1887
Clinoforms and Clinothems: Fundamental Elements of Basin Infill
  • E-ISSN: 1365-2117

Abstract

[

Slope channels are found in an exposed prograding shelf‐margin clinoform outcrop in Bey Malec Estancia, southern Neuquén Basin, Argentina. Several clinoform timelines are mapped on a 4 km wide, 300m tall, slightly dip‐oblique section of Jurassic Los Molles Formation. Seven depositional environments are identified. Sedimentary logs, satellite images, a digital elevation model, and drone photogrammetry were used to track variations in downslope channel geometry and infill facies. The slope channels are all less than 50m in thickness and are filled with sediment density flow deposits. The debrite portion decreases downslope while high and low density turbidites increase. A grain‐size analysis reveals a broad downslope fining trend of turbidite and debrite beds within slope channels with increasing water depth, and some notable bypass of conglomeratic facies to the lowermost slope channels and basin‐floor fans. The architecture of the slope channels changes from lateral to aggradational infill downstream as the aspect ratio of the slope channels increase.

, Abstract

Most slope‐channel outcrop studies have been conducted at continental margin‐scale on seismic data. However, in foreland and back‐arc deepwater settings, sub‐seismic scale slope channels hold equally important information on deepwater sediment delivery, often in hydrocarbon‐bearing provinces. One such slope‐channel system is examined in Lower Jurassic prograding shelf‐margin clinoforms in Bey Malec Estancia, La Jardinera area, southern Neuquén Basin, Argentina. In a 4 km wide, 300 m tall, slightly oblique‐ to depositional‐dip section of Jurassic Los Molles Formation deepwater slope deposits, seven clinoform timelines were identified by isolated slope‐channel fills with thicknesses less than 50 m. Sedimentary logs, satellite images, a digital elevation model and drone photogrammetry were used to map variations in downslope channel geometry and infill facies. The slope channels are filled with sediment density flow deposits: poorly sorted conglomeratic debrites, structureless sandy high‐density turbidites and well‐sorted, fine‐grained, graded low‐density turbidites. The debrite portion decreases downslope, whereas high‐ and low‐density turbidites increase. A grain‐size analysis reveals a broad downslope fining trend of turbidite and debrite beds within slope channels with increasing water depth, and some notable bypass of conglomeratic facies to the lowermost slope channels and basin floor fans. The architecture of the slope channels changes from lateral to aggradational infill downstream. The Bey Malec clinoforms and its slope channels add new knowledge on downslope changes for sediment delivery in relatively shallow (<500 m water depth), prograding‐dominant deepwater basins. They also highlight one of very few outcropping examples of oblique‐type clinoforms.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12409
2019-10-14
2024-04-26
Loading full text...

Full text loading...

