1887
Volume 32, Issue 5
  • E-ISSN: 1365-2117

Abstract

[Abstract

World‐class examples of fault‐controlled growth basins with associated syn‐kinematic sedimentary fill are developed in Upper Triassic prodelta to delta‐front deposits exposed at Kvalpynten, SW Edgeøya in East Svalbard. They are interpreted to have interacted with north‐westerly progradation of a regional delta system. The syn‐kinematic successions consist of 4 to 5 coarsening‐upward units spanning from offshore mudstones to subtidal heterolithic bars and compound tidal dunes, which were blanketed by regional, post‐kinematic sandstone sheets deposited as laterally continuous, subaqueous tidal dune fields. The rate of growth faulting is reflected in the distribution of accommodation, which governs sedimentary architecture and stacking patterns within the coarsening‐upward units. Fully compartmentalized basins (12, 200–800 m wide and c. 150 m high grabens and half grabens) are characterized by syn‐kinematic sedimentary infill. These grabens and half‐grabens are separated by 60–150 m high horsts composed of pro‐delta to distal delta‐front mudstones. Grabens host tabular tidal dunes (sandwaves), whereas half‐grabens bound by listric faults (mainly south‐dipping) consist of wedge‐shaped, rotated strata with erosive boundaries proximal to the uplifted fault block crests. Heterolithic tidal bars (sand ridges) occur in narrow half‐grabens, showing migration oblique to the faults, up the dipslope. Structureless sandstone wedges and localized subaqueous slumps that formed in response to collapse of the block crests were only documented in half‐grabens. Late‐kinematic deposition during the final stages of faulting occurred in partly compartmentalized basins, filled with variably thick sets of continuous sandstone belts (compound tidal dunes).

,

Conceptual model of growth basins and their development in prodelta/ lower front of a tidally influenced delta. Heterolithic and sand deposits are redistributed by tidal bars and dunes, detached from the delta‐ front/ delta top.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12410
2020-09-26
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/bre/32/5/bre12410.html?itemId=/content/journals/10.1111/bre.12410&mimeType=html&fmt=ahah

References

  1. Ahlborn, M., & Stemmerik, L. (2015). Depositional evolution of the Upper Carboniferous – Lower Permian Wordiekammen carbonate platform, Nordfjorden High, central Svalbard, Arctic Norway. Norwegian Journal of Geology, 95, 91–126.
    [Google Scholar]
  2. Allen, J. R. L. (1982). Sedimentary structures, their character and physical basis (Vol. 1). New York: Elsevier.
    [Google Scholar]
  3. Anderton, R. (1976). Tidal‐shelf sedimentation: An example from the Scottish Dalradian. Sedimentology, 23(4), 429–458. https://doi.org/10.1111/j.1365-3091.1976.tb00062.x
    [Google Scholar]
  4. Anell, I. M., Braathen, A., & Olaussen, S. (2014). The Triassic‐Early Jurassic of the northern Barents Shelf: A regional understanding of the Longyearbyen CO2 reservoir. Norsk Geologisk Tidsskrift, 94, 83–98.
    [Google Scholar]
  5. Anell, I., Braathen, A., Olaussen, S., & Osmundsen, P. T. (2013). Evidence of faulting contradicts a quiescent northern Barents Shelf during the Triassic. First Break, 31(6), 67–76. https://doi.org/10.3997/1365-2397.2013017
    [Google Scholar]
  6. Anell, I. M., Faleide, J. I., & Braathen, A. (2016). Regional tectono‐sedimentary development of the highs and basins of the northwestern Barents Shelf. Norsk Geologisk Tidsskrift, 96(1), 27–41. https://doi.org/10.17850/njg96-1-04
    [Google Scholar]
  7. Ashley, G. M. (1990). Classification of large‐scale subaqueous bedforms: A new look at an old problem‐SEPM bedforms and bedding structures. Journal of Sedimentary Research, 60(1), 160–172. https://doi.org/10.2110/jsr.60.160
    [Google Scholar]
  8. Ashley, G. M., Southard, J. B., & BooTHRoyD, J. C. (1982). Deposition of climbing‐ripple beds: A flume simulation. Sedimentology, 29(1), 67–79. https://doi.org/10.1111/j.1365-3091.1982.tb01709.x
    [Google Scholar]
  9. Baas, J. H., Best, J. L., & Peakall, J. (2016). Predicting bedforms and primary current stratification in cohesive mixtures of mud and sand. Journal of the Geological Society, 173(1), 12–45. https://doi.org/10.1144/jgs2015-024
    [Google Scholar]
  10. Back, S., & Morley, C. K. (2016). Growth faults above shale–Seismic‐scale outcrop analogues from the Makran foreland, SW Pakistan. Marine and Petroleum Geology, 70, 144–162. https://doi.org/10.1016/j.marpetgeo.2015.11.008
    [Google Scholar]
  11. Back, S., Strozyk, F., Kukla, P. A., & Lambiase, J. J. (2008). Three‐dimensional restoration of original sedimentary geometries in deformed basin fill, onshore Brunei Darussalam, NW Borneo. Basin Research, 20(1), 99–117. https://doi.org/10.1111/j.1365-2117.2007.00343.x
    [Google Scholar]
  12. Basilici, G. (1997). Sedimentary facies in an extensional and deep‐lacustrine depositional system: The Pliocene Tiberino Basin, Central Italy. Sedimentary Geology, 109(1–2), 73–94. https://doi.org/10.1016/S0037-0738(96)00056-5
    [Google Scholar]
  13. Bergh, S. G., Maher, H. D., & Braathen, A. (2000). Tertiary divergent thrust directions from partitioned transpression, Brøggerhalvøya, Spitsbergen. Norsk Geologisk Tidsskrift, 80(2), 63–81.
