1887
Volume 33, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

In passive margin salt basins, the distinct kinematic domains of thin‐skinned extension, translation and contraction exert important controls on minibasin evolution. However, the relationship between various salt minibasin geometries and kinematic domain evolution is not clear. In this study, we use a semi‐regional 3D seismic reflection dataset from the Lower Congo Basin, offshore Angola, to investigate the evolution of a network of minibasins and intervening salt walls during thin‐skinned, gravity‐driven salt flow. Widespread thin‐skinned extension occurred during the Cenomanian to Coniacian, accommodated by numerous distributed normal faults that are typically 5–10 km long and spaced 1–4 km across strike within the supra‐salt cover. Subsequently, during the Santonian–Paleocene, multiple, 10–25 km long, 5–7 km wide depocentres progressively grew and linked along strike to form elongate minibasins separated by salt walls of comparable lengths. Simultaneous with the development of the minibasins, thin‐skinned contractional deformation occurred in the southwestern downslope part of the study area, forming folds and thrusts that are up to 20 km long and have a wavelength of 2–4 km. The elongate minibasins evolved into turtle structures during the Eocene to Oligocene. From the Miocene onwards, contraction of the supra‐salt cover caused squeezing and uplift of the salt walls, further confining the minibasin depocentres. We find kinematic domains of extension, translation and contraction control the minibasin initiation and subsequent evolution. However, we also observe variations in minibasin geometries associated with along‐strike growth and linkage of depocentres. Neighbouring minibasins may have different subsidence rates and maturity leading to marked variations in their geometry. Additionally, migration of the contractional domain upslope and multiple phases of thin‐skinned salt tectonics further complicates the spatial variations in minibasin geometry and evolution. This study suggests that minibasin growth is more variable and complex than existing domain‐controlled models would suggest.

,

Variations of minibasin geometry and stratigraphy in passive margins are controlled by various driving mechanism, maturity and upslope migration of the contractional domain.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12486
2021-01-22
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/1/bre12486.html?itemId=/content/journals/10.1111/bre.12486&mimeType=html&fmt=ahah