References

  1. Babonneau, N., Savoye, B., Cremer, M., & Klein, B. (2002). Morphology and architecture of the present canyon and channel system of the Zaire deep‐sea fan. Marine and Petroleum Geology, 19, 445–467. https://doi.org/10.1016/S0264-8172(02)00009-0
    [Google Scholar]
  2. Bouma, A. H. (1962). Sedimentology of some flysch deposits; a graphic approach to facies interpretation. Amsterdam, Elsevier, 167 p.
    [Google Scholar]
  3. Brinkworth, W., Vocaturo, G., Loss, L., Giunta, D., Mortaloni, E., & Massaferro, J. L. (2017). Integración regional de subsuelo orientado a la exploración y desarrollo de Grupo Cuyo. Tucumán: Cuenca Neuquina. XX Congreso Geológico Argentino.
    [Google Scholar]
  4. Carvajal, C. R., & Steel, R. J. (2006). Thick turbidite successions from supply‐dominated shelves during sea‐level highstand. Geology, 34, 665–668. https://doi.org/10.1130/G22505.1
    [Google Scholar]
  5. Carvajal, C. R., & Steel, R. J. (2012). Source‐to‐Sink Sediment Volumes within a Tectono‐Stratigraphic Model for a Laramide Shelf‐to‐Deep‐Water Basin: Methods and Results. In C.Busby, & A.Azor, Eds., Tectonics of Sedimentary Basins. 131‐151.
    [Google Scholar]
  6. Curray, J. R., Emmel, F. J., & Moore, D. G. (2003). The Bengal Fan: Morphology, geometry, stratigraphy, history and processes. Marine and Petroleum Geology, 19, 1191–1223. https://doi.org/10.1016/S0264-8172(03)00035-7
    [Google Scholar]
  7. DeAlmeida, F., Steel, R. J., Olariu, C., Gan, Y., & Paim, P. (2019). River‐dominated, tide‐influenced shelf‐edge delta systems: coarse‐grained deltas straddling the Early‐Middle Jurassic shelf‐slope break and transforming downslope, Lajas‐Los Molles form.
  8. Dean, J. S. (1987). Depositional environments and paleogeography of the Lower to Middle Jurassic Cuyo Group, Neuquén basin, Argentina. Ph.D. dissertation, Colorado School of Mines, Golden, Colorada, 586 p.
  9. Deptuck, M. E., Piper, D. J., Savoye, B., & Gervais, A. (2008). Dimensions and architecture of late Pleistocene submarine lobes off the northern margin of East Corsica. Sedimentology, 55, 869–898. https://doi.org/10.1111/j.1365-3091.2007.00926.x
    [Google Scholar]
  10. Dixon, J. (2013). Shelf‐edge deltas: stratigraphic complexity and relationship to deepwater deposition. 217 p. University of Texas at Austin Thesis.
  11. Fongngern, R., Olariu, C., Steel, R., Mohrig, D., Krezsek, C., & Hess, T. (2018). Subsurface and outcrop characteristics of fluvial‐dominated deep‐lacustrine clinoforms. Sedimentology, 65, 1447–1481. https://doi.org/10.1111/sed.12430
    [Google Scholar]
  12. Franzese, J. R., Veiga, G. D., Schwarz, E., & Gómez-Pérez, I. (2006). Tectonostratigraphic evolution of a Mesozoic graben border system: the Chachil depocentre, southern Neuquén Basin, Argentina. Journal of the Geological Society, London, 163, 707–721.
    [Google Scholar]
  13. Gervais, A., Mulder, T., Savoye, B., & Gonthier, E. (2006). Sediment distribution and evolution of sedimentary processes in a small sandy turbidite system (Golo system, Mediterranean Sea): Implications for various geometries based on core framework. Geo‐Marine Letters, 26, 393–395. https://doi.org/10.1007/s00367-006-0045-z
    [Google Scholar]
  14. Giacomone, G., Olariu, C., Steel, R., & Shin, M. (2019). Enhancing the model of coarse‐grained basin floor fans: Characteristic trends within lobes and lobe complexes of the Jurassic Los Molles. Fm, Neuquén: Basin, Argentine, submitted.
    [Google Scholar]
  15. Gomis‐Cartesio, L. E., Poyatos‐Moré Flint, S. S., Hodgson, D. M., Brunt, R. L., & DevWickens, H. (2017b) Anatomy of a mixed‐influence shelf edge delta, Karoo Basin, South Africa. In G. J.Hampson, A. D.Reynolds, B.Kostic, & M. R.Wells (eds). Sedimentology of Paralic Reservoirs: Recent Advances. Geological Society, London, Special Publications, 444, 393–418.
    [Google Scholar]
  16. Gomis‐Cartesio, L. E., Poyatos‐Moré, M., Hodgson, D. M., & Flint, S. S. (2017a). Shelf‐margin clinothem progradation, degradation and readjustment: Tanqua depocentre, Karoo Basin (South Africa). Sedimentology, 65, 809–841. https://doi.org/10.1111/sed.12406
    [Google Scholar]
  17. Howell, J. A., Schwarz, E., Spalletti, L. A., & Veiga, G. D. (2005). (2005) The Neuquén Basin: An overview. Spec. Publ. GSL, 252, 1–14.
    [Google Scholar]
  18. Jobe, Z., Sylvester, Z., Pittaluga, M. B., Frascati, A., Pirmez, C. (2017). Facies architecture of submarine channel deposits on the western Niger Delta slope: Implications for grain‐size and density stratification in turbidity currents. Journal of Geophysical Research: Earth Surface, 122, 473–491.