    [Google Scholar]
  14. Bhattacharya, J. P., & Davies, R. K. (2001). Growth faults at the prodelta to delta‐front transition, Cretaceous Ferron sandstone, Utah. Marine and Petroleum Geology, 18(5), 525–534. https://doi.org/10.1016/S0264-8172(01)00015-0
    [Google Scholar]
  15. Bouroullec, R., Cartwright, J. A., Johnson, H. D., Lansigu, C., Quémener, J. M., & Savanier, D. (2004). Syndepositional faulting in the Grès d'Annot Formation, SE France: High‐resolution kinematic analysis and stratigraphic response to growth faulting. Geological Society, London, Special Publications, 221(1), 241–265. https://doi.org/10.1144/GSL.SP.2004.221.01.13
    [Google Scholar]
  16. Braathen, A., Bælum, K., Maher, H.Jr, & Buckley, S. J. (2011). Growth of extensional faults and folds during deposition of an evaporite‐dominated half‐graben basin; the Carboniferous Billefjorden Trough, Svalbard. Norwegian Journal of Geology/Norsk Geologisk Forening, 91(3), 131–161.
    [Google Scholar]
  17. Braathen, A., Bergh, S. G., & Maher, H. D.Jr (1999). Application of a critical wedge taper model to the Tertiary transpressional fold‐thrust belt on Spitsbergen. Geological Society of America Bulletin, 111, 1468–1485.
    [Google Scholar]
  18. Braathen, A., Midtkandal, I., Mulrooney, M. J., Appleyard, T. R., Haile, B. G., & van Yperen, A. E. (2018). Growth‐faults from delta collapse–structural and sedimentological investigation of the Last Chance delta, Ferron Sandstone, Utah. Basin Research, 30(4), 688–707. https://doi.org/10.1111/bre.12271
    [Google Scholar]
  19. Braathen, A., Osmundsen, P. T., Maher, H., & Ganerød, M. (2018). The Keisarhjelmen detachment records Silurian‐Devonian extensional collapse in Northern Svalbard. Terra Nova, 30(1), 34–39. https://doi.org/10.1111/ter.12305
    [Google Scholar]
  20. Bruce, C. H. (1973). Pressured shale and related sediment deformation: Mechanism for development of regional contemporaneous faults. AAPG Bulletin, 57(5), 878–886.
    [Google Scholar]
  21. Buckley, S. J., Ringdal, K., Naumann, N., Dolva, B., Kurz, T. H., Howell, J. A., & Dewez, T. J. (2019). LIME: Software for 3‐D visualization, interpretation, and communication of virtual geoscience models. Geosphere, 15(1), 222–235. https://doi.org/10.1130/GES02002.1
    [Google Scholar]
  22. Burhannudinnur, M., & Morley, C. K. (1997). Anatomy of growth fault zones in poorly lithified sandstones and shales: Implications for reservoir studies and seismic interpretation: Part 1, outcrop study. Petroleum Geoscience, 3(3), 211–224. https://doi.org/10.1144/petgeo.3.3.211
    [Google Scholar]
  23. Caillet, G., & Batiot, S. (2003). 2D modelling of hydrocarbon migration along and across growth faults: An example from Nigeria. Petroleum Geoscience, 9(2), 113–124. https://doi.org/10.1144/1354-079302-499
    [Google Scholar]
  24. Cartwright, J. A., Mansfield, C., & Trudgill, B. (1996). The growth of normal faults by segment linkage. Geological Society, London, Special Publications, 99(1), 163–177. https://doi.org/10.1144/GSL.SP.1996.099.01.13
    [Google Scholar]
  25. Carver, R. E. (1968). Differential compaction as a cause of regional contemporaneous faults. AAPG Bulletin, 52(3), 414–419.
    [Google Scholar]
  26. Chandler, J. H., & Buckley, S. (2016). Structure from motion (SFM) photogrammetry vs terrestrial laser scanning. In M. B.Carpenter & C. M.Keane (Eds.), Geoscience Handbook 2016, AGI Data Sheets (5th edn.). Section 20.1. Alexandria, USA: American Geosciences Institute.
    [Google Scholar]
  27. Cheel, R. J., & Leckie, D. A. (1993). Hummocky cross‐stratification. Sedimentology Review, 1, 103–122.
    [Google Scholar]
  28. Cheel, R. J., & Middleton, G. V. (1986). Horizontal laminae formed under upper flow regime plane bed conditions. The Journal of Geology, 94(4), 489–504. https://doi.org/10.1086/629053
    [Google Scholar]
  29. Dallmann, W. K., Elvevold, S., Majka, J., & Piepjohn, K. (2015). Tectonics and tectonothermal events. In: Geoscience Atlas of Svalbard (Ed. by Dallmann, W.K.). Norsk Polarinstitutt Rapportserie, 148, 175–223.