References

  1. Anderson, J. E., Cartwright, J., Drysdall, S. J., & Vivian, N. (2000). Controls on turbidite sand deposition during gravity‐driven extension of a passive margin: Examples from Miocene sediments in Block 4, Angola. Marine and Petroleum Geology, 17(10), 1165–1203. https://doi.org/10.1016/S0264‐8172(00)00059‐3
    [Google Scholar]
  2. Anka, Z., & Séranne, M. (2004). Reconnaissance study of the ancient Zaire (Congo) deep‐sea fan. (ZaiAngo Project). Marine Geology, 209(1), 223–244. https://doi.org/10.1016/j.margeo.2004.06.007
    [Google Scholar]
  3. Anka, Z., Seranne, M., Lopez, M., Scheck‐Wenderoth, M., & Savoye, B. (2009). The long‐term evolution of the Congo deep‐sea fan: A basin‐wide view of the interaction between a giant submarine fan and a mature passive margin (ZaiAngo project). Tectonophysics, 470(1), 42–56. https://doi.org/10.1016/j.tecto.2008.04.009
    [Google Scholar]
  4. Banham, S. G., & Mountney, N. P. (2013). Evolution of fluvial systems in salt‐walled mini‐basins: A review and new insights. Sedimentary Geology, 296, 142–166. https://doi.org/10.1016/j.sedgeo.2013.08.010
    [Google Scholar]
  5. Brice, S. E., Cochran, M. D., Pardo, G., & Edwards, A. D. (1982). Tectonics and Sedimentation of the South Atlantic Rift Sequence: Cabinda, Angola. In edited by J. S.Watkins and C. L.Drake. (Eds.) Studies in Continental Margin Geology. AAPG Memoir.
    [Google Scholar]
  6. Brun, J.‐P., & Fort, X. (2004). Compressional salt tectonics (Angolan margin). Tectonophysics, 382(3), 129–150. https://doi.org/10.1016/j.tecto.2003.11.014
    [Google Scholar]
  7. Brun, J.‐P., & Fort, X. (2011). Salt tectonics at passive margins: Geology versus models. Marine and Petroleum Geology, 28(6), 1123–1145. https://doi.org/10.1016/j.marpetgeo.2011.03.004
    [Google Scholar]
  8. Brun, J.‐P., & Fort, X. (2012). Salt tectonics at passive margins: Geology versus models–Reply. Marine and Petroleum Geology, 37(1), 195–208. https://doi.org/10.1016/j.marpetgeo.2012.04.008
    [Google Scholar]
  9. Callot, J.‐P., Trocmé, V., Letouzey, J., Albouy, E., Jahani, S., & Sherkati, S. (2012). Pre‐existing salt structures and the folding of the Zagros Mountains. Geological Society, London, Special Publications, 363(1), 545–561. https://doi.org/10.1144/SP363.27
    [Google Scholar]
  10. Cramez, C., & Jackson, M. P. A. (2000). Superposed deformation straddling the continental‐oceanic transition in deep‐water Angola. Marine and Petroleum Geology, 17(10), 1095–1109. https://doi.org/10.1016/S0264‐8172(00)00053‐2
    [Google Scholar]
  11. Dooley, T. P., Hudec, M. R., Pichel, L. M., & Jackson, M. P. (2018). The impact of base‐salt relief on salt flow and suprasalt deformation patterns at the autochthonous, paraautochthonous and allochthonous level: Insights from physical models. Geological Society, London, Special Publications, 476(SP476), 287–315.
    [Google Scholar]
  12. Duffy, O. B., Fernandez, N., Peel, F. J., Hudec, M. R., Dooley, T. P., & Jackson, C.‐A.‐L. (2019). Obstructed minibasins on a salt‐detached slope: An example from above the Sigsbee canopy, northern Gulf of Mexico. Basin Research, 32(3), 505–524. https://doi.org/10.1111/bre.12380
    [Google Scholar]
  13. Duval, B., Cramez, C., & Jackson, M. P. A. (1992). Raft tectonics in the Kwanza basin, Angola. Marine and Petroleum Geology, 9(4), 389–404. https://doi.org/10.1016/0264‐8172(92)90050‐O
    [Google Scholar]
  14. Evans, S. L., & Jackson, C. A. L. (2019). Base‐salt relief controls salt‐related deformation in the Outer Kwanza Basin, offshore Angola. Basin Research. https://doi.org/10.1111/bre.12390
    [Google Scholar]
  15. Fort, X., Brun, J.‐P., & Chauvel, F. (2004). Salt tectonics on the Angolan margin, synsedimentary deformation processes. AAPG Bulletin, 88(11), 1523–1544. https://doi.org/10.1306/06010403012
    [Google Scholar]
  16. Ge, Z., Gawthorpe, R. L., Rotevatn, A., Zijerveld, L., A.‐L. Jackson, C., & Oluboyo, A., (2019). Minibasin depocentre migration during diachronous salt welding, offshore Angola. Basin Research. https://doi.org/10.1111/bre.12404
    [Google Scholar]
  17. Ge, Z., Rosenau, M., Warsitzka, M., & Gawthorpe, R. L. (2019). Overprinting translational domains in passive margin salt basins: Insights from analogue modelling. Solid Earth, 10(4), 1283–1300. https://doi.org/10.5194/se‐10‐1283‐2019
    [Google Scholar]
  18. Gemmer, L., Beaumont, C., & Ings, S. J. (2005). Dynamic modelling of passive margin salt tectonics: Effects of water loading, sediment properties and sedimentation patterns. Basin Research, 17(3), 383–402. https://doi.org/10.1111/j.1365‐2117.2005.00274.x
    [Google Scholar]
  19. Goteti, R., Ings, S. J., & Beaumont, C. (2012). Development of salt minibasins initiated by sedimentary topographic relief. Earth and Planetary Science Letters, 339–340, 103–116. https://doi.org/10.1016/j.epsl.2012.04.045
    [Google Scholar]
  20. Hodgson, N. A., Farnsworth, J., & Fraser, A. J. (1992). Salt‐related tectonics, sedimentation and hydrocarbon plays in the Central Graben, North Sea, UKCS. Geological Society, London, Special Publications, 67(1), 31–63. https://doi.org/10.1144/GSL.SP.1992.067.01.03
    [Google Scholar]
  21. Hudec, M. R., & Jackson, M. P. A. (2007). Terra infirma: Understanding salt tectonics. Earth‐Science Reviews, 82(1), 1–28. https://doi.org/10.1016/j.earscirev.2007.01.001
    [Google Scholar]
