1887
Volume 32, Issue 5
  • E-ISSN: 1365-2117
PDF

Abstract

[

Salt mobilization causes drastic vertical and lateral changes in relative sea level, which in turn induce lateral variations in clinoform trajectory, foreset angle, relief and progradation rates. Salt withdrawal and uplift produces complex spatial and temporal stacking patterns of depositional environments resulting in different palaeogeographies through time.This study has implications in understanding sediment partitioning of salt‐bearing basins filled by prograding overburdens.

, Abstract

Although the trajectory and geometry of clinoforms in different types of basins have been described in many studies, few studies discuss the influence of halokinesis on clinoforms in salt‐related basins. In this study, we analyse the Lower Cretaceous clinoforms in the Tiddlybanken Basin, Norwegian Barents Sea to evaluate the impact of salt mobilization on the geometry and trajectory of clinoforms as well as its implications on sediment partitioning. To accomplish this objective, we use a multidisciplinary approach consisting of seismic and well‐interpretation, 3D structural restoration, and forward stratigraphic modelling. The results show that salt mobilization affects prograding clinoforms by: (a) causing lateral variations in progradation rates, resulting in complex palaeogeography, (b) increasing slope angles, which affect the equilibrium of the clinoform profile and can trigger slope‐readjustment processes and (c) producing lateral and temporal variations in accommodation space, leading to different clinoform trajectories, stacking patterns and reservoir distribution along the basin. Forward stratigraphic modelling shows that in salt‐related basins and other tectonically active basins, the isolated use of conventional methods for clinoform analysis might lead to potential interpretation pitfalls such as misinterpretation of trajectories and overestimation of foreset angles, which can have negative consequences for exploration models.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12411
2020-09-26
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/bre/32/5/bre12411.html?itemId=/content/journals/10.1111/bre.12411&mimeType=html&fmt=ahah

References

  1. Adams, E. W., & Schlager, W. (2000). Basic Types of Submarine Slope Curvature. Journal of Sedimentary Research, 70, 814–828. https://doi.org/10.1306/2dc4093a-0e47-11d7-8643000102c1865d
    [Google Scholar]
  2. Albertz, M., & Ings, S. J. (2012). Some consequences of mechanical stratification in basin‐scale numerical models of passive‐margin salt tectonics: Geological Society. London, Special Publications, 363, 303–330. https://doi.org/10.1144/sp363.14
    [Google Scholar]
  3. Anderson, J. B. (2005). Diachronous development of late Quaternary shelf‐margin deltas in the northwestern Gulf of Mexico: implications for sequence stratigraphy and deep‐water reservoir occurrence. In L.Giosan, & J. P.Bhattacharya (eds.), River Deltas–Concepts, Models, and Examples (Vol. 83 pp. 257–276). SEPM Special Publication. https://doi.org/10.2110/pec.05.83.0257
    [Google Scholar]
  4. Anderson, J. B., Wallace, D. J., Simms, A. R., Rodriguez, A. B., Weight, R. W. R., & Taha, Z. P. (2016). Recycling sediments between source and sink during a eustatic cycle: Systems of late Quaternary northwestern Gulf of Mexico Basin. Earth‐Science Reviews, 153, 111–138. https://doi.org/10.1016/j.earscirev.2015.10.014
    [Google Scholar]
  5. Anderson, P. B., Chidsey, J. T. C., Ryer, T. A., Adams, R. D., & McClure, K. (2004). Geologic Framework, Facies, Paleogeography, and Reservoir Analogs of the Ferron Sandstone in the Ivie Creek Area, East‐Central Utah. In J. T. C.Chidsey, R. D.Adams, & T. H.Morris (Eds.), Regional to Wellbore Analog for Fluvial‐Deltaic Reservoir Modeling: The Ferron Sandstone of Utah. American Association of Petroleum Geologists.
    [Google Scholar]
  6. Anell, I., Braathen, A., & Olaussen, S. (2014). The Triassic‐Early Jurassic of the northern Barents Shelf: A regional understanding of the Longyearbyen CO 2 reservoir. Norwegian Journal of Geology, 94, 83–98.
