., & Styles, M. (1981). Olivine‐dolerite intrusions in the Fastnet basin. Journal of the Geological Society, 138, 31–46. https://doi.org/10.1144/gsjgs.138.1.0031
    [Google Scholar]
  12. Cheadle, M., McGeary, S., Warner, M., & Matthews, D. (1987). Extensional structures on the Western Uk continental shelf: A review of evidence from deep seismic profiling. Geological Society, London, Special Publications, 28, 445–465. https://doi.org/10.1144/GSL.SP.1987.028.01.28
    [Google Scholar]
  13. Colin, J., Lehmann, R., & Morgan, B. (1981). Cretaceous and late Jurassic biostratigraphy of the North Celtic Sea Basin, Offshore Southern Ireland. Microfossils from Recent and fossil shelf seas, 122–155.
  14. Cooper, M., Anderson, H., Walsh, J., Van Dam, C., Young, M., Earls, G., & Walker, A. (2012). Palaeogene Alpine Tectonics and Icelandic Plume‐Related Magmatism and Deformation in Northern Ireland. Journal of the Geological Society, 169, 29–36. https://doi.org/10.1144/0016-76492010-182
    [Google Scholar]
  15. Coward, M. (1983). Thrust tectonics, thin skinned or thick skinned, and the continuation of thrusts to deep in the crust. Journal of Structural Geology, 5, 113–123. https://doi.org/10.1016/0191-8141(83)90037-8
    [Google Scholar]
  16. Craven, J. E. (1995). The tectonic evolution, stratigraphy and petroleum potential of the Mizen Basin, Southwest Celtic Sea. Geological Society, London, Special Publications, 93, 277–277. https://doi.org/10.1144/GSL.SP.1995.093.01.20
    [Google Scholar]
  17. Cunningham, W., & Mann, P. (2007). Tectonics of strike‐slip restraining and releasing bends. Geological Society, London, Special Publications, 290, 1–12.
    [Google Scholar]
  18. Dewey, J. F., Holdsworth, R. E., & Strachan, R. A.1998. Transpression and transtension zones. Geological Society of London Special Publication, 135, 1–14.
    [Google Scholar]
  19. De Paola, N., Holdsworth, R. E., McCaffrey, K. J., & Barchi, M. R. (2005). Partitioned transtension: an alternative to basin inversion models. Journal of Structural Geology, 27, 607–625.
    [Google Scholar]
  20. Doré, A., Cartwright, J., Stoker, M., Turner, J., & White, N. (2002). Exhumation of the North Atlantic Margin: Introduction and background. Geological Society, London, Special Publications, 196, 1–12. https://doi.org/10.1144/GSL.SP.2002.196.01.01
    [Google Scholar]
  21. Doré, A., & Lundin, E. (1996). Cenozoic compressional structures on the Ne Atlantic Margin; nature, origin and potential significance for hydrocarbon exploration. Petroleum Geoscience, 2, 299–311. https://doi.org/10.1144/petgeo.2.4.299
    [Google Scholar]
  22. Fusciardi, L., Guven, J., Stewart, D., Carboni, V., & Walshe, J. (2003) The Geology and Genesis of the Lisheen Zn‐Pb Deposit, Co., Tipperary, Ireland. Europe’s major base metal deposits: Dublin, Irish Association for Economic Geology, 455–481.
    [Google Scholar]
  23. Gabrielsen, R., Grunnaleite, I., & Ottesen, S. (1993) Reactivation of Fault Complexes in the Loppa High Area, Southwestern Barents Sea. In Vorren , et al. (Eds.), Arctic Geology and Petroleum Potential, pp. 631–641. Elsevier: Amsterdam, NPF Special Publications
    [Google Scholar]
  24. Garcia‐Mondejar, J. (1990). The Aptian-albian carbonate episode of the basque-cantabrian basin Northern Spain: general characteristics, controls and evolution. In M.E.Tucker, J.L.Wilson, P.D.Crevello, J.R.Sarg, & J.F.Read (Eds.). Carbonate Platforms (pp. 257–290). London: Spec. Publ. Int. Ass. Sediment.
    [Google Scholar]
  25. Gardiner, P. R. (1970). Regional fold structures in the lower Palaeozoics of South‐East Ireland. Bulletin of the Geological Survey of Ireland, 1, 47–51.
    [Google Scholar]
  26. Gardiner, P. R., & Sheridan, D. J. (1981). Tectonic framework of the Celtic Sea and adjacent areas with special reference to the location of the Variscan front. Journal of Structural Geology, 3, 317–331. https://doi.org/10.1016/0191-8141(81)90028-6
    [Google Scholar]
  27. Gill, W. D. (1962). The Variscan fold belt in Ireland. In K.Coe (Ed.), Some Aspects of the Variscan Fold Belt (pp. 49–64). Manchester University Press.
