1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[Abstract

Pull‐apart basins are structural features linked to the interactions between strike‐slip and extensional tectonics. Their morphology and structural evolution are determined by factors such as extension rate, the basin length/width ratio, and changes in extension direction. In this work, we investigate the effect of a change in the plate motion direction on a pull‐apart basin's structure, using analogue modelling experiments with a two‐layer ductile‐brittle configuration to simulate continental crust rheology. We initially impose orthogonal extension on an interconnected rift and strike‐slip system to drive pull‐apart development. Subsequently, we rotate the relative motion vector, imposing transtensional deformation and continuing with this new relative motion vector to the end of the experiment. To compare with natural examples, we analyse the model using seismic interpretation software, generating 3D fault structure and sedimentary thickness interpretations. Results show that the change in the direction of plate motion produces map‐view sigmoidal oblique slip faults that become normal‐slip when deformation adjusts to the new plate motion vector. Furthermore, sediment distribution is strongly influenced by the relative plate rotation, changing the locus of deposition inside the basin at each model stage. Finally, we compare our observations to seismic reflection images, sedimentary package thicknesses and fault interpretations from the Northern Gulf of California and find good agreement between model and nature. Similar fault arrays occur in the Bohai Basin in northern China, which suggests a rotational component in its evolution. More broadly, such similar structures could indicate a role for oblique extension and fault rotation in any pull‐apart basin.

,

The evolution of a pull‐apart basin can be considerably influenced by a change of plate motion that introduces transtension in the basin. Identifying structures of this type of pull‐apart basin evolution are asymmetric triangular basins and wide principal displacement zones with oblique‐normal faults. We identify a number of these basins across the world and model their evolution through physical analogue models.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12528
2021-03-15
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/2/bre12528.html?itemId=/content/journals/10.1111/bre.12528&mimeType=html&fmt=ahah

References

  1. Allemand, P., & Brun, J. (1991). Width of continental rifts and rheological layering of the lithosphere. Tectonophysics, 188(1), 63–69. https://doi.org/10.1016/0040‐1951(91)90314‐I
    [Google Scholar]
  2. Allen, M. B., Macdonald, D. I. M., Xun, Z., Vincent, S. J., & Brouet‐Menzies, C. (1997). Early Cenozoic two‐phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, Northern China. Marine and Petroleum Geology, 14(7), 951–972. https://doi.org/10.1016/S0264‐8172(97)00027‐5
    [Google Scholar]
  3. Allen, M. B., Macdonald, D. I. M., Xun, Z., Vincent, S. J., & Brouet‐Menzies, C. (1998). Transtensional deformation in the evolution of the Bohai Basin, Northern China. Geological Society, London, Special Publications, 135(1), 215–229. https://doi.org/10.1144/GSL.SP.1998.135.01.14
    [Google Scholar]
  4. Armijo, R., Meyer, B., Navarro, S., King, G., & Barka, A. (2002). Asymmetric slip partitioning in the Sea of Marmara pull‐apart: A clue to propagation processes of the North Anatolian Fault?Terra Nova, 14(2), 80–86. https://doi.org/10.1046/j.1365‐3121.2002.00397.x
    [Google Scholar]
  5. Atwater, T., & Stock, J. (1998). Pacific‐North America plate tectonics of the Neogene southwestern United States: An update. International Geology Review, 40(5), 375–402. https://doi.org/10.1080/00206819809465216
    [Google Scholar]
  6. Axen, G. (1995). Extensional segmentation of the main Gulf escarpment, Mexico and United States. Geology, 23(6), 515–518. https://doi.org/10.1130/0091‐7613(1995)023<0515:ESOTMG>2.3.CO;2
    [Google Scholar]