    [Google Scholar]
  30. Dimakis, P., Braathen, B. I., Faleide, J. I., Elverhøi, A., & Gudlaugsson, S. T. (1998). Cenozoic erosion and the preglacial uplift of the Svalbard‐Barents Sea region. Tectonophysics, 300(1–4), 311–327. https://doi.org/10.1016/S0040-1951(98)00245-5
    [Google Scholar]
  31. Dumas, S., & Arnott, R. W. C. (2006). Origin of hummocky and swaley cross‐stratification—The controlling influence of unidirectional current strength and aggradation rate. Geology, 34(12), 1073–1076. https://doi.org/10.1130/G22930A.1
    [Google Scholar]
  32. Dypvik, H., Hakansson, E., & Heinberg, C. (2002). Jurassic and Cretaceous palaeogeography and stratigraphic comparisons in the North Greenland‐Svalbard region. Polar Research, 21, 91–108. https://doi.org/10.3402/polar.v21i1.6476
    [Google Scholar]
  33. Edwards, M. B. (1976). Growth faults in Upper Triassic deltaic sediments. Svalbard. AAPG Bulletin, 60(3), 341–355.
    [Google Scholar]
  34. Eide, C. H., Klausen, T. G., Katkov, D., Suslova, A. A., & Helland‐Hansen, W. (2017). Linking an Early Triassic delta to antecedent topography: Source‐to‐sink study of the southwestern Barents Sea margin. Bulletin, 130(1–2), 263–283.
    [Google Scholar]
  35. Faleide, J. I., Gudlaugsson, S. T., & Jacquart, G. (1984). Evolution of the western Barents Sea. Marine and Petroleum Geology, 1(2), 123–150. https://doi.org/10.1016/0264-8172(84)90082-5
    [Google Scholar]
  36. Faleide, J. I., Pease, V., Curtis, M., Klitzke, P., Minakov, A., Sheck‐Wenderoth, M., … Zayonchek, A. (2017). Tectonic implications of the lithospheric structure across the Barents and Kara shelves. Geological Society of London, Special Publications, 460, 285–314. https://doi.org/10.1144/SP460.18
    [Google Scholar]
  37. Faleide, J. I., Tsikalas, F., Breivik, A. J., Mjelde, R., Ritzmann, O., Engen, Ø., … Eldholm, O. (2008). Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes, 31(1), 82–91. https://doi.org/10.18814/epiiugs/2008/v31i1/012
    [Google Scholar]
  38. Fazlikhani, H., Back, S., Kukla, P. A., & Fossen, H. (2017). Interaction between gravity‐driven listric normal fault linkage and their hanging‐wall rollover development: A case study from the western Niger Delta, Nigeria. Geological Society, London, Special Publications, 439(1), 169–186. https://doi.org/10.1144/SP439.20
    [Google Scholar]
  39. Fielding, C. R. (2006). Upper flow regime sheets, lenses and scour fills: Extending the range of architectural elements for fluvial sediment bodies. Sedimentary Geology, 190(1–4), 227–240. https://doi.org/10.1016/j.sedgeo.2006.05.009
    [Google Scholar]
  40. Fielding, C. R. (2015). Anatomy of falling‐stage deltas in the Turonian Ferron Sandstone of the western Henry Mountains Syncline, Utah: Growth faults, slope failures and mass transport complexes. Sedimentology, 62(1), 1–26. https://doi.org/10.1111/sed.12136
    [Google Scholar]
  41. Flood, B., Nagy, J., & Winsnes, T. S. (1971). The Triassic succession of Barentsøya, Edgeøya, and Hopen (Svalbard). Norsk Polarinstitutt Meddelelser, 100, 1–20.
    [Google Scholar]
  42. Garfunkel, Z. (1984). Large‐scale submarine rotational slumps and growth faults in the eastern Mediterranean. Marine Geology, 55(3–4), 305–324. https://doi.org/10.1016/0025-3227(84)90074-4
    [Google Scholar]
  43. Gingras, M. K., Pemberton, S. G., & Smith, M. (2014). Bioturbation: Reworking sediments for better or worse. Oilfield Review, 26(4), 46–58.
    [Google Scholar]
  44. Gjelberg, J., & Steel, R. J. (1995). Helvetiafjellet Formation (Barremian–Aptian), Spitsbergen: Characteristics of a transgressive succession. In R. J.Steel, V. L.Felt, E. P.Johannessen, & C.Mathieu (Eds), Sequence stratigraphy on the Northwest European Margin (pp. 571–593). Amsterdam: Norwegian Petroleum Society (NPF) Special Publication 5, Elsevier.
    [Google Scholar]
  45. Glørstad‐Clark, E., Birkeland, E. P., Nystuen, J. P., Faleide, J. I., & Midtkandal, I. (2011). Triassic platform‐margin deltas in the western Barents Sea. Marine and Petroleum Geology, 28(7), 1294–1314. https://doi.org/10.1016/j.marpetgeo.2011.03.006
    [Google Scholar]
  46. Glørstad‐Clark, E., Faleide, J. I., Lundschien, B. A., & Nystuen, J. P. (2010). Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area. Marine and Petroleum Geology, 27(7), 1448–1475. https://doi.org/10.1016/j.marpetgeo.2010.02.008
    [Google Scholar]
  47. Grundvåg, S. A., Marin, D., Kairanov, B., Śliwińska, K. K., Nøhr‐Hansen, H., Jelby, M. E., … Olaussen, S. (2017). The Lower Cretaceous succession of the northwestern Barents Shelf: Onshore and offshore correlations. Marine and Petroleum Geology, 86, 834–857. https://doi.org/10.1016/j.marpetgeo.2017.06.036
    [Google Scholar]
  48. Grundvåg, S. A., & Olaussen, S. (2017). Sedimentology of the Lower Cretaceous at Kikutodden and Keilhaufjellet, southern Spitsbergen: Implications for an onshore–offshore link. Polar Research, 36, 1. https://doi.org/10.1080/17518369.2017.1302124
    [Google Scholar]
  49. Haile, B. G., Klausen, T. G., Czarniecka, U., Xi, K., Jahren, J., & Hellevang, H. (2018). How are diagenesis and reservoir quality linked to depositional facies? A deltaic succession, Edgeøya, Svalbard. Marine and Petroleum Geology, 92, 519–546. https://doi.org/10.1016/j.marpetgeo.2017.11.019
    [Google Scholar]
  50. Harland, W. B., & Kelly, S. R. A. (1997). Eastern svalbard platform. In W. B.Harland (Ed.), The geology of svalbard (Vol. 17, pp. 75–95). London: Geological Society, Memoirs. https://doi.org/10.1144/GSL.MEM.1997.017.01.05
    [Google Scholar]
  51. Henriksen, E., Bjørnseth, H. M., Hals, T. K., Heide, T., Kiryukhina, T., Kløvjan, O., … Sollid, K. (2011). Uplift and erosion of the greater Barents Sea: Impact on prospectivity and petroleum systems. Geological Society, London, Memoirs, 35(1), 271–281.