    [Google Scholar]
  28. Glennie, K., & Boegner, P. (1981) Sole Pit Inversion Tectonics. Petroleum geology of the continental shelf of northwest Europe. Institute of Petroleum, London, 110–120.
    [Google Scholar]
  29. Harding, T. (1985). Seismic characteristics and identification of negative flower structures, positive flower structures, and positive structural inversion. AAPG Bulletin, 69, 582–600.
    [Google Scholar]
  30. Hitzman, M. W. (1999). Extensional faults that localize Irish syndiagenetic Zn‐Pb deposits and their reactivation during variscan compression. Geological Society, London, Special Publications, 155, 233–245. https://doi.org/10.1144/GSL.SP.1999.155.01.17
    [Google Scholar]
  31. Jones, R. R., & Tanner, P. G. (1995). Strain partitioning in transpression zones. Journal of Structural Geology, 17(6), 793–802. https://doi.org/10.1016/0191-8141(94)00102-6
    [Google Scholar]
  32. Kyne, R., Torremans, K., Güven, J., Doyle, R., & Walsh, J. (2019). 3-D Modeling of the Lisheen and Silvermines Deposits, County Tipperary, Ireland: Insights into Structural Controls on the Formation of Irish Zn-Pb Deposits. Economic Geology, 114, 93–116. https://doi.org/10.5382/econgeo.2019.4621.
    [Google Scholar]
  33. Le Roy, P., Gracia‐Garay, C., Guennoc, P., Bourillet, J.‐F., Reynaud, J.‐Y., Thinon, I., … Bulois, C. (2011). Cenozoic tectonics of the western approaches channel basins and its control of local drainage systems. Bulletin De La Société Géologique De France, 182, 451–463. https://doi.org/10.2113/gssgfbull.182.5.451
    [Google Scholar]
  34. McCann, T. (1996). The North Celtic Sea Reflector—a possible caledonian basement structure, Offshore Southern Ireland. Tectonophysics, 266, 361–377. https://doi.org/10.1016/S0040-1951(96)00198-9
    [Google Scholar]
  35. McCann, T., & Shannon, P. (1993). Lower Cretaceous seismic stratigraphy and fault movement in the Celtic Sea Basin, Ireland. First Break, 11, 335–344. https://doi.org/10.3997/1365-2397.1993017
    [Google Scholar]
  36. McCann, T., & Shannon, P. M. (1994). Late Mesozoic reactivation of Variscan Faults in the North Celtic Sea Basin, Ireland. Marine and Petroleum Geology, 11, 94–103. https://doi.org/10.1016/0264-8172(94)90012-4
    [Google Scholar]
  37. McGeary, S., Cheadle, M., Warner, M., Blundell, D., Brooks, J., & Glennie, K. (1987). Crustal structure of the continental shelf around britain derived from birps deep seismic profiling. Petroleum Geology of North West Europe, 1, 33–41.
    [Google Scholar]
  38. McMahon, N. A., & Turner, J. (1998). The documentation of a latest jurassic‐earliest cretaceous uplift throughout Southern England and Adjacent Offshore Areas. Geological Society, London, Special Publications, 133, 215–240. https://doi.org/10.1144/GSL.SP.1998.133.01.10
    [Google Scholar]
  39. Menpes, R. J., & Hillis, R. R. (1995). Quantification of Tertiary exhumation from sonic velocity data, Celtic Sea/South‐Western Approaches. Geological Society, London, Special Publications, 88, 191–207. https://doi.org/10.1144/GSL.SP.1995.088.01.12
    [Google Scholar]
  40. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., … Pekar, S. F. (2005). The phanerozoic record of global sea‐level change. Science, 310, 1293–1298. https://doi.org/10.1126/science.1116412
    [Google Scholar]
  41. Montadert, L., de Charpal, O., Roberts, D., Guennoc, P., & Sibuet, J. C. (1979) Northeast atlantic passive continental margins: Rifting and subsidence processes. Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment, 1, 154–186.
    [Google Scholar]
  42. Moore, J., & Walsh, J. (2013). Analysis of fracture systems and their impact on flow pathways in Irish bedrock aquifers. Geological Survey of Ireland Groundwater Newsletter, 51, 28–33.