    [Google Scholar]
  7. Baig, I., Faleide, J. I., Jahren, J., & Mondol, N. H. (2016). Cenozoic exhumation on the southwestern Barents Shelf: Estimates and uncertainties constrained from compaction and thermal maturity analyses. Marine and Petroleum Geology, 73, 105–130. https://doi.org/10.1016/j.marpetgeo.2016.02.024
    [Google Scholar]
  8. Banham, S. G., & Mountney, N. P. (2013). Controls on fluvial sedimentary architecture and sediment‐fill state in salt‐walled mini‐basins: Triassic Moenkopi Formation, Salt Anticline Region, SE Utah, USA.Basin Research, 25, 709–737. https://doi.org/10.1111/bre.12022
    [Google Scholar]
  9. Bugge, T., Mangerud, G., Elvebakk, G., Mork, A., Nilsson, I., Fanavoll, S., & Vigran, J. (1995). Upper Paleozoic succession on the Finnmark platform, Barents Sea. Norwegian Journal of Geology, 75, 3–30.
    [Google Scholar]
  10. Bullimore, S., Henriksen, S., Liestøl, F. M., & Helland‐Hansen, W. (2005). Clinoform stacking patterns, shelf‐edge trajectories and facies associations in Tertiary coastal deltas, offshore Norway: Implications for the prediction of lithology in prograding systems. Norwegian Journal of Geology/Norsk Geologisk Forening, 85, 169–187.
    [Google Scholar]
  11. Carvajal, C., Steel, R., & Petter, A. (2009). Sediment supply: The main driver of shelf‐margin growth. Earth‐Science Reviews, 96, 221–248. https://doi.org/10.1016/j.earscirev.2009.06.008
    [Google Scholar]
  12. Carvajal, R. C., & Steel, R. J. (2006). Thick turbidite successions from supply‐dominated shelves during sea‐level highstand. Geology, 34, 665–668. https://doi.org/10.1130/G22505.1
    [Google Scholar]
  13. Catuneanu, O., Galloway, W. E., Kendall, C. G. S. C., Miall, A. D., Posamentier, H. W., Strasser, A., & Tucker, M. E. (2011). Sequence Stratigraphy: Methodology and Nomenclature. Newsletters on Stratigraphy, 44, 173–245. https://doi.org/10.1127/0078-0421/2011/0011
    [Google Scholar]
  14. Clark, S. A., Glorstad‐Clark, E., Faleide, J. I., Schmid, D., Hartz, E. H., & Fjeldskaar, W. (2014). Southwest Barents Sea rift basin evolution: Comparing results from backstripping and time‐forward modelling. Basin Research, 26, 550–566. https://doi.org/10.1111/bre.12039
    [Google Scholar]
  15. Cohen, H. A., & Hardy, S. (1996). Numerical modelling of stratal architectures resulting from differential loading of a mobile substrate: Geological Society. London, Special Publications, 100, 265–273. https://doi.org/10.1144/gsl.Sp.1996.100.01.17
    [Google Scholar]
  16. Coleman, J. M., & Wright, L. (1975). In M. L.Broussard (Ed.), Modern river deltas: variability and processes of sand bodies, in (pp. 99–149). Deltas: Models for Exploration: Houston Geological Society.
    [Google Scholar]
  17. Dixon, J., Steel, R., & Olariu, C. (2012). Shelf‐edge delta regime as a predictor of deep‐water deposition. Journal of Sedimentary Research, 82, 681–687. https://doi.org/10.2110/jsr.2012.59
    [Google Scholar]
  18. Dreyer, T., Whitaker, M., Dexter, J., Flesche, H., & Larsen, E. (2005). From spit system to tide‐dominated delta: Integrated reservoir model of the Upper Jurassic Sognefjord Formation on the Troll West Field. Geological Society, London, Petroleum Geology Conference, Series, 6, 423–448. https://doi.org/10.1144/0060423
    [Google Scholar]
  19. Eide, C. H., Klausen, T. G., Katkov, D., Suslova, A. A., & Helland‐Hansen, W. (2017). Linking an Early Triassic delta to antecedent topography: Source‐to‐sink study of the southwestern Barents Sea margin. GSA Bulletin, 130(1‐2), 263–283. https://doi.org/10.1130/B31639.1
    [Google Scholar]
  20. Faleide, J. I., Tsikalas, F., Breivik, A. J., Mjelde, R., Ritzmann, O., Engen, O., … Eldholm, O. (2008). Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes, 31, 82–91. https://doi.org/10.18814/epiiugs/2008/v31i1/012
    [Google Scholar]
  21. Faleide, J. I., Vågnes, E., & Gudlaugsson, S. T. (1993). Late Mesozoic‐Cenozoic evolution of the south‐western Barents Sea in a regional rift‐shear tectonic setting. Marine and Petroleum Geology, 10, 186–214. https://doi.org/10.1016/0264-8172(93)90104-Z
    [Google Scholar]
  22. Flemings, P. B., & Grotzinger, J. P. (1996). STRATA: Freeware for analyzing classic stratigraphic problems. GSA Today, 6, 1–7.
