1887
Volume 33, Issue 4
  • E-ISSN: 1365-2117

Abstract

[Abstract

In this paper, we propose a high‐resolution (HR) sedimentary budget quantification at basin‐scale for the Cenozoic deposits of the Pelotas Basin (South Atlantic). A new workflow is implemented including five main steps: (1) basin‐scale analysis and characterization, (2) quality control and selection of reference 2D dip‐sections, (3) HR seismic stratigraphy analysis, (4) sediment supply estimation taking into account lithology and porosity corrections and then (5) the estimation of the sedimentary budget curve including 41 time‐intervals for the last 65 Myr. Variance ranges were determined considering the parameters of the method on the case study. The main uncertainties are related to the seismic velocities for the time‐to‐depth conversion (5%–22%), the method for lithological parameters quantification and associated porosity correction (4.4%–14.3%), the absolute ages of stratigraphic markers (1%–25%), and the proportion of in‐situ sediment production (0.3%–0.5%). For the very first time, this method allows the identification of several cycles from an entire sedimentary basin fill characterized by pulses of sediment supply (Qs) whose growth phase lasts less than 1 Myr, followed by a constant phase lasting 1–2 Myr, and finally an exponentially decreasing phase lasting 2–5 Myr. These pulses alternate with phases where the sediment supply was very low for intervals of ca. 1–5 Myr. Ten major pulses were recognized during the Cenozoic. We propose that the sediment supply dynamic in the Pelotas basin records the orogenic phases of the Andes located more than 2,000 km upstream. The recorded Qs pulses in the basin are out of phase with respect to the active tectonic phases of the Central Andes. Finally, by comparing the volume of preserved sediment and the production capacity of the catchment, we suggest that a source of sediment in addition to the Brazilian craton and the Andes should be envisaged, potentially associated with deep‐water oceanic circulation.

,

Map of the Paraná catchment to Pelotas basin routing system. The Pelotas basin is highlighted with the Plio‐Quaternary isopach map.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12556
2021-07-17
2024-04-26
Loading full text...

Full text loading...

References

  1. Abreu, V. S. (1998). Geologic evolution of conjugate volcanic passive margins: Pelotas Basin (Brazil) & offshore Namibia (Africa). Implication for global sea‐level changes (p. 354). PhD Thesis, Rice University.
    [Google Scholar]
  2. Abreu, V. S., Neal, J. E., & Vail, P. R. (2010). Integration of sequence stratigraphy concepts. In V. S.Abreu, J. E.Neal, K. M.Bohacs, & J. L.Kalbas (Eds.). Sequence stratigraphy of siliciclastic systems – The ExxonMobil methodology: Atlas of exercises (Vol. 9, pp. 209–224). SEPM Concepts in Sedimentology & Paleontology.
    [Google Scholar]
  3. Anderson, R. B., Long, S. P., Horton, B. K., Thomson, S. N., Calle, A. Z., & Stockli, D. F. (2018). Orogenic wedge evolution of the Central Andes, Bolivia (21°S): Implications for Cordilleran cyclicity. Tectonics, 37, 3577–3609. https://doi.org/10.1029/2018TC005132
    [Google Scholar]
  4. Armijo, R., Lacassin, R., Coudurier‐Curveur, A., & Carrizo, D. (2015). Coupled tectonic evolution of Andean orogeny and global climate. Earth‐Science Reviews, 143(2015), 1–35. https://doi.org/10.1016/j.earscirev.2015.01.005
    [Google Scholar]
  5. Armitage, J. J., Dunkley Jones, T., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2013). Temporal buffering of climate‐driven sediment flux cycles by transient catchment response. Earth and Planetary Science Letters, 369, 200–210.
    [Google Scholar]
  6. Barboza, E. G., Rosa, M. L. C. C., & Ayup‐Zouain, R. N. (2008). Cronoestratigrafia da Bacia de Pelotas: Uma revisão das seqüências deposicionais. Gravel (Porto Alegre), 6, 125–138.
    [Google Scholar]
  7. Bassetto, M., Alkmim, F., Szatmari, P., & Mohriak, W. U. (2000). The oceanic segment of the southern Brazilian margin: Morpho‐structural domains and their tectonic significance. In W. U.Mohriak & M.Talwani (Eds.), Atlantic rifts and continental margins (Vol. 115, pp. 235–259). American Geophysical Union, Monograph.
    [Google Scholar]
  8. Berggren, W. A., Kent, D. V., Swisher, C. C., & Aubry, M.‐P. (1995). A revised Cenozoic geochronology and chronostratigraphy. Geochronology Time Scales and Global Stratigraphic Correlation, SEPM Special Publication, 54, 129–212.
    [Google Scholar]
  9. Bhattacharya, J. P., Copeland, P., Lawton, T. F., & Holbrook, J. (2016). Estimation of source area, river paleo‐discharge, paleoslope, and sediment budgets of linked deep‐time depositional systems and implications for hydrocarbon potential. Earth‐Science Reviews, 153, 77–110.