  7. Basile, C., & Brun, J. P. (1999). Transtensional faulting patterns ranging from pull‐apart basins to transform continental margins: An experimental investigation. Journal of Structural Geology, 21(1), 23–37. https://doi.org/10.1016/S0191‐8141(98)00094‐7
    [Google Scholar]
  8. Bennett, R. A., Rodi, W., & Reilinger, R. E. (1996). Global positioning system constraints on fault slip rates in southern California and northern Baja, Mexico. Journal of Geophysical Research: Solid Earth, 101, 21943–21960. https://doi.org/10.1029/96JB02488
    [Google Scholar]
  9. Bennett, S. E. K., & Oskin, M. E. (2014). Oblique rifting ruptures continents: Example from the Gulf of California shear zone. Geology, 42(3), 215–218. https://doi.org/10.1130/G34904.1
    [Google Scholar]
  10. Bennett, S. E. K., Oskin, M. E., & Iriondo, A. (2013). Transtensional rifting in the proto‐Gulf of California near Bahia Kino, Sonora, Mexico. GSA Bulletin, 125(11–12), 1752–1782. https://doi.org/10.1130/B30676.1
    [Google Scholar]
  11. Brace, W., & Kohlstedt, D. (1980). Limits on lithospheric stress imposed by laboratory experiments. Journal of Geophysical Research: Solid Earth, 85(B11), 6248–6252. https://doi.org/10.1029/JB085iB11p06248
    [Google Scholar]
  12. Brun, J. (2002). Deformation of the continental lithosphere: Insights from brittle‐ductile models. Geological Society, London, Special Publications, 200(1), 355–370. https://doi.org/10.1144/GSL.SP.2001.200.01.20
    [Google Scholar]
  13. Brune, S., Williams, S. E., Butterworth, N. P., & Müller, R. D. (2016). Abrupt plate accelerations shape rifted continental margins. Nature, 536, 201–204. https://doi.org/10.1038/nature18319
    [Google Scholar]
  14. Burchfiel, B. C., & Stewart, J. H. (1966). “Pull‐Apart” origin of the central segment of Death Valley. California. GSA Bulletin, 77(4), 439–442.
    [Google Scholar]
  15. Burov, E. B. (2011). Rheology and strength of the lithosphere. Marine and Petroleum Geology, 28(8), 1402–1443. https://doi.org/10.1016/j.marpetgeo.2011.05.008
    [Google Scholar]
  16. Corti, G., & Dooley, T. P. (2015). Lithospheric‐scale centrifuge models of pull‐apart basins. Tectonophysics, 664, 154–163. https://doi.org/10.1016/j.tecto.2015.09.004
    [Google Scholar]
  17. Corti, G., Nencini, R., & Skyttä, P. (2020). Modelling the influence of pre‐existing brittle fabrics on the development and architecture pull‐apart basins. Journal of Structural Geology, 131, 103937. https://doi.org/10.1016/j.jsg.2019.103937
    [Google Scholar]
  18. Darin, M. H., Bennett, S. E. K., Dorsey, R. J., Oskin, M. E., & Iriondo, A. (2016). Late Miocene extension in coastal Sonora, México: Implications for the evolution of dextral shear in the proto‐gulf of California oblique rift. Tectonophysics, 693, 378–408. https://doi.org/10.1016/j.tecto.2016.04.038
    [Google Scholar]
  19. Decker, K. (1996). Miocene tectonics at the Alpine‐Carpathian junction and the evolution of the Vienna basin. Mitteilungen Der Gesellschaft Der Geologie‐ Und Bergbaustudenten in Österreich, 41, 33–44.
    [Google Scholar]
  20. Del Ventisette, C., Montanari, D., Sani, F., Bonini, M., & Corti, G. (2007). Reply to comment by J. Wickham on “Basin inversion and fault reactivation in laboratory experiments”. Journal of Structural Geology, 29(8), 1417–1418. https://doi.org/10.1016/j.jsg.2007.05.003
    [Google Scholar]
  21. Dombrádi, E., Sokoutis, D., Bada, G., Cloetingh, S., & Horváth, F. (2010). Modelling recent deformation of the Pannonian lithosphere: Lithospheric folding and tectonic topography. Tectonophysics, 484(1‐4), 103–118. https://doi.org/10.1016/j.tecto.2009.09.014
    [Google Scholar]
  22. Dorsey, R. J., & Umhoefer, P. J. (2012). Influence of sediment input and plate‐motion obliquity on basin development along an active oblique‐divergent plate boundary: Gulf of California and Salton trough. C.Busby & A.AzorTectonics of Sedimentary Basins: Recent Advances, (209–255). Blackwell Publishing Ltd. https://doi.org/10.1002/9781444347166.ch10
    [Google Scholar]
  23. Engebretson, D. C., Cox, A., & Gordon, R. G. (1985). Relative motions between oceanic and continental plates in the Pacific Basin, 206). Geological Society of America.