    [Google Scholar]
  23. Gac, S., Klitzke, P., Minakov, A., Faleide, J. I., & Scheck‐Wenderoth, M. (2016). Lithospheric strength and elastic thickness of the Barents Sea and Kara Sea region. Tectonophysics, 691, 120–132. https://doi.org/10.1016/j.tecto.2016.04.028
    [Google Scholar]
  24. Ge, H., Jackson, M. P., & Vendeville, B. C. (1997). Kinematics and dynamics of salt tectonics driven by progradation. AAPG Bulletin, 81, 398–423.
    [Google Scholar]
  25. Gernigon, L., Brönner, M., Dumais, M.‐A., Gradmann, S., Grønlie, A., Nasuti, A., & Roberts, D. (2018). Basement inheritance and salt structures in the SE Barents Sea: Insights from new potential field data. Journal of Geodynamics, 119, 82–106. https://doi.org/10.1016/j.jog.2018.03.008
    [Google Scholar]
  26. Gernigon, L., Brönner, M., Roberts, D., Olesen, O., Nasuti, A., & Yamasaki, T. (2014). Crustal and basin evolution of the southwestern Barents Sea: From Caledonian orogeny to continental breakup. Tectonics, 33, 347–373. https://doi.org/10.1002/2013TC003439
    [Google Scholar]
  27. Glørstad‐Clark, E., Faleide, J. I., Lundschien, B. A., & Nystuen, J. P. (2010). Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area. Marine and Petroleum Geology, 27, 1448–1475. https://doi.org/10.1016/j.marpetgeo.2010.02.008
    [Google Scholar]
  28. Grundvåg, S. A., Marin, D., Kairanov, B., Śliwińska, K. K., Nøhr‐Hansen, H., Jelby, M. E., … Olaussen, S. (2017). The Lower Cretaceous succession of the northwestern Barents Shelf: Onshore and offshore correlations. Marine and Petroleum Geology, 86, 834–857. https://doi.org/10.1016/j.marpetgeo.2017.06.036
    [Google Scholar]
  29. Heiberg, V. (2018). The regional Cretaceous development of the southeastern part of the Norwegian Barents Sea‐ from seismic interpretation. Master thesis, University of Tromsø, 116 p.
  30. Helland‐Hansen, W., & Gjelberg, J. G. (1994). Conceptual basis and variability in sequence stratigraphy: A different perspective. Sedimentary Geology, 92, 31–52. https://doi.org/10.1016/0037-0738(94)90053-1
    [Google Scholar]
  31. Helland‐Hansen, W., & Hampson, G. J. (2009). Trajectory analysis: Concepts and applications. Basin Research, 21, 454–483. https://doi.org/10.1111/j.1365-2117.2009.00425.x
    [Google Scholar]
  32. Henriksen, E., Bjørnseth, H., Hals, T., Heide, T., Kiryukhina, T., Kløvjan, O., … Sollid, K.(2011a).Uplift and erosion of the greater Barents Sea: impact on prospectivity and petroleum systems. In A. M.Spencer, A. F.Embry, D. L.Gautier, A. V.Stoupakova, & K.Sørensen (Eds.), Arctic Petroleum Geology (Vol. 35 pp. 271–281). London, Memoirs: Geological Society. https://doi.org/10.1144/M35.17
    [Google Scholar]
  33. Henriksen, E., Ryseth, A., Larssen, G., Heide, T., Rønning, K., Sollid, K., & Stoupakova, A. (2011).Tectonostratigraphy of the greater Barents Sea: implications for petroleum systems. In A. M.Spencer, A. F.Embry, D. L.Gautier, A. V.Stoupakova, & K.Sørensen (Eds.), Arctic Petroleum Geology (pp. 163–195). London, Memoirs: Geological Society. https://doi.org/10.1144/M35.10
    [Google Scholar]
  34. Hernández‐Molina, F. J., Fernández‐Salas, L. M., Lobo, F., Somoza, L., Díaz‐del‐Río, V., & Alveirinho Dias, J. M. (2000). The infralittoral prograding wedge: A new large‐scale progradational sedimentary body in shallow marine environments. Geo‐Marine Letters, 20, 109–117. https://doi.org/10.1007/s003670000040
    [Google Scholar]