    [Google Scholar]
  10. Blaich, O. A., Faleide, J. I., Tsikalas, F., Franke, D., & León, E. (2009). Crustal‐scale architecture and segmentation of the Argentine margin and its conjugate off South Africa. Geophysical Journal International, 178, 85–105. https://doi.org/10.1111/j.1365‐246X.2009.04171.x
    [Google Scholar]
  11. Bohaty, S. M., Zachos, J. C., Florindo, F., & Delaney, M. L. (2009). Coupled greenhouse warming and deep‐sea acidification in the Middle Eocene. Paleoceanography, 24, PA2207. https://doi.org/10.1029/2008PA001676
    [Google Scholar]
  12. Bonnet, S., & Crave, A. (2003). Landscape response to climate change: Insights from experimental modeling and implications for tectonic versus climatic uplift of topography. Geology, 31, 123–126.
    [Google Scholar]
  13. Braun, J., Voisin, C., Gourlan, A. T., & Chauvel, C. (2015) Erosional response of an actively uplifting mountain belt to cyclic rainfall variations. Earth Surface Dynamics, 3, 1–14. www.earth‐surf‐dynam.net/3/1/2015/. https://doi.org/10.5194/esurf‐3‐1‐2015
    [Google Scholar]
  14. Brozena, J. M. (1986). Temporal and Spatial Variability of Seafloor Spreading Processes in the Northern South Atlantic. Journal of Geophysical Research, 91, 497–510.
    [Google Scholar]
  15. Bueno, G. V., Zacharias, A. A., Oreiro, S. G., Cupertino, J. A., Falkenhein, F. U. H., & Martins, M. A. (2007). Bacia de Pelotas. Boletim De Geociências Da Petrobras, Rio De Janeiro, 15(2), 551–559.
    [Google Scholar]
  16. Calle, A. Z., Horton, B. K., Limachi, R., Stockli, D. F., Uzeda‐Orellana, G. V., Anderson, R. B., & Long, S. P. (2018). Cenozoic provenance and depositional record of the Subandean foreland basin during growth and advance of the central Andean fold‐thrust belt, southern Bolivia. In G.Zamora, K. R.McClay, & V. A.Ramos (Eds.), Petroleum basins and hydrocarbon potential of the Andes of Peru and Bolivia. AAPG Memoir 117 (pp. 483–530). https://doi.org/10.1306/13622132M1173777
    [Google Scholar]
  17. Calvès, G., Toucanne, S., Jouet, G., Charrier, S., Thereau, E., Etoubleau, J., Marsset, T., Droz, L., Bez, M., & Abreu, V. (2012). Inferring denudation variations from the sediment record; an example of the last glacial cycle record of the Golo Basin and watershed, East Corsica, western Mediterranean sea. Basin Research, 2013(25), 197–218.
    [Google Scholar]
  18. Cardozo, T. (2011). Caracterização do arcabouco estrutural da bacia de Pelotas e da área emersa adjacente. PhD. Universidade Estadual Paulista.
    [Google Scholar]
  19. Castelltort, S., & Van den Driessche, J. (2003). How plausible are high‐frequency sediment supply‐driven cycles in the stratigraphic record?Sedimentary Geology, 157, 3–13.
    [Google Scholar]
  20. Castillo, L., & Chemale, F. J. (2014). Seismostratigraphy and geomorpholgy of the Rio Grande Cone, Pelotas basin (Brazilian Offshore). Geología Colombiana, 39, 55–71.
    [Google Scholar]
  21. Chen, S., Steel, R., Olariu, C., & Li, S. (2017). Growth of the paleo‐Orinoco shelf‐margin prism: Process regimes, delta evolution, and sediment budget beyond the shelf edge. GSA Bulletin, 130(1–2), 35–63. https://doi.org/10.1130/B31553.1
    [Google Scholar]
  22. Conti, B. (2015). Sistemas petroliferos especulativos da bacia de pelotas (offshore do Uruguai) (p. 139). MSc. UNESP ‐ Universidade Estadual Paulista, Campus de Rio Claro (SP).
    [Google Scholar]
  23. Conti, B., Perinotto, J. A., Veroslavsky, G., Castillo, M. G., de Santa Ana, H., Soto, M., & Morales, E. (2017). Speculative petroleum systems of the southern Pelotas Basin, offshore Uruguay. Marine and Petroleum Geology, 83, 1–25.
    [Google Scholar]
  24. Contreras, J., Zühlke, R., Bowmanb, S., & Bechstädt, T. (2010). Seismic stratigraphy and subsidence analysis of the southern Brazilian margin (Campos, Santos and Pelotas basins). Marine and Petroleum Geology, 27, 1962–1980.
    [Google Scholar]
  25. Corrêa, T. B. S. (2004). Evolução Espaço‐Temporal dos Principais Depocentros da Sequência Sedimentar Marinha da Bacia de Pelotas. Bcs Rio de Janeiro, RJ ‐ Universidade do Estado do Rio de Janeiro ‐ UERJ, Instituto de Geociências, Departamento de Oceanografia.