    [Google Scholar]
  19. Kim, H. J., Mallea, M., Gutierrez, R., & Malone, P. (2014). Exploracion del Gr Cuyo (Jurasico) en bloques maduraos de la Dorsal de Huincul: Puesto touquet y el. porvenir, Cuenca: Neuquina.
    [Google Scholar]
  20. Kneller, B. C., & Branney, M. J. (1995). Sustained high‐density turbidity currents and the deposition of thick massive sands. Sedimentology, 42, 607–616. https://doi.org/10.1111/j.1365-3091.1995.tb00395.x
    [Google Scholar]
  21. Lowe, D. R. (1982). Sediment gravity flows: II. Depositional models with special reference to the deposits of high‐density turbidity currents. JSR, 52, 279–297.
    [Google Scholar]
  22. Malkowski, M. A., Jobe, Z. R., Sharman, G. R., & Graham, S. A. (2018). Down‐slope facies variability within deep‐water channel systems: Insights from the Upper Cretaceous Cerro Toro Formation, southern Patagonia. Sedimentology, 65, 1918–1946. https://doi.org/10.1111/sed.12452
    [Google Scholar]
  23. McHargue, T., Pyrcz, M. J., Sullivan, M. D., Clark, J. D., Fildani, A., Romans, B. W., … Drinkwater, N. J. (2011). Architecture of turbidite channel systems on the continental slope: Patterns and predictions. Marine and Petroleum Geology, 28, 728–743. https://doi.org/10.1016/j.marpetgeo.2010.07.008
    [Google Scholar]
  24. Middelton, G. V., & Hampton, M. A. (1973) Sediment gravity flows: mechanics of flow and deposition. In G. V.Middleton, & A. H.Bouma, eds. Turbidites and Deep‐Water Sedimentation. Anaheim, California: SEPM Short Course Notes, 38 p.
    [Google Scholar]
  25. Mutti, E. (1992). Turbidite Sandstones (p. 275). Agip: San Donato Milanese.
    [Google Scholar]
  26. Naipauer, M., Garcia, M. E., Manassero, M., Valencia, V. V., & Ramos, V. A. (2018) A Provenance Analysis from the Lower Jurassic Units of the Neuquén Basin. Volcanic Arc or Intraplate Magmatic Input? In A.Folguera Ed, The Evolution of the Chilean‐Argentinean Andes, 191–222.
    [Google Scholar]
  27. Naipauer, M., García Morabito, E., Marques, J. C., Tunik, M., Rojas Vera, E. A., Vujovich, G. I., … Ramos, V. A. (2012). Intraplate Late Jurassic deformation and exhumation in western central Argentina: Constraints from surface data and U‐Pb detrital zircon ages. Tectonophysics, 524, 59–75. https://doi.org/10.1016/j.tecto.2011.12.017
    [Google Scholar]
  28. Normark, W. (1978). Fan Valleys, Channels, and Depositional Lobes on Modern Submarine Fans: Characters for Recognition of Sandy Turbidite Environments. AAPG Bull., 62, 912–931.
    [Google Scholar]
  29. Olariu, C., Steel, R. J., Vann, N., Shin, M., Winter, R., Gan, Y. … Gutierrez, R. (2019) Criteria for recognition of shelf‐slope clinoforms using outcrop data: Jurassic Lajas and Los Molles Formations, S Neuquén Basin, Argentina. this volume.
  30. Paim, P. S. G., da Silveira, A. S., Lavina, E. L. C., Faccini, U. F., Leanza, H. A. (2008). High resolution stratigraphy and gravity flow deposits in the Los Molles formation (Cuyo Group ‐ Jurassic) at La Jardinera region, Neuquén Basin. Revista De La Asociacion Geologica Argentina, 63, 728–753.
    [Google Scholar]
  31. Paim, P. S. G., Lavina, E. L. C., da Faccini, U. F., Silveira, A. S., Leanza, H., & D’Avila, R. S. F. (2011) Fluvial‐derived turbidites in the Los Molles Formation (Jurassic of the Neuquén Basin): Initiation, transport, and deposition. In R. M.Slatt, & C.Zavala Eds. Sediment transfer from shelf to deepwater‐Revisiting the delivery system, AAPG Studies in Geology, 61, 95–116.
    [Google Scholar]
  32. Pichevin, L., Mulder, T., Savoye, B., Gervais, A., Cremer, M., & Piper, D. J. W. (2003). The Golo submarine turbidite system (east Corsica margin): Morphology and processes of terrace formation from high‐resolution seismic reflection profiles. Geo‐Marine Letters, 23, 117–124. https://doi.org/10.1007/s00367-003-0131-4
    [Google Scholar]
  33. Pinous, O. V., Levchuk, M. A., & Sahagian, D. L. (2001). Regional synthesis of the productive Neocomian complex of West Siberia: Sequence stratigraphic framework. AAPG Bulletin, 85, 1713–1730.
    [Google Scholar]
  34. Pirmez, C., Beaubouef, R. T., Friedmann, S. J., & Mohrig, D. C.. (2000) Equilibrium profile and baselevel in submarine channels: examples from late pleistocene systems and implications for architecture in deepwater reservoirs. In Deep‐Water Reservoirs of the World (Ed. by WeimerP., SlattR. M., ColemanJ. H., Rosen N. C., Nelson H., Bouma A. H., Styzen M. J. & Lawrence D. T.), 20th Annual GCS‐SEPM Foundation Bob F. Perkins Research Conference, 782–805. Gulf Coast Section, SEPM.
    [Google Scholar]