  35. Houseknecht, D. W., Bird, K. J., & Schenk, C. J. (2009). Seismic analysis of clinoform depositional sequences and shelf‐margin trajectories in Lower Cretaceous (Albian) strata, Alaska North Slope. Basin Research, 21, 644–654. https://doi.org/10.1111/j.1365-2117.2008.00392.x
    [Google Scholar]
  36. Jackson, C. A. L., Jackson, M. P. A., & Hudec, M. R. (2015). Understanding the kinematics of salt‐bearing passive margins: A critical test of competing hypotheses for the origin of the Albian Gap, Santos Basin, Offshore Brazil. GSA Bulletin, 127, 1730–1751. https://doi.org/10.1130/B31290.1
    [Google Scholar]
  37. Jackson, M. P., & Hudec, M. R. (2017). Salt Tectonics: Principles and Practice (p. 498). Cambridge University Press.
    [Google Scholar]
  38. Johannessen, E. P., & Steel, R. J. (2005). Shelf‐margin clinoforms and prediction of deepwater sands. Basin Research, 17, 521–550. https://doi.org/10.1111/j.1365-2117.2005.00278.x
    [Google Scholar]
  39. Jones, G. E. D., Hodgson, D. M., & Flint, S. S. (2015). Lateral variability in clinoform trajectory, process regime, and sediment dispersal patterns beyond the shelf‐edge rollover in exhumed basin margin‐scale clinothems. Basin Research, 27, 657–680. https://doi.org/10.1111/bre.12092
    [Google Scholar]
  40. Kertznus, V., & Kneller, B. (2009). Clinoform quantification for assessing the effects of external forcing on continental margin development. Basin Research, 21, 738–758. https://doi.org/10.1111/j.1365-2117.2009.00411.x
    [Google Scholar]
  41. Klausen, T., Aas, T. J., Haug, E. C., Behzad, A., Snorre, O., & Domenico, C. (2018). Clinoform development and topset evolution in a mud‐rich delta – the Middle Triassic Kobbe Formation, Norwegian Barents Sea. Sedimentology, 65, 1132–1169. https://doi.org/10.1111/sed.12417
    [Google Scholar]
  42. Klausen, T., & Helland‐Hansen, W. (2018). Methods For Restoring and Describing Ancient Clinoform Surfaces. Journal of Sedimentary Research, 88(2), 241–259. https://doi.org/10.2110/jsr.2018.8
    [Google Scholar]
  43. Klausen, T. G., Ryseth, A. E., Helland‐Hansen, W., Gawthorpe, R., & Laursen, I. (2015). Regional development and sequence stratigraphy of the Middle to Late Triassic Snadd Formation, Norwegian Barents Sea. Marine and Petroleum Geology, 62, 102–122. https://doi.org/10.1016/j.marpetgeo.2015.02.004
    [Google Scholar]
  44. Kopp, J., & Kim, W. (2015). The effect of lateral tectonic tilting on fluviodeltaic surficial and stratal asymmetries: Experiment and theory. Basin Research, 27, 517–530. https://doi.org/10.1111/bre.12086
    [Google Scholar]
  45. Kopriva, B. T., & Kim, W. (2015). Coevolution of minibasin subsidence and sedimentation: Experiments. Journal of Sedimentary Research, 85, 254–264. https://doi.org/10.2110/jsr.2015.24
    [Google Scholar]
  46. Kostic, S., Parker, G., & Marr, J. G. (2002). Role of turbidity currents in setting the foreset slope of clinoforms prograding into standing fresh water. Journal of Sedimentary Research, 72, 353–362. https://doi.org/10.1306/081501720353
    [Google Scholar]
  47. Koyi, H. (1996). Salt flow by aggrading and prograding overburdens. Geological Society, London, Special Publications, 100(1), 243–258. https://doi.org/10.1144/GSL.SP.1996.100.01.15
    [Google Scholar]
  48. Koyi, H., Talbot, C. J., & Tørudbakken, B. O. (1995). Salt tectonics in the Northeastern Nordkapp basin, Southwestern Barents sea. In M. P. A.Jackson, D. G.Roberts, & S.Snelson (Eds.), Salt Tectonics: A Global Perspective (Vol. 65, pp. 437–447). AAPG Memoir.