    [Google Scholar]
  26. Creaser, A., Hernández‐Molina, F. J., Badalini, G., Thompson, P., Walker, R., Soto, M., & Conti, B. (2017). A Late Cretaceous mixed (turbidite‐contourite) system along the Uruguayan Margin: Sedimentary and palaeoceanographic implications. Marine Geology, 390, 234–253.
    [Google Scholar]
  27. Cruz, L. V. (2011). Interpretação sismostratigrafica do norte de bacia de Pelotas. PhD. Universidade Federal da Bahia.
    [Google Scholar]
  28. Depetris, P. J., & Griffin, J. J. (1968). Suspended load in the Río de la Plata drainage basin. Sedimentology, 11(1–2), 53–60.
    [Google Scholar]
  29. Depetris, P. J., Kempe, S., Latif, M., & Mook, W. G. (1996). ENSO‐controlled flooding in the Paraná River (1904–1991). Naturwissenschaften, 83, 127–129.
    [Google Scholar]
  30. Dias, J. L., Sad, A. R. E., Fontana, R. L., & Feijo, F. J. (1994). Rio de Janeiro. Bacia de Pelotas. Boletim de Geociencias da Petrobras, Rio de Janeiro, 8(1), 235–245.
    [Google Scholar]
  31. Ellison, R. A., Klinck, B. A., & Hawkins, M. P. (1989). Deformation events in the Andean orogenic cycle in the Altiplano and Western Cordillera, southern Peru. Journal of South American Earth Sciences, 2(3), 263–276. https://doi.org/10.1016/0895‐9811(89)90033‐3
    [Google Scholar]
  32. Fontana, R. L. (1987). Desenvolvimento termomecanico da Bacia de Pelotas e parte sul da Plataforma de Florianopolis. Dissertaçao de Mestrado. Universidade Federal de Ouro Preto.
    [Google Scholar]
  33. Fontana, R. L. (1989). Evidências Geofísicas da presença de Hidratos de Gás na Bacia de Pelotas – Brasil. 1o Cong. Soc. Bras. Geofísica, 7(1), 93.
  34. Fontana, R. L. (1996). Geotectonica e sismoestratigrafia da Bacia de Pelotas e Plataforma de Florianopolis. Tese de doutorado em Geociencias. Universidade Federal do Rio Grande do Sul.
    [Google Scholar]
  35. Franke, D., Ladage, S., Schnabel, M., Schreckenberger, B., Reichert, C., & Hinz, K. (2010). Birth of a volcanic margin off Argentina. South Atlantic. Geochemistry Geophysics Geosystems, 11(2), 1–20.
    [Google Scholar]
  36. Franke, D., Neben, S., Ladage, S., Schreckenberger, B., & Hinz, K. (2007). Margin segmentation and volcano‐tectonic architecture along the volcanic margin off Argentina/ Uruguay, South Atlantic. Marine Geology, 244, 46–67.
    [Google Scholar]
  37. Gallagher, K., Brown, R. W., & Johnson, C. J. (1998). Geological applications of fission track analysis. Annual Reviews of Earth and Planetary Sciences, 26, 519–572.
    [Google Scholar]
  38. Galloway, W. E. (1975). Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. In M. L.Broussard (Ed.), Deltas (pp. 87–98). Houston Geological Society.
    [Google Scholar]
  39. Galloway, W. E. (2001). Cenozoic evolution of sediment accumulation in deltaic and shore‐zone depositional systems, Northern Gulf of Mexico basin. Marine and Petroleum Geology, 18, 1031–1040.
    [Google Scholar]
  40. Galloway, W. E., Ganey‐Curry, P. E., Li, X., & Buffler, R. T. (2000). Cenozoic depositional history of the Gulf of Mexico Basin. AAPG Bulletin, 84(11), 1743–1774.
    [Google Scholar]
  41. Galloway, W. E., Whiteaker, T. L., & Ganey‐Curry, P. (2011). History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin. Geosphere, 7, 938–973. https://doi.org/10.1130/ges00647.1
    [Google Scholar]
  42. Garcia, W. O. (2012). Estudo da influência do lineamento Tibagi e sinclinal de Torres na estruturação da porção norte da bacia de Pelotas (p. 71). MSc. UNESP ‐ Universidade Estadual Paulista.
    [Google Scholar]
  43. Garzione, C. N., Auerbach, D., Smith, J. J., Rosario, J., Passey, B. H., Jordan, T. E., & Eiler, J. M. (2014). Clumped isotope evidence for diachronous surface cooling of the Altiplano and pulsed surface uplift of the Central Andes. Earth and Planetary Science Letters, 393, 173–181. https://doi.org/10.1016/j.epsl.2014.02.029
    [Google Scholar]
  44. Gayet, M., Sempere, T., Cappetta, H., Jaillard, E., & Lévy, A. (1993). La présence de fossiles marins dans le Crétacé terminal des Andes centrales et ses conséquences paléogéographiques. Palaeo Palaeoc Palaeoe, 102, 283–319.