  22. Hudec, M. R., Jackson, M. P. A., & Schultz‐Ela, D. D. (2009). The paradox of minibasin subsidence into salt: Clues to the evolution of crustal basins. Geological Society of America Bulletin, 121(1–2), 201–221.
    [Google Scholar]
  23. Ings, S. J., & Beaumont, C. (2010). Shortening viscous pressure ridges, a solution to the enigma of initiating salt ‘withdrawal’minibasins. Geology, 38(4), 339–342. https://doi.org/10.1130/G30520.1
    [Google Scholar]
  24. Jackson, C.‐A.‐L., Rodriguez, C. R., Rotevatn, A., & Bell, R. E. (2014). Geological and geophysical expression of a primary salt weld: An example from the Santos Basin, Brazil. Interpretation, 2(4), SM77–SM89. https://doi.org/10.1190/INT‐2014‐0066.1
    [Google Scholar]
  25. Jackson, M. P. A., & Talbot, C. J. (1991). A glossary of salt tectonics. Austin: Bureau of Economic Geology, University of Texas.
    [Google Scholar]
  26. Jackson, M. P. A., Vendeville, B. C., & Schultz‐Ela, D. D. (1994). Structural dynamics of salt systems. Annual Review of Earth and Planetary Sciences, 22, 93–117. https://doi.org/10.1146/annurev.ea.22.050194.000521
    [Google Scholar]
  27. Karner, G. D., Driscoll, N. W., McGinnis, J. P., Brumbaugh, W. D., & Cameron, N. R. (1997). Tectonic significance of syn‐rift sediment packages across the Gabon‐Cabinda continental margin. Marine and Petroleum Geology, 14(7–8), 973–1000. https://doi.org/10.1016/S0264‐8172(97)00040‐8
    [Google Scholar]
  28. Lavier, L. L., Steckler, M. S., & Brigaud, F. (2001). Climatic and tectonic control on the Cenozoic evolution of the West African margin. Marine Geology, 178(1), 63–80. https://doi.org/10.1016/S0025‐3227(01)00175‐X
    [Google Scholar]
  29. Lundin, E. R. (1992). Thin‐skinned extensional tectonics on a salt detachment, northern Kwanza Basin. Angola. Marine and Petroleum Geology, 9(4), 405–411. https://doi.org/10.1016/0264‐8172(92)90051‐F
    [Google Scholar]
  30. Marsh, N., Imber, J., Holdsworth, R., Brockbank, P., & Ringrose, P. (2010). The structural evolution of the Halten Terrace, offshore Mid‐Norway: Extensional fault growth and strain localisation in a multi‐layer brittle–ductile system. Basin Research, 22(2), 195–214. https://doi.org/10.1111/j.1365‐2117.2009.00404.x
    [Google Scholar]
  31. Marton, G., Tari, G. C., & Lehmann, C. T. (2000). Evolution of the Angolan Passive Margin, West Africa, With Emphasis on Post‐Salt Structural Styles. Atlantic Rifts and Continental Margins, 129–149.
    [Google Scholar]
  32. Mauduit, T., Gaullier, V., Brun, J. P., & Guerin, G. (1997). On the asymmetry of turtle‐back growth anticlines. Marine and Petroleum Geology, 14(7), 763–771. https://doi.org/10.1016/S0264‐8172(97)00053‐6
    [Google Scholar]
  33. Moulin, M., Aslanian, D., Olivet, J.‐L., Contrucci, I., Matias, L., Géli, L., … Unternehr, P. (2005). Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic data (ZaïAngo project). Geophysical Journal International, 162(3), 793–810. https://doi.org/10.1111/j.1365‐246X.2005.02668.x
    [Google Scholar]
  34. Nürnberg, D., & Müller, R. D. (1991). The tectonic evolution of the South Atlantic from Late Jurassic to present. Tectonophysics, 191(1), 27–53. https://doi.org/10.1016/0040‐1951(91)90231‐G
    [Google Scholar]
  35. Oluboyo, A. P., Gawthorpe, R. L., Bakke, K., & Hadler‐Jacobsen, F. (2014). Salt tectonic controls on deep‐water turbidite depositional systems: Miocene, southwestern Lower Congo Basin, offshore Angola. Basin Research, 26(4), 597–620. https://doi.org/10.1111/bre.12051
    [Google Scholar]
  36. Peel, F. J. (2014). How do salt withdrawal minibasins form? Insights from forward modelling, and implications for hydrocarbon migration. Tectonophysics, 630, 222–235. https://doi.org/10.1016/j.tecto.2014.05.027
    [Google Scholar]
  37. Rowan, M. G., Peel, F. J., & Vendeville, B. C. (2004). Gravity‐driven fold belts on passive margins. In K. R.McClay (Ed.), Thrust tectonics and hydrocarbon systems, Vol. 82 (pp. 157–182). AAPG Memoir.
    [Google Scholar]
  38. Rowan, M. G., & Vendeville, B. C. (2006). Foldbelts with early salt withdrawal and diapirism: Physical model and examples from the northern Gulf of Mexico and the Flinders Ranges. Australia. Marine and Petroleum Geology, 23(9), 871–891. https://doi.org/10.1016/j.marpetgeo.2006.08.003
    [Google Scholar]
  39. Rowan, M. G., & Weimer, P. (1998). Salt‐sediment interaction, northern Green Canyon and Ewing bank (offshore Louisiana), northern Gulf of Mexico. AAPG Bulletin, 82(5), 1055–1082.
    [Google Scholar]
  40. Stewart, S. A., & Coward, M. P. (1995). Synthesis of salt tectonics in the southern North Sea. UK. Marine and Petroleum Geology, 12(5), 457–475. https://doi.org/10.1016/0264‐8172(95)91502‐G
    [Google Scholar]
  41. Valle, P. J., Gjelberg, J. G., & Helland‐Hansen, W. (2001). Tectonostratigraphic development in the eastern Lower Congo Basin, offshore Angola, west Africa. Marine and Petroleum Geology, 18(8), 909–927. https://doi.org/10.1016/S0264‐8172(01)00036‐8
    [Google Scholar]
  42. Vendeville, B. C., & Jackson, M. P. A. (1992). The rise of diapirs during thin‐skinned extension. Marine and Petroleum Geology, 9(4), 331–354. https://doi.org/10.1016/0264‐8172(92)90047‐I
    [Google Scholar]
  43. Wagner, B. H., & Jackson, M. P. (2011). Viscous flow during salt welding. Tectonophysics, 510(3), 309–326. https://doi.org/10.1016/j.tecto.2011.07.012
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12486
Loading
/content/journals/10.1111/bre.12486
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error