    [Google Scholar]
  49. Larssen, G. B., Elvebakk, G., Henriksen, L. B., Kristensen, S. E., Nilsson, I., Samuelsberg, T. J., … Stemmerik, D. (2005). WorsleyUpper Palaeozoic lithostratigraphy of the southern part of the Norwegian Barents Sea Norges geologiske undersøkelse Bulletin, pp. 3–45.
  50. Larssen, G.B., Elvebakk, G., Henriksen, L.B., Kristensen, S.E., Nilsson, I., Samuelsberg, T.J., Svånå, L.… Worsley, D. (2002). Worsley upper palaeozoic lithostratigraphy of the southern part of the norwegian barents sea. Norges geologiske undersøkelse Bulletin, 444, 3–45.
    [Google Scholar]
  51. Liang, M., Kim, W., & Passalacqua, P. (2016). How much subsidence is enough to change the morphology of river deltas?Geophysical Research Letters, 43, 10266–10276. https://doi.org/10.1002/2016gl070519
    [Google Scholar]
  52. LoCrA
    LoCrA , (2018). Lower Cretaceous clastic wedges, an under‐explored play in the Arctic. A multi‐university collaboration. University of Stavanger and University Centre in Svalbard (UNIS). Internal report.
  53. Lundschien, B. A., Høy, T., & Mørk, A. (2014), Triassic hydrocarbon potential in the Northern Barents Sea; integrating Svalbard and stratigraphic core data. Norwegian Petroleum Directorate Bulletin, 11, 3–20.
    [Google Scholar]
  54. Marin, D., Escalona, A., Nøhr‐Hansen, H., Śliwińska Kasia, K., & Mordasova, A. (2017). Sequence stratigraphy and lateral variability of Lower Cretaceous clinoforms in the SW Barents Sea. AAPG Bulletin, 101, 1487–1517. https://doi.org/10.1306/10241616010
    [Google Scholar]
  55. Mattingsdal, R., Høy, T., Simonstad, E., & Brekke, H. (2015), An updated map of structural elements in the southern Barents Sea, 31st Geological Winter Meeting, 12–14 January 2015, Stavanger.
  56. Mitchum, R. M., Vail, P. R., & Sangree, J. B. (1977). Stratigraphic interpretation of seismic reflection patterns in depositional sequences. In C. E.Payton (Ed.), Seismic Stratigraphy—Applications to Hydrocarbon Exploration (pp. 117–123). AAPG Memoir.