    [Google Scholar]
  45. Giberto, D. A., Bremec, C. S., Acha, E. M., & Mianzan, H. W. (2004). Large‐scale spatial patterns of benthic assemblages in the SW Atlantic: The Río de la Plata estuary and adjacent shelf waters. Estuarine, Coastal and Shelf Science, 61, 1–13.
    [Google Scholar]
  46. Godard, V., Tucker, G. E., Burch Fisher, G., Burbank, D. W., & Bookhagen, B. (2013). Frequency‐dependent landscape response to climatic forcing. Geophysical Research Letters, 40(5), 859–863.
    [Google Scholar]
  47. Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (2012). The geologic time scale. Elsevier. https://doi.org/10.1016/B978‐0‐444‐59425‐9.10003‐4
    [Google Scholar]
  48. Grassmann, S., Franke, D., Neben, S., Schnabel, M., & Damm, V. (2011). Maturity modelling of the deepwater continental margin, offshore Argentina. Zeitschrift Der Deutschen Gesellschaft Für Geowissenschaften, 162(1), 79–89.
    [Google Scholar]
  49. Guillocheau, F., Rouby, D., Robin, C., Helm, C., Rolland, N., Carlier, L. E., de Veslud, C., & Braun, J. (2012). Quantification and causes of the terrigeneous sediment budget at the scale of a continental margin: A new method applied to the Namibia‐South Africa margin. Basin Research, 24, 3–30. https://doi.org/10.1111/j.1365‐2117.2011.00511.x
    [Google Scholar]
  50. Haq, B. U., Hardenbol, J., & Vail, P. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167.
    [Google Scholar]
  51. Hardenbol, J., Thierry, J., Farley, M. B., Jacquin, T., de Graciansky, P. C., & Vail, P. (1998). Mesozoic and Cenozoic sequence chronostratigraphic framework of European Basins. In P. C.Graciansky, J.Hardenbol, T.Jacquin, & P. R.Vail (Eds.), Mesozoic and Cenozoic sequence stratigraphy of European basins (Vol. 60, pp. 3–13, Charts 1‐8). SEPM Special Publication.
    [Google Scholar]
  52. Heller, P. L., Angevine, C. L., Winslow, N. S., & Paola, C. (1988). Two‐phase stratigraphic model of foreland. Geology, 16, 501–504. https://doi.org/10.1130/0091‐7613(1988)016<0501
    [Google Scholar]
  53. Henry, F., Probst, J. L., Thouron, D., Depetris, P. J., & Garçon, V. (1996). Nd‐Sr isotopic compositions of dissolved and particulate material transported by the Paraná and Uruguay rivers during high (december 1993) and low (september 1994) water periods. Sciences Géologiques, Bulletin, 49(1–4), 89–100.
    [Google Scholar]
  54. Hernández‐Molina, F. J., Paterlini, M., Somoza, L., Violante, R., Arecco, M. A., de Isasi, M., Rebesco, M., Uenzelmann‐Neben, G., Neben, S., & Marshall, P. (2010). Giant mounded drifts in the Argentine continental margin: Origins, and global implications for the history of the thermohaline circulation. Marine and Petroleum Geology, 27, 1508–1530.
    [Google Scholar]
  55. Hernández‐Molina, F. J., Paterlini, M., Violante, R., Marshall, P., de Isasi, M., Somoza, L., & Rebesco, M. (2009). Contourite depositional system on the Argentine Slope: An exceptional record of the influence of Antarctic water masses. Geology, 37, 507–510.
    [Google Scholar]
  56. Hernández‐Molina, F. J., Soto, M., Piola, A., Tomasini, J., & Preu, B. (2016). A contourite depositional system along the Uruguayan continental margin: Sedimentary, oceanographic and paleoceanographic implications. Marine Geology, 378(2016), 333–349.
    [Google Scholar]
  57. Horn, B. (2015). Access and exploration opportunities – A view of the potential in frontier and mature basins. First Break, 33, 85–93.
    [Google Scholar]
  58. Horton, B. K. (2018). Sedimentary record of Andean mountain building. Earth‐Science Reviews, 178, 279–309. https://doi.org/10.1016/j.earscirev.2017.11.025
    [Google Scholar]
  59. Hovius, N. (1998). Controls on sediment supply by large rivers. In K. W.Shanley & P. J.McCabe (Eds.), Relative role of eustasy, climate and tectonism in continental rocks (Vol. 59, pp. 3–16) Society of Economic Paleontologists and Mineralogists Special Publication.
    [Google Scholar]
  60. Jackson, M. P. A., Cramez, C., & Fonck, J. M. (2000). Role of subaerial volcanic rocks and mantle plumes in creation of South Atlantic volcanic margins: Implications for salt tectonics and source rocks. Marine and Petroleum Geology, 17, 477–498.