    [Google Scholar]
  43. Murdoch, L., Musgrove, F., & Perry, J. (1995). Tertiary uplift and inversion history in the North Celtic Sea Basin and its influence on source rock maturity. Geological Society, London, Special Publications, 93, 297–319. https://doi.org/10.1144/GSL.SP.1995.093.01.22
    [Google Scholar]
  44. Naylor, D. (1978). A structural section across the Variscan fold belt. Southwest Ireland. Journal of Earth Sciences, 1, 63–70. http://www.jstor.org/stable/30002114
    [Google Scholar]
  45. Naylor, D., & Shannon, P. M. (1982). Geology of Offshore Ireland and West Britain, Graham & Trotman, London.
    [Google Scholar]
  46. Naylor, D., & Shannon, P. M. (2011). Petroleum Geology of Ireland. Edinburgh: Dunedin Academic Press , Edinburgh.
    [Google Scholar]
  47. Petrie, S. H., Brown, J. R., Granger, P. J., & Lovell, J. P. B. (1989) Mesozoic History of the Celtic Sea Basins. In A. J.Tankard, & H. R.Balkwill (Eds.), Extensional Tectonics and Stratigraphy of the North Atlantic Margins. UK: American Association of Petroleum Geologists.
    [Google Scholar]
  48. Pharaoh, T. C. (1996) Tectonic Map of Britain, Ireland and Adjacent Areas: Sheet 1. British Geological Survey.
  49. Pinet, B., Montadert, L., Mascle, A., Cazes, M., & Bois, C. (1987). New insights on the structure and the formation of sedimentary basins from deep seismic profiling in Western Europe. Petroleum Geology of North West Europe, 1, 11–31.
    [Google Scholar]
  50. Praeg, D., Stoker, M., Shannon, P., Ceramicola, S., Hjelstuen, B., Laberg, J., & Mathiesen, A. (2005). Episodic Cenozoic Tectonism and the Development of the Nw European ‘Passive’continental Margin. Marine and Petroleum Geology, 22, 1007–1030. https://doi.org/10.1016/j.marpetgeo.2005.03.014
    [Google Scholar]
  51. Reilly, C., Nicol, A., & Walsh, J. (2017). Importance of pre-existing fault size for the evolution of an inverted fault system. Geological Society, London, Special Publications, 439, 447–463.
    [Google Scholar]
  52. Riis, F., Vollset, J., & Samd, M. (1986) Tectonic Development of the Western Margin of the Barents Sea and Adjacent Areas. In Future petroleum provinces of the world. In M. T.Halbouty (Ed.), Vol. 40, pp. 661–675. UK: AAPG Memoir.
    [Google Scholar]
  53. Roberts, D. (1989). Basin Inversion in and around the British Isles. Geological Society, London, Special Publications, 44, 131–150. https://doi.org/10.1144/GSL.SP.1989.044.01.09
    [Google Scholar]
  54. Robinson, K.W., Shannon, P.M., & Young, D.G.G. (1981). The Fastnet Basin: An Integrated Analysis. Petroleum Geology of the Continental shelf of North‐West Europe (pp. 444–454). London: Heyden.
    [Google Scholar]
  55. Rowell, P. (1995). Tectono‐stratigraphy of the North Celtic Sea Basin. Geological Society, London, Special Publications, 93, 101–137. https://doi.org/10.1144/GSL.SP.1995.093.01.11
    [Google Scholar]
  56. Shannon, P. (1979). The tectonic evolution of the lower Palaeozoic rocks of extreme Se Ireland. Geological Society, London, Special Publications, 8, 281–285. https://doi.org/10.1144/GSL.SP.1979.008.01.30
    [Google Scholar]
  57. Shannon, P. (1991). Tectonic framework and petroleum potential of the Celtic Sea, Ireland. First Break, 9, 107-122.
    [Google Scholar]
  58. Shannon, P., & MacTiernan, B. (1993). Triassic prospectivity in the Celtic Sea, Ireland ‐ a case history. First Break, 11, 47–57. https://doi.org/10.3997/1365-2397.1993003
    [Google Scholar]
  59. Sibuet, J. C., Dyment, J., Bois, C., Pinet, B., & Ondreas, H. (1990). Crustal structure of the Celtic Sea and Western Approaches from Gravity Data and Deep Seismic Profiles: Constraints on the formation of continental basins. Journal of Geophysical Research: Solid Earth, 95, 10999–11020.