    [Google Scholar]
  24. Farangitakis, G. P., Heron, P. J., McCaffrey, K. J. W., van Hunen, J., & Kalnins, L. M. (2020). The impact of oblique inheritance and changes in relative plate motion on the development of rift‐transform systems. Earth and Planetary Science Letters, 541, 116277. https://doi.org/10.1016/j.epsl.2020.116277
    [Google Scholar]
  25. Farangitakis, G.‐P., Sokoutis, D., McCaffrey, K. J. W., Willingshofer, E., Kalnins, L. M., Phethean, J. J. J., Hunen, J., & Steen, V. (2019). Analogue modeling of plate rotation effects in transform margins and rift‐transform intersections. Tectonics, 38(3), 823–841. https://doi.org/10.1029/2018TC005261
    [Google Scholar]
  26. Feng, D., & Ye, F. (2018). Structure kinematics of a transtensional basin: An example from the Llinnan subsag, Bohai Bay basin, Eastern China. Geoscience Frontiers, 9(3), 917–929. https://doi.org/10.1016/j.gsf.2017.05.012
    [Google Scholar]
  27. Goff, J. A., Bergman, E. A., & Solomon, S. C. (1987). Earthquake source mechanisms and transform fault tectonics in the Gulf of California. Journal of Geophysical Research: Solid Earth, 92, 10485–10510. https://doi.org/10.1029/JB092iB10p10485
    [Google Scholar]
  28. González‐Escobar, M., Mares Agüero, M. A., & Martin, A. (2020). Subsurface structure revealed by seismic reflection images to the southwest of the Cerro Prieto pull‐apart basin, Baja California. Geothermics, 85, 101779. https://doi.org/10.1016/j.geothermics.2019.101779
    [Google Scholar]
  29. Gonzalez‐Escobar, M., Suarez‐Vidal, F., Hernandez‐Perez, J. A., & Martin‐Barajas, A. (2010). Seismic reflection‐based evidence of a transfer zone between the Wagner and Consag basins: Implications for defining the structural geometry of the northern Gulf of California. Geo‐Marine Letters, 30(6), 575–584. https://doi.org/10.1007/s00367‐010‐0204‐0
    [Google Scholar]
  30. González‐Escobar, M., Suárez‐Vidal, F., Sojo‐Amezquita, A., Gallardo‐Mata, C. G., & Martin‐Barajas, A. (2014). Consag basin: Northern Gulf of California, evidence of generation of new crust, based on seismic reflection data. International Geology Review, 56(11), 1315–1331. https://doi.org/10.1080/00206814.2014.941023
    [Google Scholar]
  31. Guo, X., Wu, Z., Yang, X., Xu, H., Zhang, Z., Shi, X., & Sun, Z. (2009). The evolution of transtensional structure and numerical modeling of stress field, linnan subsag, bohai bay basin. Marine Geology & Quaternary Geology, 29(6), 75–82. https://doi.org/10.1007/s12517‐017‐2850‐2
    [Google Scholar]
  32. Hu, S., O’Sullivan, P. B., Raza, A., & Kohn, B. P. (2001). Thermal history and tectonic subsidence of the Bohai Basin, Northern China: A Cenozoic rifted and local pull‐apart basin. Physics of the Earth and Planetary Interiors, 126(3), 221–235. https://doi.org/10.1016/S0031‐9201(01)00257‐6
    [Google Scholar]
  33. Hubbert, M. K. (1937). Theory of scale models as applied to the study of geologic structures. GSA Bulletin, 48(10), 1459–1520. https://doi.org/10.1130/gsab‐48‐1459
    [Google Scholar]
  34. Humphreys, E. D., & Weldon, R. J.II (1991). Kinematic constraints on the rifting of Baja California. In J. P.Dauphin & B. R. T.Simoneit (Eds.), The gulf and peninsular provinces of the californias (pp. 217–228). AAPG Memoirs.
    [Google Scholar]
  35. Klimetz, M. P. (1983). Speculations on the Mesozoic plate tectonic evolution of Eastern China. Tectonics, 2(2), 139–166. https://doi.org/10.1029/TC002i002p00139
    [Google Scholar]
  36. Lee, E. Y., & Wagreich, M. (2017). Polyphase tectonic subsidence evolution of the Vienna basin inferred from quantitative subsidence analysis of the northern and central parts. International Journal of Earth Sciences (Geologische Rundschau), 106(2), 687–705. https://doi.org/10.1007/s00531‐016‐1329‐9
    [Google Scholar]
  37. Liang, J., Wang, H., Bai, Y., Ji, X., & Duo, X. (2016). Cenozoic tectonic evolution of the bohai bay basin and its coupling relationship with pacific plate subduction. Journal of Asian Earth Sciences, 127, 257–266. https://doi.org/10.1016/j.jseaes.2016.06.012
    [Google Scholar]
  38. Liangjie, T., Guimei, W., & Xinhuai, Z. (2008). Cenozoic geotectonic evolution of the bohai basin. Geological Journal of China Universities, 14(2), 191–198.