    [Google Scholar]
  52. Hiscott, R. N. (2001). Depositional sequences controlled by high rates of sediment supply, sea‐level variations, and growth faulting: The Quaternary Baram Delta of northwestern Borneo. Marine Geology, 175(1–4), 67–102. https://doi.org/10.1016/S0025-3227(01)00118-9
    [Google Scholar]
  53. Høy, T., & Lundschien, B. A. (2011). Triassic deltaic sequences in the northern Barents Sea. Geological Society, London, Memoirs, 35(1), 249–260.
    [Google Scholar]
  54. Ings, S. J., & Beaumont, C. (2010). Shortening viscous pressure ridges, a solution to the enigma of initiating salt ‘withdrawal’minibasins. Geology, 38(4), 339–342.
    [Google Scholar]
  55. Jelby, M. E., Grundvåg, S. A., Helland‐Hansen, W., Olaussen, S., & Stemmerik, L. (2017). Basin‐scale facies model of spectacular storm deposits in the High Arctic. Geological Society of Denmark Annual meeting 2017, Copenhagen, Denmark.
  56. Johannessen, E. P., & Steel, R. J. (1992). Mid‐Carboniferous extension and rift‐infill sequences in the Billefjorden Trough, Svalbard. Norsk Geologisk Tidsskrift, 72(1), 35–48.
    [Google Scholar]
  57. Klausen, T. G., & Mørk, A. (2014). The upper triassic paralic deposits of the De Geerdalen formation on hopen: outcrop analog to the subsurface snadd formation in the barents sea the De Geerdalen formation on hopen. AAPG Bulletin, 98(10), 1911–1941. https://doi.org/10.1306/02191413064
    [Google Scholar]
  58. Klausen, T. G., Ryseth, A. E., Helland‐Hansen, W., Gawthorpe, R., & Laursen, I. (2015). Regional development and sequence stratigraphy of the Middle to Late Triassic Snadd formation, Norwegian Barents Sea. Marine and Petroleum Geology, 62, 102–122. https://doi.org/10.1016/j.marpetgeo.2015.02.004
    [Google Scholar]
  59. Klausen, T. G., Torland, J. A., Eide, C. H., Alaei, B., Olaussen, S., & Chiarella, D. (2018). Clinoform development and topset evolution in a mud‐rich delta–the Middle Triassic Kobbe Formation, Norwegian Barents Sea. Sedimentology, 65(4), 1132–1169. https://doi.org/10.1111/sed.12417
    [Google Scholar]
  60. Koevoets, M. J., Hammer, O., Olaussen, S., Senger, K., & Smelror, M. (2019). Integrating subsurface and outcrop data of the Middle Jurassic to Lower Cretaceous Agardhfjellet Formation in central Spitsbergen. Norwegian Journal of Geology, 98, 1–34. https://doi.org/10.17850/njg98-4-01
    [Google Scholar]
  61. Krajewski, K. P. (2008). The Botneheia Formation (Middle Triassic) in Edgeøya and Barentsøya, Svalbard: Lithostratigraphy, facies, phosphogenesis, paleoenvironment. Polish Polar Research, 29(4), 319–364.
    [Google Scholar]
  62. Longhitano, S. G., Mellere, D., Steel, R. J., & Ainsworth, R. B. (2012). Tidal depositional systems in the rock record: A review and new insights. Sedimentary Geology, 279, 2–22. https://doi.org/10.1016/j.sedgeo.2012.03.024
    [Google Scholar]
  63. Lopez, J. A. (1990). Structural styles of growth faults in the US Gulf Coast Basin. Geological Society, London, Special Publications, 50(1), 203–219. https://doi.org/10.1144/GSL.SP.1990.050.01.10
    [Google Scholar]
  64. López‐Blanco, M., Marzo, M., & Muñoz, J. A. (2003). Low‐amplitude, synsedimentary folding of a deltaic complex: Roda Sandstone (lower Eocene), South‐Pyrenean Foreland Basin. Basin Research, 15(1), 73–96. https://doi.org/10.1046/j.1365-2117.2003.00193.x
    [Google Scholar]
  65. Lord, G. S., Johansen, S. K., Støen, S. J., & Mørk, A. (2017). Facies development of the Upper Triassic succession on Barentsøya, Wilhelmøya and NE Spitsbergen, Svalbard. Norwegian Journal of Geology, 97(1). https://doi.org/10.17850/njg97-1-03
    [Google Scholar]
  66. Lord, G. S., Solvi, K. H., Klausen, T. G., & Mørk, A. (2014). Triassic channel bodies on Hopen, Svalbard: Their facies, stratigraphical significance and spatial distribution. Norwegian Petroleum Directorate Bulletin, 11, 41–59.