    [Google Scholar]
  57. Muto, T., & Steel, R. J. (2002). In defense of shelf‐edge delta development during falling and lowstand of relative sea level. The Journal of Geology, 110, 421–436. https://doi.org/10.1086/340631
    [Google Scholar]
  58. Nemec, W. (2009), Aspects of sediment movement on steep delta slopes. In A.Colella, & D. B.Prior (Eds.), Coarse‐grained deltas, (Vol. 27, pp. 29). The International Association of Sedimentologists. https://doi.org/10.1002/9781444303858.ch3
    [Google Scholar]
  59. O'Grady, D. B., Syvitski, J. P., Pratson, L. F., & Sarg, J. (2000). Categorizing the morphologic variability of siliciclastic passive continental margins. Geology, 28, 207–210. https://doi.org/10.1130/0091-7613(2000)028<0207:CTMVOS>2.3.CO;2
    [Google Scholar]
  60. Ohm, S. E., Karlsen, D. A., & Austin, T. (2008). Geochemically driven exploration models in uplifted areas: Examples from the Norwegian Barents Sea. AAPG Bulletin, 92, 1191–1223. https://doi.org/10.1306/06180808028
    [Google Scholar]
  61. Orton, G. J., & Reading, H. G. (1993). Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size. Sedimentology, 40, 475–512. https://doi.org/10.1111/j.1365-3091.1993.tb01347.x
    [Google Scholar]
  62. Patruno, S., Hampson, G. J., Jackson, C. A. L., & Whipp, P. S. (2015). Quantitative progradation dynamics and stratigraphic architecture of ancient shallow‐marine clinoform sets: A new method and its application to the Upper Jurassic Sognefjord Formation, Troll Field, Offshore. Norway: Basin Research, 27, 412–452. https://doi.org/10.1111/bre.12081
    [Google Scholar]
  63. Patruno, S., & Helland‐Hansen, W. (2018). Clinoforms and clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth‐Science Reviews, 185, 202–233. https://doi.org/10.1016/j.earscirev.2018.05.016
    [Google Scholar]
  64. Pellegrini, C., Maselli, V., Gamberi, F., Asioli, A., Bohacs, K., Drexler, T. M., & Trincardi, F. (2017). How to make a 350‐m‐thick lowstand systems tract in 17,000 years: The Late Pleistocene Po River (Italy) lowstand wedge. Geology, 45, 327–330. https://doi.org/10.1130/G38848.1
    [Google Scholar]
  65. Pena dos Reis, R., Pimentel, N., Fainstein, R., Reis, M., & Rasmussen, B. (2017). Chapter 14 ‐ Influence of Salt Diapirism on the Basin Architecture and Hydrocarbon Prospects of the Western Iberian Margin. In J. I.Soto, J. F.Flinch, & G.Tari (Eds.), Permo‐Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 313–329). Elsevier.
    [Google Scholar]
  66. Piliouras, A., Kim, W., Kocurek, G. A., Mohrig, D., & Kopp, J. (2014). Sand on salt: Controls on dune subsidence and determining salt substrate thickness. Lithosphere, 6(3), 195–199. https://doi.org/10.1130/L323.1
    [Google Scholar]
  67. Pimentel, N., & Pena Dos Reis, R. (2018).Salt tectonics at the Lusitanian Basin, Field‐Trip Guide, Global Analogues for the Atlantic Margin, AAPG European Regional Conference. Lisbon (Portugal).
  68. Pirmez, C., Pratson, L. F., & Steckler, M. S. (1998). Clinoform development by advection‐diffusion of suspended sediment: Modeling and comparison to natural systems. Journal of Geophysical Research: Solid Earth, 103, 24141–24157. https://doi.org/10.1029/98JB01516
    [Google Scholar]
  69. Porębski, S. J., & Steel, R. J. (2003). Shelf‐margin deltas: Their stratigraphic significance and relation to deepwater sands. Earth‐Science Reviews, 62, 283–326. https://doi.org/10.1016/S0012-8252(02)00161-7
    [Google Scholar]
  70. Porębski, S. J., & Steel, R. J. (2006). Deltas and sea‐level change. Journal of Sedimentary Research, 76, 390–403. https://doi.org/10.2110/jsr.2006.034
    [Google Scholar]
  71. Poyatos‐Moré, M., Jones, G. D., Brunt, R. L., Hodgson, D. M., Wild, R. J., & Flint, S. S. (2016). Mud‐dominated basin‐margin progradation: processes and implications. Journal of Sedimentary Research, 86, 863–878. https://doi.org/10.2110/jsr.2016.57
    [Google Scholar]
  72. Pratson, L. F., Nittrouer, C. A., Wiberg, P. L., Steckler, M. S., Swenson, J. B., Cacchione, D. A., … Gerber, T. P. (2007). Seascape evolution on clastic continental shelves and slopes. In I.Jarvis, C. A.Nittrouer, J. A.Austin, M. E.Field, J. H.Kravitz, J. P.Syvitski, & P. L.Wiberg (eds.), Continental margin sedimentation: from sediment transport to sequence stratigraphy (pp. 339–380). International Association of Sedimentologists. https://doi.org/10.1002/9781444304398.ch7