    [Google Scholar]
  61. Jaillard, E., Hérail, G., Monfret, T., Díaz‐Martínez, E., Baby, P., Lavenu, A., & Dumont, J. F. (2000). Tectonic evolution of the Andes of Ecuador, Peru, Bolivia and northernmost Chile. Tectonic Evolution of South America, 31, 481–559.
    [Google Scholar]
  62. Jeck, I. K., Alberoni, A. A. L., Torres, L. C., & Zalán, P. V. (2020). The Santa Catarina Plateau and the nature of its basement. Geo‐Marine Letters, 40, 853–864. https://doi.org/10.1007/s00367‐019‐00585‐z
    [Google Scholar]
  63. Jones, S. M., White, N. J., Clarke, B. J., Rowley, E., & Gallagher, K. (2002). Present and past influence of the Iceland Plume on sedimentation. In A. G.Dore, J. A.Cartwright, M. S.Stocker, J. P.Turner, & N. J.White (Eds.), Exhumation of the North Atlantic margin (pp. 13–25). Geological Society, Special Publications, London.
    [Google Scholar]
  64. Justus, J. O., Machado, M. L. A., & Franco, M. S. M. (1986). Geomorfologia. In IBGE (Ed.), Levantamento de Recursos Naturais 33 (pp. 313–404). Instituto Brasileiro de Geografia e Estatística.
    [Google Scholar]
  65. Kar, N., Garzione, C. N., Jaramillo, C., Shanahan, T., Carlotto, V., Pullen, A., Moreno, F., Anderson, V., Moreno, E., & Eiler, J. (2016). Rapid regional surface uplift of the northern Altiplano plateau revealed by multiproxy paleoclimate reconstruction. Earth and Planetary Science Letters, 447(2016), 33–47.
    [Google Scholar]
  66. Kowsmann, R. O., Costa, M. P., Boa Hora, M. P., AImeida, H. P., & Guimaraes, P. P. (1982). Geologia estrutural do Plato de Sao Paulo. In Anais do XXXII Congresso Brasileiro de Geologia, Salvador, Brazil (Vol. 4, pp. 1558–1569).
    [Google Scholar]
  67. Krastel, S., Wefer, G., Hanebuth, T. J. J., Antobreh, A. A., Freudenthal, T., Preu, B., Schwenk, T., Strasser, M., Violante, R., & Winkelmann, D. (2011). Sediment dynamics and geohazards off Uruguay and the de la Plata River region (northern Argentina and Uruguay). Geo‐Marine Letters, 31, 271–283. https://doi.org/10.1007/s00367‐011‐0232‐4
    [Google Scholar]
  68. Lague, D., Crave, A., & Davy, P. (2003). Laboratory experiments simulating the geomorphic response to tectonic uplift. Journal of Geophysical Research, 108(B1), ETG 3‐1–ETG 3‐20.
    [Google Scholar]
  69. Lopes da Silva, M. (2013). Definição do comportamento morfoestrutural da zona de fratura de porto alegre (p. 62). BcS. Universidade Federal Fluminense.
    [Google Scholar]
  70. Lovecchio, J. P., Rohais, S., Joseph, P., Bolatti, N., Kress, P. R., Gerster, R., & Ramos, V. A. (2018). Multi‐stage rifting evolution of the Colorado basin (offshore Argentina): Evidence for extensional settings prior to the South Atlantic opening. Terra Nova, 30, 359–368. https://doi.org/10.1111/ter.12351
    [Google Scholar]
  71. Lovecchio, J. P., Rohais, S., Joseph, P., Bolatti, N., & Ramos, V. A. (2020). Mesozoic rifting evolution of SW Gondwana: A poly‐phased, subduction‐related, extensional history responsible for basin formation along the Argentinean Atlantic margin. Earth‐Science Reviews, 203, 103138. https://doi.org/10.1016/j.earscirev.2020.103138
    [Google Scholar]
  72. Machado, L. G. (2010). Evolução morfo‐tectônica do Alto de Florianópolis que segmenta as bacias de Santos e Pelotas, margem sudeste da costa brasileira (p. 125). McS. Universidade Federal Fluminense.
    [Google Scholar]
  73. Marquillas, R. A., & Salfity, J. A. (1988). Tectonic framework and correlations of the Cretaceous‐Eocene Salta Group, Argentine. In H.Bahlburg, C. h.Breitkreuz, & P.Giese (Eds.), The southern central Andes (Vol. 17, pp. 119–136). Springer. Lect Notes Earth Sci.
    [Google Scholar]
  74. Marshall, L. G., Sempere, T., & Gayer, M. (1993). The Pecta (Late Oligiocene‐Miocene) and Yecua (Late Miocene) Formations of the Sub Andean‐Chaco Basin, Bolivia and their tectonic significance (Vol. 125, pp. 291–301). Document Laboratoire Géologie Université Lyon.