    [Google Scholar]
  67. Lundschien, B. A., Høy, T., & Mørk, A. (2014). Triassic hydrocarbon potential in the Northern Barents Sea; integrating Svalbard and stratigraphic core data. Norwegian Petroleum Directorate Bulletin, 11, 3–20.
    [Google Scholar]
  68. Maher, H. D., Ogata, K., & Braathen, A. (2017). Cone‐in‐cone and beef mineralization associated with Triassic growth basin faulting and shallow shale diagenesis, Edgeøya, Svalbard. Geological Magazine, 154(2), 201–216. https://doi.org/10.1017/S0016756815000886
    [Google Scholar]
  69. Martinsen, O. J. (1989). Styles of soft‐sediment deformation on a Namurian (Carboniferous) delta slope, Western Irish Namurian Basin, Ireland. Geological Society, London, Special Publications, 41(1), 167–177. https://doi.org/10.1144/GSL.SP.1989.041.01.13
    [Google Scholar]
  70. Martinsen, O. J., & Bakken, B. (1990). Extensional and compressional zones in slumps and slides in the Namurian of County Clare, Ireland. Journal of the Geological Society, 147(1), 153–164. https://doi.org/10.1144/gsjgs.147.1.0153
    [Google Scholar]
  71. Martinsen, O. J., Lien, T., Walker, R. G., & Collinson, J. D. (2003). Facies and sequential organisation of a mudstone‐dominated slope and basin floor succession: The Gull Island Formation, Shannon Basin, Western Ireland. Marine and Petroleum Geology, 20(6–8), 789–807. https://doi.org/10.1016/j.marpetgeo.2002.10.001
    [Google Scholar]
  72. Massari, F. (1996). Upper‐flow‐regime stratification types on steep‐face, coarse‐grained, Gilbert‐type progradational wedges (Pleistocene, southern Italy). Journal of Sedimentary Research, 66(2), 364–375.
    [Google Scholar]
  73. McClay, K. R., Dooley, T., & Lewis, G. (1998). Analog modeling of progradational delta systems. Geology, 26(9), 771–774. https://doi.org/10.1130/0091-7613(1998)026<0771:AMOPDS>2.3.CO;2
    [Google Scholar]
  74. Midtkandal, I., & Nystuen, J. P. (2009). Depositional architecture of alow‐gradient ramp shelf in an epicontinental sea: The lower Cretaceous of Svalbard. Basin Research, 21(5), 655–675. https://doi.org/10.1111/j.1365-2117.2009.00399.x
    [Google Scholar]
  75. Midtkandal, I., Nystuen, J. P., Nagy, J., & Mørk, A. (2008). Lower Cretaceous lithostratigraphy across a regional subaerial unconformity in Spitsbergen: The Rurikfjellet and Helvetiafjellet formations. Norwegian Journal of Geology, 88(4), 287–304.
    [Google Scholar]
  76. Mørk, A., Dallmann, W. K., Dypvik, H., Johannessen, E. P., Larssen, G. B., Nagy, J., Nøttvedt, A. …Worsley, D. (1999) Mesozoic lithostratigraphy. In Lithostratigraphic lexicon of Svalbard. Upper Palaeozoic to Quaternary bedrock. Review and recommendations for nomenclature use (Ed. By: Dallmann, W. K.). Tromsø, Norsk Polarinstitutt,127–214.
    [Google Scholar]
  77. Mørk, A., Knarud, R., & Worsley, D. (1982). Depositional and diagenetic environments of the Triassic and Lower Jurassic succession of Svalbard. In A. F.Embry, & H. R.Balkwill (Eds.), Artic geology and geophysics: proceedings of the Third International Symposium on Arctic Geology Memoir 8, (371–398) Calgary: Canadian Society of Petroleum Geologist.
    [Google Scholar]
  78. Mørk, M. B. E. (1999). Compositional variations and provenance of Triassic sandstones from the Barents Shelf. Journal of Sedimentary Research, 69(3), 690–710. https://doi.org/10.2110/jsr.69.690
    [Google Scholar]
  79. Morley, C. K., Back, S., Van Rensbergen, P., Crevello, P., & Lambiase, J. J. (2003). Characteristics of repeated, detached, Miocene‐Pliocene tectonic inversion events, in a large delta province on an active margin, Brunei Darussalam. Borneo. Journal of Structural Geology, 25(7), 1147–1169. https://doi.org/10.1016/S0191-8141(02)00130-X
    [Google Scholar]
  80. Morley, C. K., & Guerin, G. (1996). Comparison of gravity‐driven deformation styles and behavior associated with mobile shales and salt. Tectonics, 15(6), 1154–1170. https://doi.org/10.1029/96TC01416
    [Google Scholar]
  81. Mulder, T., Syvitski, J. P., Migeon, S., Faugeres, J. C., & Savoye, B. (2003). Marine hyperpycnal flows: Initiation, behavior and related deposits. A Review. Marine and Petroleum Geology, 20(6–8), 861–882. https://doi.org/10.1016/j.marpetgeo.2003.01.003
    [Google Scholar]
  82. Mulrooney, M. J., Leutscher, J., & Braathen, A. (2017). A 3D structural analysis of the Goliat field, Barents Sea, Norway. Marine and Petroleum Geology, 86, 192–212. https://doi.org/10.1016/j.marpetgeo.2017.05.038
    [Google Scholar]
  83. Mulrooney, M. J., Rismyhr, B., Yenwongfai, H. D., Leutscher, J., Olaussen, S., & Braathen, A. (2018). Impacts of small‐scale faults on continental to coastal plain deposition: Evidence from the Realgrunnen Subgroup in the Goliat field, southwest Barents Sea, Norway. Marine and Petroleum Geology, 95, 276–302. https://doi.org/10.1016/j.marpetgeo.2018.04.023
    [Google Scholar]
  84. Mutti, E. (1992). Turbidite sandstones. AGIP, Istituto di geologia, Università di Parma, San Donato Milanese, 275 pp.