    [Google Scholar]
  60. Štolfová, K., & Shannon, P. M. (2009). Permo‐Triassic development from Ireland to Norway: Basin architecture and regional controls. Geological Journal, 44, 652–676. https://doi.org/10.1002/gj.1187
    [Google Scholar]
  61. Storetvedt, K. (1972). Crustal evolution in the Bay of Biscay. Earth and Planetary Science Letters, 17, 135–141. https://doi.org/10.1016/0012-821X(72)90268-3
    [Google Scholar]
  62. Stuevold, L. M., & Eldholm, O. (1996). Cenozoic uplift of Fennoscandia inferred from a study of the mid‐Norwegian margin. Global and Planetary Change, 12, 359–386. https://doi.org/10.1016/0921-8181(95)00028-3
    [Google Scholar]
  63. Taber, D., Vickers, M., & Winn, R. (1995). The definition of the Albian ‘A’ Sand reservoir fairway and aspects of associated gas accumulations in the North Celtic Sea Basin. Geological Society, London, Special Publications, 93, 227–244. https://doi.org/10.1144/GSL.SP.1995.093.01.16
    [Google Scholar]
  64. Tappin, D. R., Chadwick, R. A., Jackson, A. A., Wingfield, R. T. R., & Smith, N. J. P. (1994). United Kingdom offshore regional report: The geology of Cardigan Bay and the Bristol Channel. London HMSO for the British Geological Survey, 107, pp.
    [Google Scholar]
  65. Tesón, E., Mora, A., Silva, A., Namson, J., Teixell, A., Castellanos, J., … Valencia, V. A. (2013). Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes. Geological Society, London, Special Publications, 377, 257–283. https://doi.org/10.1144/SP377.10
    [Google Scholar]
  66. Tikoff, B., & Teyssier, C. (1994). Strain modeling of displacement‐field partitioning in transpressional orogens. Journal of Structural Geology, 16(11), 1575–1588. https://doi.org/10.1016/0191-8141(94)90034-5
    [Google Scholar]
  67. Turner, J. P., & Williams, G. A. (2004). Sedimentary basin inversion and intra‐plate shortening. Earth‐Science Reviews, 65, 277–304. https://doi.org/10.1016/j.earscirev.2003.10.002
    [Google Scholar]
  68. Vågnes, E., Gabrielsen, R., & Haremo, P. (1998). Late Cretaceous–Cenozoic intraplate contractional deformation at the Norwegian continental shelf: timing, magnitude and regional implications. Tectonophysics, 300, 29–46. https://doi.org/10.1016/S0040-1951(98)00232-7
    [Google Scholar]
  69. Walsh, J. J., & Watterson, J. (1991). Geometric and kinematic coherence and scale effects in normal fault systems. Geological Society, London, Special Publications, 56, 193–203. https://doi.org/10.1144/GSL.SP.1991.056.01.13
    [Google Scholar]
  70. Williams, G., Powell, C., & Cooper, M. (1989). Geometry and kinematics of inversion tectonics. Geological Society, London, Special Publications, 44, 3–15. https://doi.org/10.1144/GSL.SP.1989.044.01.02
    [Google Scholar]
  71. Williams, G. A., Turner, J. P., & Holford, S. P. (2005). Inversion and exhumation of the St. George's channel basin, offshore wales, UK. Journal of the Geological Society, 162, 97–110. https://doi.org/10.1144/0016-764904-023
    [Google Scholar]
  72. Worthington, R., & Walsh, J. J. (2011). Structure of Lower Carboniferous basins of NW Ireland, and its implications for structural inheritance and Cenozoic faulting. Journal of Structural Geology, 33, 1285–1299. https://doi.org/10.1016/j.jsg.2011.05.001
    [Google Scholar]
  73. Yielding, G., & Freeman, B. (2016) 3‐D seismic‐structural workflows ‐ examples using the Hat Creek fault system. In B.Krantz, C.Ormand, & B.Freeman (Ed.), 3‐D Structural Interpretation: Earth, Mind, and Machine. Vol. 111, pp. 155–171. UK: AAPG Memoir.
    [Google Scholar]
  74. Ziegler, P. (1987). Celtic sea‐western approaches area: An overview. Tectonophysics, 137, 285–289. https://doi.org/10.1016/0040-1951(87)90323-4
    [Google Scholar]
  75. Ziegler, P. (1990a). Geological Atlas of Western and. UK: Central Europe, Geological Society of London.
    [Google Scholar]
  76. Ziegler, P. (1990b). Collision related intra‐plate compression deformations in Western and Central Europe. Journal of Geodynamics, 11, 357–388. https://doi.org/10.1016/0264-3707(90)90017-O
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12402
Loading
/content/journals/10.1111/bre.12402
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): basin inversion , Cenozoic inversion , fault segmentation , inversion structures and strike‐slip
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error