    [Google Scholar]
  75. Métivier, F., Gaudemer, Y., Tapponnier, P., & Klein, M. (1999). Mass accumulation rates in Asia during the Cenozoic. Geophysical Journal International, 137(2), 280–318.
    [Google Scholar]
  76. Milliman, J. D., & Meade, R. H. (1983). World‐wide delivery of river sediment to the oceans. The Journal of Geology, 91(1), 1–21.
    [Google Scholar]
  77. Milliman, J. D., & Syvitski, J. P. M. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. The Journal of Geology, 100, 525–544.
    [Google Scholar]
  78. Mohriak, W. U., Rosendahl, B. R., Turner, J. P., & Valente, S. C. (2002). Crustal architecture of South Atlantic volcanic margins. In M. A.Menzies, S. L.Klemperer, C. J.Ebinger, & J.Baker (Eds.), Volcanic rifted margins (Vol. 362, pp. 159–202). Special Paper Geological Society of America.
    [Google Scholar]
  79. Morales, E. (2013). Evolução tectonica e estratigrafica das bacias da margem continental do Uruguai. PhD. Universidade Estadual Paulista.
    [Google Scholar]
  80. Morales, E., Chang, H. K., Soto, M., Santos Corrêa, F., Veroslavsky, G., de Santa Ana, H., Conti, B., & Daners, G. (2017). Tectonic and stratigraphic evolution of the Punta del Este and Pelotas Basins (offshore Uruguay). Petroleum Geosciences, 23, 415–426.
    [Google Scholar]
  81. Morales, E., Conti, B., Soto, M., & Viera‐Honegger, B. (2020). Risks inherent in the Cenozoic stratigraphic plays in basins of the Uruguayan continental margin. Marine and Petroleum Geology, 112(2020), 104072. https://doi.org/10.1016/j.marpetgeo.2019.104072
    [Google Scholar]
  82. Musacchio, E. A. (2000). Biostratigraphy and biogeography of Cretaceous charophytes from South America. Cretaceous Research, 21, 211–220.
    [Google Scholar]
  83. Paumard, V., Bourget, J., Lang, S., Wilson, T., Riera, R., Gartrell, A., Vakarelov, B. K., O’Leary, M., & George, A. D. (2019). Imaging past depositional environments of the North West Shelf of Australia: lessons from 3D seismic data. In M.Keep, & S. J.Moss (Eds.), The sedimentary basins of Western Australia V: Proceedings of the Petroleum Exploration Society of Australia Symposium, Perth, WA, 2019 (30 p.).
    [Google Scholar]
  84. Paumard, V., Bourget, J., Payenberg, T., George, A. D., Ainsworth, R. B., & Lang, S. (2019). From quantitative 3D seismic stratigraphy to sequence stratigraphy: Insights into the vertical and lateral variability of shelf‐margin depositional systems at different stratigraphic orders. Marine and Petroleum Geology, 110, 797–831.
    [Google Scholar]
  85. Pazzaglia, F. J., & Brandon, M. T. (1996). Macrogeomorphic evolution of the post‐Triassic Appalachian mountains determined by deconvolution of the offshore basin sedimentary record. Basin Research, 8, 255–278.
    [Google Scholar]
  86. Pazzaglia, F. J., & Gardner, T. W. (1994). Late Cenozoic flexural deformation of the middle U.S. Atlantic passive margin. Journal of Geophysical Research, 99, 12143–12157.
    [Google Scholar]
  87. Perch‐Nielsen, K., Supko, P. R., Boersma, A., Carlson, R. L., Dinkelman, M. G., Fodor, R. V., Kumar, N., McCoy, F., Thiede, J., & Zimmerman, H. B. (1977). Site 356: São Paulo Plateau. DSDP Volume XXXIX. https://doi.org/10.2973/dsdp.proc.39.105.1977
  88. Pérez Panera, J. P., Lovecchio, J. P., Ronchi, D. I., Angelozzi, G. N., Calvo Marcilese, L., Tortora, L., Calaramo, N., & Kress Frieling, P. R. (2016). Bioestratigrafía y Reconstrucción Paleoambiental de las cuencas del Salado y Punta del Este en el lapso Maastrichtiano – Mioceno. VI Jornadas de Geociencias – “Compartiendo Geociencias, Impulsando Comunidades”.
  89. Pérez‐Díaz, L., & Eagles, G. (2017). South Atlantic paleobathymetry since early Cretaceous. Scientific Reports, 7, 11819. https://doi.org/10.1038/s41598‐017‐11959‐7
    [Google Scholar]
  90. Petter, A. L., Steel, R. J., Mohrig, D., Kim, W., & Carvajal, C. (2013). Estimation of the paleoflux of terrestrial‐derived solids across ancient basin margins using the stratigraphic record. GSA Bulletin, 125(3–4), 578–593. https://doi.org/10.1130/B30603.1
    [Google Scholar]
  91. Poag, C. W., & Sevon, W. D. (1989). A record of Appalachian denudation in post‐rift Mesozoic and Cenozoic sedimentary deposits of the U.S. Middle Atlantic Continental Margin. Geomorphology, 2, 119–157.