  85. Mutti, E., Tinterri, R., Benevelli, G., di Biase, D., & Cavanna, G. (2003). Deltaic, mixed and turbidite sedimentation of ancient foreland basins. Marine and Petroleum Geology, 20(6–8), 733–755. https://doi.org/10.1016/j.marpetgeo.2003.09.001
    [Google Scholar]
  86. Nemec, W., Steel, R. J., Gjelberg, J., Collinson, J. D., Prestholm, E., & Oxnevad, I. E. (1988). Anatomy of collapsed and re‐established delta front in Lower Cretaceous of eastern Spitsbergen: Gravitational sliding and sedimentation processes. AAPG Bulletin, 72(4), 454–476.
    [Google Scholar]
  87. Nio, S. D., & Yang, C. S. (1991). Diagnostic attributes of clastic tidal deposits: A review. In Clastic Tidal Sedimentology (Ed. by D. G. Smith et al.). CSPG Special Publications, Clastic Tidal Sedimentology, Memoir 16. Mem can Soc Pet Geol, 16, 3–27.
  88. Ocamb, R. D. (1961). Growth faults of south Louisiana. Transactions of the Gulf Coast Association of Geological Societies, 139–174.
    [Google Scholar]
  89. Ogata, K., Mulrooney, M. J., Braathen, A., Maher, H., Osmundsen, P. T., Anell, I., … Balsamo, F. (2018). Architecture, deformation style and petrophysical properties of growth fault systems: The Late Triassic deltaic succession of southern Edgeøya (East Svalbard). Basin Research, 30(5), 1042–1073. https://doi.org/10.1111/bre.12296
    [Google Scholar]
  90. Olariu, C., Steel, R. J., Dalrymple, R. W., & Gingras, M. K. (2012). Tidal dunes versus tidal bars: The sedimentological and architectural characteristics of compound dunes in a tidal seaway, the lower Baronia Sandstone (Lower Eocene), Ager Basin, Spain. Sedimentary Geology, 279, 134–155. https://doi.org/10.1016/j.sedgeo.2012.07.018
    [Google Scholar]
  91. Olariu, M. I., Olariu, C., Steel, R. J., Dalrymple, R. W., & Martinius, A. W. (2012). Anatomy of a laterally migrating tidal bar in front of a delta system: Esdolomada Member, Roda Formation, Tremp‐Graus Basin, Spain. Sedimentology, 59(2), 356–378. https://doi.org/10.1111/j.1365-3091.2011.01253.x
    [Google Scholar]
  92. Olaussen, S., Larssen, G. B., Helland‐Hansen, W., Johannessen, E. P., Nøttvedt, A., Riis, F., … Worsley, D. (2018). Mesozoic strata of the Kong Karls Land archipelago, Arctic Norway; a link to the northern Barents Sea basins. Norwegian Journal of Geology, 98, 1–69.
    [Google Scholar]
  93. Osmundsen, P. T., Braathen, A., Rød, R. S., & Hynne, I. B. (2014). Styles of normal faulting and fault‐controlled sedimentation in the Triassic deposits of Eastern Svalbard. Norwegian Petroleum Directorate Bulletin, 11, 61–79.
    [Google Scholar]
  94. Owen, G. (1987). Deformation processes in unconsolidated sands. Geological Society, London, Special Publications, 29(1), 11–24. https://doi.org/10.1144/GSL.SP.1987.029.01.02
    [Google Scholar]
  95. Paterson, N. W., & Mangerud, G. (2015). Late Triassic (Carnian‐Rhaetian) palynology of Hopen, Svalbard. Review of Palaeobotany and Palynology, 220, 98–119. https://doi.org/10.1016/j.revpalbo.2015.05.001
    [Google Scholar]
  96. Pickering, K., Stow, D., Watson, M., & Hiscott, R. (1986). Deep‐water facies, processes and models: A review and classification scheme for modern and ancient sediments. Earth‐Science Reviews, 23(2), 75–174. https://doi.org/10.1016/0012-8252(86)90001-2
    [Google Scholar]
  97. Potter, P. E., Maynard, J. B., & Depetris, P. J. (2005). Mud and mudstones: Introduction and overview. Springer Science & Business Media, 1–296.
    [Google Scholar]
  98. Prestholm, E., & Walderhaug, O. (2000). Synsedimentary faulting in a Mesozoic deltaic sequence, Svalbard, Arctic Norway‐Fault geometries, faulting mechanisms, and sealing properties. AAPG Bulletin, 84(4), 505–522.
    [Google Scholar]
  99. Riis, F., Lundschien, B. A., Høy, T., Mørk, A., & Mørk, M. B. E. (2008). Evolution of the Triassic shelf in the northern Barents Sea region. Polar Research, 27(3), 318–338. https://doi.org/10.1111/j.1751-8369.2008.00086.x
    [Google Scholar]
  100. Rismyhr, B., Bjærke, T., Olaussen, S., Mulrooney, M. J., & Senger, K. (2019). Facies, palynostratigraphy and sequence stratigraphy of the Wilhelmøya Subgroup (Upper Triassic‐Middle Jurassic) in western central Spitsbergen, Svalbard. Norsk Geologisk Tidsskrift, 99(4), 35–36. https://doi.org/10.17850/njg001
    [Google Scholar]
  101. Rød, R. S., Hynne, I. B., & Mørk, A. (2014). Depositional environment of the Upper Triassic De Geerdalen Formation—an EW transect from Edgeøya to Central Spitsbergen, Svalbard. Norwegian Petroleum Directorate Bulletin, 11, 21–40.