    [Google Scholar]
  39. Lizarralde, D., Axen, G. J., Brown, H. E., Fletcher, J. M., González‐Fernández, A., Harding, A. J., Holbrook, W. S., Kent, G. M., Paramo, P., Sutherland, F., & Umhoefer, P. J. (2007). Variation in styles of rifting in the Gulf of California. Nature, 448(7152), 466–469. https://doi.org/10.1038/nature06035
    [Google Scholar]
  40. Lonsdale, P. (1989). Geology and tectonic history of the Gulf of California. In E. L.Winterer, D. M.Hussong, & R. W.Decker (Eds.), The eastern Pacific Ocean and Hawaii, geology of North America (pp. 499–521). Geological Society of America.
    [Google Scholar]
  41. Luth, S., Willingshofer, E., Sokoutis, D., & Cloetingh, S. (2010). Analogue modelling of continental collision: Influence of plate coupling on mantle lithosphere subduction, crustal deformation and surface topography. Tectonophysics, 484(1), 87–102. https://doi.org/10.1016/j.tecto.2009.08.043
    [Google Scholar]
  42. Mann, P. (2007). Global catalogue, classification and tectonic origins of restraining‐ and releasing bends on active and ancient strike‐slip fault systems. Geological Society, London, Special Publications, 290(1), 13–142. https://doi.org/10.1144/SP290.2
    [Google Scholar]
  43. Mar‐Hernández, E., González‐Escobar, M., & Martin‐Barajas, A. (2012). Tectonic framework of Tiburon basin, Gulf of California, from seismic reflection evidence. International Geology Review, 54(11), 1271–1283. https://doi.org/10.1080/00206814.2011.636988
    [Google Scholar]
  44. Martín‐Barajas, A., González‐Escobar, M., Fletcher, J. M., Pacheco, M., Oskin, M., & Dorsey, R. (2013). Thick deltaic sedimentation and detachment faulting delay the onset of continental rupture in the northern Gulf of California: Analysis of seismic reflection profiles. Tectonics, 32(5), 1294–1311. https://doi.org/10.1002/tect.20063
    [Google Scholar]
  45. McClay, K., & Dooley, T. (1995). Analogue models of pull‐apart basins. Geology, 23(8), 711–714. https://doi.org/10.1130/0091‐7613(1995)023<0711:AMOPAB>2.3.CO;2
    [Google Scholar]
  46. Morley, C. (2017). Cenozoic rifting, passive margin development and strike‐slip faulting in the Andaman sea: A discussion of established v. new tectonic models. Geological Society, Londons Memoirs, 47(1), 27–50. https://doi.org/10.1144/M47.4
    [Google Scholar]
  47. Morley, C., & Alvey, A. (2015). Is spreading prolonged, episodic or incipient in the Andaman Sea? Evidence from deepwater sedimentation. Journal of Asian Earth Sciences, 98, 446–456. https://doi.org/10.1016/j.jseaes.2014.11.033
    [Google Scholar]
  48. Morley, C. K., & Searle, M. (2017). Regional tectonics, structure and evolution of the Andaman‐Nicobar islands from ophiolite formation and obduction to collision and back‐arc spreading. Geological Society, London, Memoirs, 47(1), 51–74. https://doi.org/10.1144/M47.5
    [Google Scholar]
  49. Persaud, P., Di Luccio, F., & Clayton, R. W. (2015). Rayleigh wave dispersion measurements reveal low‐velocity zones beneath the new crust in the Gulf of California. Geophysical Research Letters, 42(6), 1766–1774. https://doi.org/10.1002/2015GL063420
    [Google Scholar]
  50. Persaud, P., Pérez‐Campos, X., & Clayton, R. W. (2007). Crustal thickness variations in the margins of the Gulf of California from receiver functions. Geophysical Journal International, 170(2), 687–699. https://doi.org/10.1111/j.1365‐246X.2007.03412.x
    [Google Scholar]
  51. Persaud, P., Stock, J. M., Steckler, M. S., Martín‐Barajas, A., Diebold, J. B., González‐Fernández, A., & Mountain, G. S. (2003). Active deformation and shallow structure of the Wagner, Consag, and Delfín basins, northern Gulf of California, Mexico. Journal of Geophysical Research: Solid Earth, 108(B7), 2355. https://doi.org/10.1029/2002JB001937
    [Google Scholar]
  52. Persaud, P., Tan, E., Contreras, J., & Lavier, L. (2017). A bottom‐driven mechanism for distributed faulting in the Gulf of California rift. Tectonophysics, 719–720, 51–65. https://doi.org/10.1016/j.tecto.2016.11.024
    [Google Scholar]
  53. Qi, J., & Yang, Q. (2010). Cenozoic structural deformation and dynamic processes of the Bohai Bay Basin province. China. Marine and Petroleum Geology, 27(4), 757–771. https://doi.org/10.1016/j.marpetgeo.2009.08.012
    [Google Scholar]
  54. Rahe, B., Ferrill, D. A., & Morris, A. P. (1998). Physical analog modeling of pull‐apart basin evolution. Tectonophysics, 285(1), 21–40. https://doi.org/10.1016/S0040‐1951(97)00193‐5
    [Google Scholar]
  55. Ramberg, H. (1981). Gravity, deformation, and the earth's crust: In theory, experiments and geological application. Academic press.