    [Google Scholar]
  92. Ramos, V. A. (2010). The tectonic regime along the Andes: Present‐day and Mesozoic regimes. Geological Journal, 45, 2–25.
    [Google Scholar]
  93. Ramos, V. A., & Aleman, A. (2000). Tectonic evolution of the Andes. In U. G.Cordani, E. J.Milani, A.Thomaz Filho, & D. A.Campos (Eds.) Tectonic evolution of South America (pp. 635–685).
    [Google Scholar]
  94. Razik, S., Govin, A., Chiessi, C. M., & Dobeneck, T. (2015). Depositional provinces, dispersal, and origin of terrigenous sediments along the SE South American continental margin. Marine Geology, 363, 261–272. https://doi.org/10.1016/j.margeo.2015.03.001
    [Google Scholar]
  95. Reis do Amorin, N. (2013). Caracterização geofísica da dorsal de são paulo e seu significado evolutivo na bacia de Santos (p. 60). BcS. Universidade Federal Fluminense.
    [Google Scholar]
  96. Repasch, M., Wittmann, H., Scheingross, J. S., Sachse, D., Szupiany, R., Orfeo, O., Fuchs, M., & Hovius, N. (2020). Sediment transit time and floodplain storage dynamics in alluvial rivers revealed by meteoric 10Be. Journal of Geophysical Research: Earth Surface, 125, e2019JF005419. https://doi.org/10.1029/2019JF005419
    [Google Scholar]
  97. Rohais, S., Barrois, A., Colletta, B., & Moretti, I. (2016). Pre‐salt to salt stratigraphic architecture in a rift basin: Insights from a basin‐scale study of the Gulf of Suez (Egypt). Arabian Journal of Geosciences, 9, 317. https://doi.org/10.1007/s12517‐016‐2327‐8
    [Google Scholar]
  98. Rohais, S., Bonnet, S., & Eschard, R. (2012). Sedimentary record of tectonic and climatic erosional perturbations in an experimental coupled catchment‐fan system. Basin Research, 24, 198–212. https://doi.org/10.1111/j.1365‐2117.2011.00520.x
    [Google Scholar]
  99. Rohais, S., Hamon, Y., Deschamps, R., Beaumont, V., Gasparrini, M., Pillot, D., & Romero‐Sarmiento, M. (2019). Patterns of organic carbon enrichment in a lacustrine system across the K‐T boundary: Insight from a multi‐proxy analysis of the Yacoraite Formation, Salta rift basin, Argentina. Journal of Coal Geology, 210, 1–13. ISSN 0166–5162. https://doi.org/10.1016/j.coal.2019.05.015
    [Google Scholar]
  100. Rohais, S., & Rouby, D. (2020). Source‐to‐Sink analysis of the Plio‐Quaternary deposits in the Suez rift (Egypt). In S.Khomsi, F.Roure, & M.Al Garni (Eds.), Arabian plate and surroundings: Geology, sedimentary basins and georesources, Regional geology reviews (pp. 115–133). Springer. https://doi.org/10.1007/978‐3‐030‐21874‐4_4
    [Google Scholar]
  101. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. P. (2016). Environmental signal propagation in sedimentary systems across timescales. Earth‐Science Reviews, 153, 7–29. https://doi.org/10.1016/j.earscirev.2015.07.012
    [Google Scholar]
  102. Rosa, M. L., Barboza, E. G., Abreu, V., Tomazelli, L. J., & Dillengurg, S. R. (2017). High‐Frequency Sequences in the Quaternary of Pelotas Basin (coastal plain): A record of degradational stacking as a function of longer‐term base‐level fall. Brazilian Journal of Geology, 47(2), 183–207.ISSN 2317‐4889. https://doi.org/10.1590/2317‐4889201720160138
    [Google Scholar]
  103. Rouby, D., Bonnet, S., Guillocheau, F., Gallagher, K., Robin, C., Biancotto, F., Dauteuil, O., & Braun, J. (2009). Sediment supply to the Orange sedimentary system over the last150 My: An evaluation from sedimentation/denudation balance. Marine and Petroleum Geology, 26, 782–794.
    [Google Scholar]
  104. Rouby, D., Braun, J., Robin, C., Dauteuil, O., & Deschamps, F. (2013). Long‐term stratigraphic evolution of Atlantic‐type passive margins: A numerical approach of interactions between surface processes, flexural isostasy and 3D thermal subsidence. Tectonophysics, 604, 83–103. https://doi.org/10.1016/j.tecto.2013.02.003
    [Google Scholar]
  105. Rust, D. J., & Summerfield, M. A. (1990). Isopach and borehole data as indicators of rifted margin evolution in southwestern Africa. Marine and Petroleum Geology, 7, 277–287.
    [Google Scholar]
  106. Saunders, M., & Bowman, S. (2014). The Pelotas basin oil province revealed – New interpretation from long offset 2D seismic data. First Break, 32, 67–72.