    [Google Scholar]
  102. Röhnert, A. D. (2016). Geometry and sedimentary facies of low‐angle clinoforms, Edgeøya, Svalbard. (Master's Thesis, duo.uio.no).
  103. Rossi, V. M., Kim, W., Leva López, J., Edmonds, D., Geleynse, N., Olariu, C., … Passalacqua, P. (2016). Impact of tidal currents on delta‐channel deepening, stratigraphic architecture, and sediment bypass beyond the shoreline. Geology, 44(11), 927–930. https://doi.org/10.1130/G38334.1
    [Google Scholar]
  104. Rossi, V. M., Longhitano, S. G., Mellere, D., Dalrymple, R. W., Steel, R. J., Chiarella, D., & Olariu, C. (2017). Interplay of tidal and fluvial processes in an early Pleistocene, delta‐fed, strait margin (Calabria, Southern Italy). Marine and Petroleum Geology, 87, 14–30. https://doi.org/10.1016/j.marpetgeo.2017.02.021
    [Google Scholar]
  105. Rossi, V. M., & Steel, R. J. (2016). The role of tidal, wave and river currents in the evolution of mixed‐energy deltas: Example from the Lajas Formation (Argentina). Sedimentology, 63(4), 824–864. https://doi.org/10.1111/sed.12240
    [Google Scholar]
  106. Rotevatn, A., & Jackson, C. A. L. (2014). 3D structure and evolution of folds during normal fault dip linkage. Journal of the Geological Society, 171(6), 821–829. https://doi.org/10.1144/jgs2014-045
    [Google Scholar]
  107. Rouby, D., Nalpas, T., Jermannaud, P., Robin, C., Guillocheau, F., & Raillard, S. (2011). Gravity driven deformation controlled by the migration of the delta front: The Plio‐Pleistocene of the Eastern Niger Delta. Tectonophysics, 513(1–4), 54–67. https://doi.org/10.1016/j.tecto.2011.09.026
    [Google Scholar]
  108. Rykkelid, E., & Fossen, H. (2002). Layer rotation around vertical fault overlap zones: Observations from seismic data, field examples, and physical experiments. Marine and Petroleum Geology, 19(2), 181–192. https://doi.org/10.1016/S0264-8172(02)00007-7
    [Google Scholar]
  109. Ryseth, A. (2014). Sedimentation at the Jurassic‐Triassic boundary, south‐west Barents Sea. In A. W.Martinius, R.Ravnås, J. A.Howell, R. J.Steel, & J. P.Wonham (Eds.), From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin (187–214). Egham, UK: International Association of Sedimentologists Special Publication.
    [Google Scholar]
  110. Seilacher, A. (1991). Events and their signatures—an overview. Cycles and Events in Stratigraphy, 222–226.
    [Google Scholar]
  111. Serck, C. S., & Braathen, A. (2019). Extensional fault and fold growth: Impact on accommodation evolution and sedimentary infill. Basin Research, 31(5), 967–990. https://doi.org/10.1111/bre.12353
    [Google Scholar]
  112. Serck, C. S., Faleide, J. I., Braathen, A., Kjølhamar, B., & Escalona, A. (2017). Jurassic to early cretaceous basin configuration (s) in the Fingerdjupet Subbasin, SW Barents Sea. Marine and Petroleum Geology, 86, 874–891. https://doi.org/10.1016/j.marpetgeo.2017.06.044
    [Google Scholar]
  113. Shultz, M. R., & Hubbard, S. M. (2005). Sedimentology, stratigraphic architecture, and ichnology of gravity‐flow deposits partially ponded in a growth‐fault‐controlled slope minibasin, Tres Pasos Formation (Cretaceous), southern Chile. Journal of Sedimentary Research, 75(3), 440–453. https://doi.org/10.2110/jsr.2005.034
    [Google Scholar]
  114. Smelror, M., Larssen, G. B., Olaussen, S., Rømuld, A., & Robert, W. (2018). Late Triassic to Early Cretaceous palynostratigraphy of Kong Karls Land, Svalbard. Arctic Norway. Norwegian Journal of Geology, 98, 1–31. https://doi.org/10.17850/njg004
    [Google Scholar]
  115. Smyrak‐Sikora, A., Johannessen, E. P., Olaussen, S., Sandal, G., & Braathen, A. (2019). Sedimentary architecture during Carboniferous rift initiation–the arid Billefjorden Trough, Svalbard. Journal of the Geological Society, 176(2), 225–252. https://doi.org/10.1144/jgs2018-100
    [Google Scholar]
  116. Steel, R. J., & Worsley, D. (1984). Svalbard’s post‐Caledonian strata—an atlas of sedimentational patterns and palaeogeographic evolution In A. M.Spencer (Ed.), Petroleum geology of the North European margin (pp. 109–135). Dordrecht: Springer.