    [Google Scholar]
  56. Reber, J. E., Cooke, M. L., & Dooley, T. P. (2020). What model material to use? A review on rock analogs for structural geology and tectonics. Earth‐Science Reviews, 202, 103107. https://doi.org/10.1016/j.earscirev.2020.103107
    [Google Scholar]
  57. Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., & Zemsky, R. (2009). Global multi‐resolution topography synthesis. Geochemistry, Geophysics, Geosystems, 10(3). https://doi.org/10.1029/2008GC002332
    [Google Scholar]
  58. Seiler, C., Gleadow, A. J. W., Fletcher, J. M., & Kohn, B. P. (2009). Thermal evolution of a sheared continental margin: Insights from the Ballenas transform in Baja California, Mexico. Earth and Planetary Science Letters, 285(1–2), 61–74. https://doi.org/10.1016/j.epsl.2009.05.043
    [Google Scholar]
  59. Sims, D., Ferrill, D. A., & Stamatakos, J. A. (1999). Role of a ductile décollement in the development of pull‐apart basins: Experimental results and natural examples. Journal of Structural Geology, 21(5), 533–554. https://doi.org/10.1016/S0191‐8141(99)00010‐3
    [Google Scholar]
  60. Smit, J., Brun, J.‐P., Fort, X., Cloetingh, S., & Ben‐Avraham, Z. (2008). Salt tectonics in pull‐apart basins with application to the Dead Sea Basin. Tectonophysics, 449(1), 1–16. https://doi.org/10.1016/j.tecto.2007.12.004
    [Google Scholar]
  61. Sokoutis, D., Bonini, M., Medvedev, S., Boccaletti, M., Talbot, C. J., & Koyi, H. (2000). Indentation of a continent with a built‐in thickness change: experiment and nature. Tectonophysics, 320(3‐4), 243–270. https://doi.org/10.1016/S0040‐1951(00)00043‐3
    [Google Scholar]
  62. Sokoutis, D., Burg, J., Bonini, M., Corti, G., & Cloetingh, S. (2005). Lithospheric‐scale structures from the perspective of analogue continental collision. Tectonophysics, 406(1), 1–15. https://doi.org/10.1016/j.tecto.2005.05.025
    [Google Scholar]
  63. Srisuriyon, K., & Morley, C. (2014). Pull‐apart development at overlapping fault tips: Oblique rifting of a Cenozoic continental margin, northern Mergui basin, Andaman Sea. Geosphere, 10(1), 80–106. https://doi.org/10.1130/GES00926.1
    [Google Scholar]
  64. Stock, J., & Hodges, K. (1989). Pre‐Pliocene extension around the Gulf of California and the transfer of Baja California to the Pacific Plate. Tectonics, 8(1), 99–115. https://doi.org/10.1029/TC008i001p00099
    [Google Scholar]
  65. Stock, J., Mountain, G., Diebold, J., Steckler, M., & Martin‐Barajas, A. (2005). HiRes Multi‐Channel Seismic Shot Data from the Northern Gulf of California acquired during the R/V Francisco de Ulloa expedition UL9905 (1999). Integrated Earth Data Applications (IEDA). https://doi.org/10.1594/IEDA/303735
    [Google Scholar]
  66. Sugan, M., Wu, J., & McClay, K. (2014). 3D analogue modelling of transtensional pull‐apart basins: Comparison with the Cinarcik Basin, Sea of Marmara, Turkey. Bollettino Di Geofisica Teorica Ed Applicata, 55(4), 699–716.