    [Google Scholar]
  107. Schumm, S. A., & Rea, D. K. (1995). Sediment yield from disturbed earth systems. Geology, 23(5), 391–394.
    [Google Scholar]
  108. M.Sébrier
    , & P.Soler (1991). Tectonics and magmatism in the Peruvian Andes from late Oligocene time to the present. In R. S.Harmon, & C. W.Rapela (Eds.), Andean magmatism and its tectonic setting, Geol. Soc. Am. Spec. Pap. (Vol. 265(1991), pp. 259–278).
    [Google Scholar]
  109. Simpson, G., & Castelltort, S. (2012). Model shows that rivers transmit high‐frequency climate cycles to the sedimentary record. Geology, 40, 1131–1134. https://doi.org/10.1130/G33451.1
    [Google Scholar]
  110. Soto, M., Morales, E., Veroslavsky, G., de Santa Ana, H., Ucha, N., & Rodríguez, P. (2011). The continental margin of Uruguay: Crustal architecture and segmentation. Marine and Petroleum Geology, 28, 1676–1689.
    [Google Scholar]
  111. Stica, J. M., Zalán, P. V., & Ferrari, A. L. (2014). The evolution of rifting on the volcanic margin of the Pelotas Basin and the contextualization of the Paraná‐Etendeka LIP in the separation of Gondwana in the South Atlantic. Marine and Petroleum Geology, 50, 1–21. https://doi.org/10.1016/j.marpetgeo.2013.10.015
    [Google Scholar]
  112. Syvitski, J. P., & Milliman, J. D. (2007). Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. The Journal of Geology, 115(1), 1–19.
    [Google Scholar]
  113. Talwani, M., & Abreu, V. (2000). Inferences regarding initiation of oceanic crust formation from the U.S. east coast margin and conjugate South Atlantic margins. Atlantic Rifts and Continental margins, 115, 211–233. https://doi.org/10.1029/GM115p0211
  114. Uenzelmann‐Neben, G., Weber, T., Grützner, J., & Maik, T. (2017). Transition from the Cretaceous ocean to Cenozoic circulation in the western South Atlantic — A twofold reconstruction. Tectonophysics, 716, 225–240. https://doi.org/10.1016/j.tecto.2016.05.036
    [Google Scholar]
  115. Vail, P. R. (1987). Seismic stratigraphic interpretation procedure, in Bally, A.W. Atlas of seismic stratigraphy. American Association of Petroleum Geologists Studies in Geology, 27, 1–10.
    [Google Scholar]
  116. Vail, P. R., Mitchum, R. M., & Thompson, S. (1977). Seismic stratigraphy and global changes of sea level, Part 4: Global cycles of relative changes of sea level. In C. E.Payton (Ed.), Seismic stratigraphy – Applications to hydrocarbon exploration (p. 83–133). American Association of Petroleum Geologists Memoir 26.
    [Google Scholar]
  117. Van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M., Vail, P. R., Sarg, J. F., Loutit, T. S., & Hardenbol, J. (1988). An overview of the fundamentals of sequence stratigraphy and key definitions. In C. K.Wilgus, B. S.Hastings, C. G. S. C.Kendall, H. W.Posamentier, C. A.Ross, & J. C.Van Wagoner (Eds.), Sea level changes: An integrated approach (Vol. 42, pp. 39–45). SEPM Special Publication.
    [Google Scholar]
  118. Walford, H., & White, N. J. (2005). Constraining uplift and denudation of west African continental margin by inversion of stacking velocity data. Journal of Geophysical Research, 110, B04403. https://doi.org/10.1029/2003JB002893
    [Google Scholar]
  119. Weschenfelder, J., Baitelli, R., Corrêa, I. C. S., Bortolin, E. C., & Dos Santos, C. B. (2014). Quaternary incised valleys in southern Brazil coastal zone. Journal of South American Earth Sciences, 55, 83–93.
    [Google Scholar]
  120. Westerhold, T., & Röhl, U. (2013). Orbital pacing of Eocene climate during the Middle Eocene Climate Optimum and the chron C19r event: Missing link found in the tropical western Atlantic. Geochemistry, Geophysics, Geosystems, 14, 4811–4825. https://doi.org/10.1002/ggge.20293
    [Google Scholar]
  121. Zhang, J., Burgess, P. M., Granjeon, D., & Steel, R. (2019). Can sediment supply variations create sequences? Insights from stratigraphic forward modelling. Basin Research, 31, 274–289. https://doi.org/10.1111/bre.12320
    [Google Scholar]
  122. Zhang, J., Covault, J., Pyrcz, M., Sharman, G., Carvajal, C., & Milliken, K. (2018). Quantifying sediment supply to continental margins: Application to the Paleogene Wilcox Group. Gulf of Mexico. AAPG Bulletin, 102(9), 1685–1702.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12556
Loading
/content/journals/10.1111/bre.12556
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error