    [Google Scholar]
  117. Taylor, A. M., & Goldring, R. (1993). Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150(1), 141–148.
    [Google Scholar]
  118. Taylor, S. K., Nicol, A., & Walsh, J. J. (2008). Displacement loss on growth faults due to sediment compaction. Journal of Structural Geology, 30(3), 394–405. https://doi.org/10.1016/j.jsg.2007.11.006
    [Google Scholar]
  119. Thomas, R. G., Smith, D. G., Wood, J. M., Visser, J., Calverley‐Range, E. A., & Koster, E. H. (1987). Inclined heterolithic stratification—terminology, description, interpretation and significance. Sedimentary Geology, 53(1–2), 123–179. https://doi.org/10.1016/S0037-0738(87)80006-4
    [Google Scholar]
  120. Turner, B. R. (1981). Possible origin of low angle cross‐strata and horizontal lamination in Beaufort group sandstones of the Southern Karoo Basins. South African Journal of Geology, 84(3), 193–197.
    [Google Scholar]
  121. Tvedt, A. B., Rotevatn, A., & Jackson, C. A. (2016). Supra‐salt normal fault growth during the rise and fall of a diapir: Perspectives from 3D seismic reflection data, Norwegian North Sea. Journal of Structural Geology, 91, 1–26. https://doi.org/10.1016/j.jsg.2016.08.001
    [Google Scholar]
  122. Tvedt, A. B., Rotevatn, A., Jackson, C. A. L., Fossen, H., & Gawthorpe, R. L. (2013). Growth of normal faults in multilayer sequences: A 3D seismic case study from the Egersund Basin, Norwegian North Sea. Journal of Structural Geology, 55, 1–20. https://doi.org/10.1016/j.jsg.2013.08.002
    [Google Scholar]
  123. van der Zee, W., & Urai, J. L. (2005). Processes of normal fault evolution in a siliciclastic sequence: A case study from Miri, Sarawak, Malaysia. Journal of Structural Geology, 27(12), 2281–2300. https://doi.org/10.1016/j.jsg.2005.07.006
    [Google Scholar]
  124. Van Rensbergen, P., & Morley, C. K. (2000). 3D seismic study of a shale expulsion syncline at the base of the Champion delta, offshore Brunei and its implications for the early structural evolution of large delta systems. Marine and Petroleum Geology, 17(8), 861–872. https://doi.org/10.1016/S0264-8172(00)00026-X
    [Google Scholar]
  125. Van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M., Vail, P. R., Sarg, J. F., Loutit, T. S., & Hardenbol, J., (1988). An overview of the fundamentals of sequence stratigraphy and key definitions. In: Sea‐Levels Changes—an Integrated Approach (Ed by: Wilgus, C.K., Posamenier, H., Ross, C. A. & . Kendall, C. G. St. C). Society of Economic Paleontologists and Mineralogists Special Publication, 42, 39–45.
    [Google Scholar]
  126. Venditti, J. G., Church, M., & Bennett, S. J. (2005). On the transition between 2D and 3D dunes. Sedimentology, 52(6), 1343–1359. https://doi.org/10.1111/j.1365-3091.2005.00748.x
    [Google Scholar]
  127. Vigran, J. O., Mangerud, G., Mørk, A., Worsley, D., & Hochuli, P. (2014). Palynology and geology of the Triassic succession of Svalbard and the Barents Sea. Geological Survey of Norway Special Publication, 14, 1–270.
    [Google Scholar]
  128. Visser, M. J. (1980). Neap‐spring cycles reflected in Holocene subtidal large‐scale bedform deposits: A preliminary note. Geology, 8(11), 543–546. https://doi.org/10.1130/0091-7613(1980)8<543:NCRIHS>2.0.CO;2
    [Google Scholar]
  129. Walker, R. G. (1992). Facies, facies models and modern stratigraphic concepts. In R. G.Walker & N. P.James (Eds.), Facies models: Response to sea‐level change (pp. 1–14). Newfoundland, Canada: Geological Association of Canada.
    [Google Scholar]
  130. Walsh, J. J., Bailey, W. R., Childs, C., Nicol, A., & Bonson, C. G. (2003). Formation of segmented normal faults: A 3‐D perspective. Journal of Structural Geology, 25(8), 1251–1262. https://doi.org/10.1016/S0191-8141(02)00161-X
    [Google Scholar]
  131. Weber, K. J. (1987). Hydrocarbon distribution patterns in Nigerian growth fault structures controlled by structural style and stratigraphy. Journal of Petroleum Science and Engineering, 1(2), 91–104. https://doi.org/10.1016/0920-4105(87)90001-5
    [Google Scholar]
  132. Wignall, P. B., & Best, J. L. (2004). Sedimentology and kinematics of a large, retrogressive growth‐fault system in Upper Carboniferous deltaic sediments, western Ireland. Sedimentology, 51(6), 1343–1358. https://doi.org/10.1111/j.1365-3091.2004.00673.x
    [Google Scholar]
  133. Willis, B. J. (2005). Deposits of tide‐influenced river deltas. In: River Deltas‐ Concepts, Models, and Examples SEPM Special Publication No.83 pp. 87–129.
  134. Winker, C. D., & Edwards, M. B. (1983). Unstable progradational clastic shelf margins. Special Publications of SEPM, Vol. 33 pp.139–157.
  135. Worsley, D. (2008). The post‐Caledonian development of Svalbard and the western Barents Sea. Polar Research, 27(3), 298–317. https://doi.org/10.1111/j.1751-8369.2008.00085.x
    [Google Scholar]
  136. Zecchin, M., Massari, F., Mellere, D., & Prosser, G. (2004). Anatomy and evolution of a Mediterranean‐type fault bounded basin: The Lower Pliocene of the northern Crotone Basin (Southern Italy). Basin Research, 16(1), 117–143. https://doi.org/10.1111/j.1365-2117.2004.00225.x
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12410
Loading
/content/journals/10.1111/bre.12410
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error