  35. Pirmez, R. D., & Flood, R. D. (1995). Morphology and structure of Amazon channel, in Proceedings of the Ocean Drilling Program, Initial Reports vol 155 (Ed. By R.D. Flood, D.J.W. Piper and A. Klaus), 23–45.
  36. Plink‐Björklund, P., Mellere, D., & Steel, R. J. (2001). Turbidite Variability and Architecture of Sand‐Prone, Deep‐Water Slopes: Eocene Clinoforms in the Central Basin, Spitsbergen. JSR, 71, 895–912. https://doi.org/10.1306/030501710895
    [Google Scholar]
  37. Porębski, S. J., & Steel, R. J. (2003). Shelf‐margin deltas: Their stratigraphic significance and relation to deepwater sands. Earth‐Science Reviews, 62, 283–326. https://doi.org/10.1016/S0012-8252(02)00161-7
    [Google Scholar]
  38. Porębski, S. J., & Steel, R. J. (2006). Deltas and sea‐level change. JSR, 76, 390–403. https://doi.org/10.2110/jsr.2006.034
    [Google Scholar]
  39. Prather, B. E., O’Bryne, C., Pirmez, C., & Sylvester, Z. (2017). Sediment partitioning, continental slope and base‐of‐slope‐systems. Basin Research, 29, 394–416.
    [Google Scholar]
  40. Ramos, V. A. (1999a). Los depósitos sinorogénicos terciarios de la región andina. In: Geología Argentina (Ed. By R. Caminos), 29, 651–682.
  41. Ramos, V. A. (1999b). Evolución tectónica de la Argentina. In: Geología Argentina (Ed. By R. Caminos), 29, 715–759.
  42. Reading, H. G., & Richards, M. (1994). Turbidite systems in deep‐water basin margins classified by grain size and feeder system. AAPG Bulletin, 78, 792–822.
    [Google Scholar]
  43. Reimchen, A. P., Hubbard, S. M., Straight, L., & Romans, B. W. (2016). Using sea‐floor morphometrics to constrain stratigraphic models of sinuous submarine channel systems. Marine and Petroleum Geology, 77, 92–115.
    [Google Scholar]
  44. Rossi, V. M., & Steel, R. J. (2016). The role of tidal, wave and river currents in the evolution of mixed‐energy deltas: Example from the Lajas Formation (Argentina). Sedimentology, 63, 824–864.
    [Google Scholar]
  45. Sohn, Y. K. (1997). On traction‐carpet sedimentation. JSR, 67, 502–509.
    [Google Scholar]
  46. Steel, E., Simms, A. R., Steel, R. J., & Olariu, C. (2018). Hyperpycnal delivery of sand to the continental shelf: Insights from the Jurassic Lajas Formation, Neuquén Basin, Argentina. Sedimentology, 65, 2149–2170.
    [Google Scholar]
  47. Steel, R. J., Olariu, C., Zhang, J., & Chen, S. (2019). What is the topset of a shelf‐margin prism?Basin Research, in press.
    [Google Scholar]
  48. Sweet, M. L., & Blum, M. D. (2016). Connections between fluvial to shallow marine environments and submarine canyons: Implications for sediment transfer to deepwater. JSR, 86, 1147–1162.
    [Google Scholar]
  49. Sylvester, Z., Deptuck, M., Prather, B., Pirmez, C. (2012). Seismic Stratigraphy of a Shelf‐Edge Delta and Linked Submarine Channels in the Northeastern Gulf of Mexico, in Application of the Principles of Seismic Geomorphology to Continental‐Slope and Base‐of‐Slope Systems: Case Studies from Seafloor and Near‐Seafloor Analogues. SEPM Special Publication, 99, 31–59.
    [Google Scholar]
  50. Talling, P. J., Masson, D. G., Sumner, E. J., & Malgesini, G. (2012). Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59, 1937–2003.
    [Google Scholar]
  51. Vergani, G. D., Tankard, A. J., Belotti, H. J., & Welsink, H. J. (1995). Tectonic evolution and palaeogeography of the Neuquén Basin, Argentina, in Petroleum basins of South America (Ed. By Tankard, A.J., et al.). AAPG Memoir, 62, 383–402.
    [Google Scholar]
  52. Vicente, J. C. (2005). Dynamic paleogeography of the Jurassic Andean Basin: Pattern of transgression and localisation of main straits through the magmatic arc. Revista De La Asociación Geológica Argentina, 60, 221–250.
    [Google Scholar]
  53. Walker, R. G. (1967). Turbidite sedimentary structures and their relationship to proximal and distal depositional environments. Journal of Sedimentary Research, 37, 25–43. https://doi.org/10.1306/74D71645-2B21-11D7-8648000102C1865D
    [Google Scholar]
  54. Zavala, C. (1996). High‐Resolution Sequence Stratigraphy in the Middle Jurassic Cuyo Group, South Neuquén Basin, Argentina. GeoResearch Forum, 1–2, 295–304.
    [Google Scholar]
  55. Zhang, J., Steel, R. J., & Ambrose, W. (2016). Greenhouse shoreline migration: Wilcox deltas. AAPG Bulletin, 100, 1803–1831. https://doi.org/10.1306/04151615190
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12409
Loading
/content/journals/10.1111/bre.12409
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): clinoform; deepwater slope channel; Neuquén basin; sediment density flows

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error