    [Google Scholar]
  73. Riis, F., Lundschien, B. A., Høy, T., Mørk, A., & Mørk, M. B. E. (2008). Evolution of the Triassic shelf in the northern Barents Sea region. Polar Research, 27, 318–338. https://doi.org/10.1111/j.1751-8369.2008.00086.x
    [Google Scholar]
  74. Rojo, L. A., Cardozo, N., Escalona, A., & Koyi, H. (2019). Structural style and evolution of the Nordkapp Basin, Norwegian Barents Sea. AAPG Bulletin, 103(9), 2177–2217. https://doi.org/10.1306/01301918028
    [Google Scholar]
  75. Rojo, L. A., & Escalona, A. (2018). Controls on minibasin infill in the Nordkapp Basin: Evidence of complex Triassic synsedimentary deposition influenced by salt tectonics. AAPG Bulletin, 102, 1239–1272. https://doi.org/10.1306/0926171524316523
    [Google Scholar]
  76. Rojo, L. A., Escalona, A., & Schulte, L. (2016). The use of seismic attributes to enhance imaging of salt structures in the Barents Sea. First Break, 34, 41–49. https://doi.org/10.3997/1365-2397.2016014
    [Google Scholar]
  77. Rønnevik, H., Beskow, B., & Jacobsen, H. P. (1982). Structural and stratigraphic evolution of the Barents Sea. In A. F.Embry, & H. R.Balkwill (Eds.), Arctic Geology and Geophysics: Proceedings of the Third International Symposium on Arctic Geology Memoir (Vol. 8, pp. 431–440). AAPG Memoir.
    [Google Scholar]
  78. Ross, R. C., Halliwell, B. A., May, J. A., Watts, D. E., & Syvitski, J. P. M. (1994). Slope readjustment: A new model for the development of submarine fans and aprons. Geology, 22, 511–514. https://doi.org/10.1130/0091-7613(1994)022<0511:SRANMF>2.3.CO;2
    [Google Scholar]
  79. Rowan, M. G. (1996). Benefits and limitations of section restoration in areas of extensional salt tectonics: An example from offshore Louisiana. Geological Society. London, Special Publications, 99, 147–161. https://doi.org/10.1144/GSL.SP.1996.099.01.12
    [Google Scholar]
  80. Rowan, M. G., & Lindsø, S. (2017). Chapter 12 ‐ Salt Tectonics of the Norwegian Barents Sea and Northeast Greenland Shelf A2 ‐ Soto, Juan I. In J. I.Soto, J. F.Flinch, & G.Tari (Eds.), Permo‐Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 265–286). Elsevier. https://doi.org/10.1016/B978-0-12-809417-4.00013-6
    [Google Scholar]
  81. Rowan, M. G., & Ratliff, R. A. (2012). Cross‐section restoration of salt‐related deformation: Best practices and potential pitfalls. Journal of Structural Geology, 41, 24–37. https://doi.org/10.1016/j.jsg.2011.12.012
    [Google Scholar]
  82. Salazar, M., Moscardelli, L., & Wood, L. (2016). Utilising clinoform architecture to understand the drivers of basin margin evolution: A case study in the Taranaki Basin, New Zealand. Basin Research, 28, 840–865. https://doi.org/10.1111/bre.12138
    [Google Scholar]
  83. Salazar, M., Moscardelli, L., & Wood, L. (2018). Two‐dimensional stratigraphic forward modeling, reconstructing high‐relief clinoforms in the northern Taranaki Basin. AAPG Bulletin, 102, 2409–2446. https://doi.org/10.1306/04241817235
    [Google Scholar]
  84. Sangree, J., & Widmier, J. (1978). Seismic stratigraphy and global changes of sea level, part 9: Seismic interpretation of clastic depositional facies. AAPG Bulletin, 62, 752–771. https://doi.org/10.1306/C1EA4E46-16C9-11D7-8645000102C1865D
    [Google Scholar]
  85. Sclater, J. G., & Christie, P. A. F. (1980). Continental stretching: An explanation of the Post‐Mid‐Cretaceous subsidence of the central North Sea Basin. Journal of Geophysical Research: Solid Earth, 85, 3711–3739. https://doi.org/10.1029/JB085iB07p03711
    [Google Scholar]
  86. Steckler, M. S., Mountain, G. S., Miller, K. G., & Christie‐Blick, N. (1999). Reconstruction of Tertiary progradation and clinoform development on the New Jersey passive margin by 2‐D backstripping. Marine Geology, 154, 399–420. https://doi.org/10.1016/S0025-3227(98)00126-1
    [Google Scholar]
  87. Steel, R. J., Carvajal, C., Petter, A. L., Uroza, C., Hampson, G., Burgess, P., & Dalrymple, R. (2008). Shelf and shelf‐margin Growth in Scenarios of Rising and Falling Sea Level. Recent Advances in Models of Siliciclastic shallow‐marine Stratigraphy, 90, 47e71.