    [Google Scholar]
  67. Tchalenko, J. S. (1970). Similarities between shear zones of different magnitudes. GSA Bulletin, 81(6), 1625–1940.
    [Google Scholar]
  68. ten Brink, U. S., Katzman, R., & Lin, J. (1996). Three‐dimensional models of deformation near strike‐slip faults. Journal of Geophysical Research: Solid Earth, 101, 16205–16220. https://doi.org/10.1029/96JB00877
    [Google Scholar]
  69. Tron, V., & Brun, J.‐P. (1991). Experiments on oblique rifting in brittle‐ductile systems. Tectonophysics, 188(1‐2), 71–84. https://doi.org/10.1016/0040‐1951(91)90315‐J
    [Google Scholar]
  70. Umhoefer, P. J., Darin, M. H., Bennett, S. E. K., Skinner, L. A., Dorsey, R. J., & Oskin, M. E. (2018). Breaching of strike‐slip faults and successive flooding of pull‐apart basins to form the Gulf of California seaway from ca. 8–6 ma. Geology, 46(8), 695–698. https://doi.org/10.1130/G40242.1
    [Google Scholar]
  71. van Wijk, J., Axen, G., & Abera, R. (2017). Initiation, evolution and extinction of pull‐apart basins: Implications for opening of the Gulf of California. Tectonophysics, 719–720, 37–50. https://doi.org/10.1016/j.tecto.2017.04.019
    [Google Scholar]
  72. Weijermars, R. (1986a). Flow behaviour and physical chemistry of bouncing putties and related polymers in view of tectonic laboratory applications. Tectonophysics, 124(3), 325–358. https://doi.org/10.1016/0040‐1951(86)90208‐8
    [Google Scholar]
  73. Weijermars, R. (1986b). Polydimethylsiloxane flow defined for experiments in fluid dynamics. Applied Physics Letters, 48(2), 109–111. https://doi.org/10.1063/1.97008
    [Google Scholar]
  74. Weijermars, R. (1986c). Finite strain of laminar flows can be visualized in SGM36‐polymer. Naturwissenschaften, 73(1), 33–34. https://doi.org/10.1007/bf01168803
    [Google Scholar]
  75. Weijermars, R., & Schmeling, H. (1986). Scaling of newtonian and non‐newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity). Physics of the Earth and Planetary Interiors, 43(4), 316–330. https://doi.org/10.1016/0031‐9201(86)90021‐X
    [Google Scholar]
  76. Wickham, J. (2007). Comment on “Basin inversion and fault reactivation in laboratory experiments”. Journal of Structural Geology, 29(8), 1414–1416. https://doi.org/10.1016/j.jsg.2007.05.002
    [Google Scholar]
  77. Willingshofer, E., Sokoutis, D., Beekman, F., Schönebeck, J.‐M., Warsitzka, M., & Rosenau, M. (2018). Ring shear test data of feldspar sand and quartz sand used in Tectonic Laboratory (TecLab) at Utrecht University for experimental Earth Science applications. GFZ Data Services., V.1. GFZ Data Services. https://doi.org/10.5880/fidgeo.2018.072
    [Google Scholar]
  78. Willingshofer, E., Sokoutis, D., & Burg, J. P. (2005). Lithospheric scale analogue modelling of collision zones invoking a pre‐existing weak zone. In “Deformation Mechanisms, Rheology and Tectonics: From Minerals to the Lithosphere” (Eds. Gapais D., Brun J.P. & Cobbold P.R.). Geological Society, London, Special Publications, 243, 277–294.
    [Google Scholar]
  79. Withjack, M. O., & Jamison, W. R. (1986). Deformation produced by oblique rifting. Tectonophysics, 126(2), 99–124. https://doi.org/10.1016/0040‐1951(86)90222‐2
    [Google Scholar]
  80. Wu, J. E., McClay, K., Whitehouse, P., & Dooley, T. (2009). 4D analogue modelling of transtensional pull‐apart basins. Marine and Petroleum Geology, 26(8), 1608–1623. https://doi.org/10.1016/j.marpetgeo.2008.06.007
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12528
Loading
/content/journals/10.1111/bre.12528
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): extension; plate motion changes; pull‐apart basins; strike‐slip; transtension

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error