    [Google Scholar]
  88. Steel, R., Olsen, T., Armentrout, J., & Rosen, N. (2002). Clinoforms, clinoform trajectories and deepwater sands: Sequence‐stratigraphic models for exploration and production: Evolving methodology, emerging models and application histories. Gulf Coast Section SEPM 22nd Research Conference (pp. 367–381). Houston Texas.
    [Google Scholar]
  89. Stemmerik, L., Elvebakk, G., & Worsley, D. (1999). Upper Palaeozoic carbonate reservoirs on the Norwegian arctic shelf; delineation of reservoir models with application to the Loppa High. Petroleum Geoscience, 5, 173–187. https://doi.org/10.1144/petgeo.5.2.173
    [Google Scholar]
  90. Stemmerik, L., & Worsley, D. (2005). 30 years on‐Arctic Upper Palaeozoic stratigraphy, depositional evolution and hydrocarbon prospectivity. Norwegian Journal of Geology, 85, 151–168.
    [Google Scholar]
  91. Tetzlaff, D. M., & Harbaugh, J. W. (1989). Simulating clastic sedimentation. New York: Van Nostrand Rheinold Series on Computer Methods in Geosciences. 202 p. https://doi.org/10.1007/978-1-4757-0692-5
    [Google Scholar]
  92. Tetzlaff, D. M., & Schafmeister, M.-T. (2007). Interaction among sedimentation, compaction, and groundwater flow in coastal settings, in J.Harff, W. W.Hay, and D. M.Tetzlaff (Eds.), Coastline Changes: Interrelation of Climate and Geological Processes (Vol. 426), Geological Society of America. https://doi.org/10.1130/2007.2426(05).
    [Google Scholar]
  93. Tetzlaff, D. M., & Schafmeister, M.-T. (2007). Interaction among sedimentation, compaction, and groundwater flow in coastal settings. In J.Harff, W. W.Hay, & D. M.Tetzlaff (Eds.), Coastline Changes: Interrelation of Climate and Geological Processes (Vol. 426). Boulder, Colorado: Geological Society of America.
    [Google Scholar]
  94. Trudgill, B. (2011). Evolution of salt structures in the northern Paradox Basin: Controls on evaporite deposition, salt wall growth and supra‐salt stratigraphic architecture. Basin Research, 23, 208–238. https://doi.org/10.1111/j.1365-2117.2010.00478.x
    [Google Scholar]
  95. Ulmishek, G. F. (2003). Petroleum geology and resources of the West Siberian Basin, Russi. Virginia: US Department of the Interior, US Geological Survey Reston.
    [Google Scholar]
  96. Vail, P. R., Mitchum, R.Jr, & Thompson, S.III (1977). Seismic Stratigraphy and Global Changes of Sea Level: Part 4. Global Cycles of Relative Changes of Sea Level: Section 2. Application of Seismic Reflection Configuration to Stratigraphic Interpretation, In C. E.Payton (Ed.), Seismic Stratigraphy ‐ Applications to Hydrocarbon Exploration (Vol. 26, pp. 83–97). AAPG Memoir.
    [Google Scholar]
  97. Volozh, Y., Talbot, C., & Ismail‐Zadeh, A. (2003). Salt structures and hydrocarbons in the Pricaspian basin. AAPG Bulletin, 87, 313–334. https://doi.org/10.1306/09060200896
    [Google Scholar]
  98. Warsitzka, M., Kley, J., & Kukowski, N. (2013). Salt diapirism driven by differential loading—Some insights from analogue modelling. Tectonophysics, 591, 83–97. https://doi.org/10.1016/j.tecto.2011.11.018
    [Google Scholar]
  99. Worsley, D. (2008). The post‐Caledonian development of Svalbard and the western Barents Sea. Polar Research, 27, 298–317. https://doi.org/10.1111/j.1751-8369.2008.00085.x
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12411
Loading
/content/journals/10.1111/bre.12411
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error