1887
Volume 33, Issue 4
  • E-ISSN: 1365-2117

Abstract

[

Late Palaeozoic continental‐continental collision and related sediment routing changes and evolution of sedimentary basins in southwestern Laurentia.

, Abstract

Sea level is thought to be the primary driver of alternating deposition of carbonate and siliciclastic sediment in shelf settings, with carbonates dominating during transgressive/highstands and siliciclastics during lowstands. Although sediment supply is critically important for shelf‐margin growth in siliciclastic systems, few studies demonstrate its impact on mixed carbonate‐siliciclastic systems. The Permian Basin in Texas, United States, provides an opportunity to investigate the basin evolution regarding the source, sediment routing and particularly shelf/slope growth from syn‐ to postorogenic phases during alternating carbonate and siliciclastic sedimentation. Published detrital zircon data show that the proportion of orogen‐related sources decreased significantly from an earliest Permian synorogenic phase (ca. 298 Ma) to a Leonardian (ca. 280–271 Ma) postorogenic phase, in concert with a grain‐size change from fine‐ to medium‐grained sand to silt. Although along‐strike lateral variabilities exist on the shelf margin, the shelf‐margin evolution characteristics show a significant difference among the Northern Shelf, Eastern Shelf and Central Basin Platform. The synorogenic Eastern Shelf exhibits a significant higher progradation rate than does the postorogenic Northern Shelf. The progradation and aggradation ratio of siliciclastic‐rich intervals in the Eastern Shelf is significantly higher than those of carbonate‐rich intervals in the Eastern Shelf and carbonate‐ or siliciclastic‐rich intervals in the Northern Shelf. In contrast, the Central Basin Platform, with no siliciclastic sediment supply, records almost no progradation regardless of orogenic phases. There is an increase in slope gradient with decreasing sediment supply during this second‐order sequence from the Permian Cisuralian Series to the end of the Guadalupian Series. This study demonstrates that tectonically driven siliciclastic sediment supply was the main mechanism controlling the shelf and slope evolution in alternating siliciclastic and carbonate deposition.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12557
2021-07-17
2024-04-26
Loading full text...

Full text loading...

References

  1. Abeyta, A., Foreman, B. Z., Swenson, J. B., Paola, C., & Mohr, J. (2018). Sink‐to‐source: Influence of offshore dynamics on upstream processes. Basin Research, 30(4), 783–798. https://doi.org/10.1111/bre.12280
    [Google Scholar]
  2. Alsalem, O. B., Fan, M., Zamora, J., Xie, X., & Griffin, W. R. (2018). Paleozoic sediment dispersal before and during the collision between Laurentia and Gondwana in the Fort Worth Basin, USA. Geosphere, 14(1), 325–342. https://doi.org/10.1130/GES01480.1
    [Google Scholar]
  3. Anthony, E. J., Besset, M., Dussouillez, P., Goichot, M., & Loisel, H. (2019). Overview of the Monsoon‐influenced Ayeyarwady River delta, and delta shoreline mobility in response to changing fluvial sediment supply. Marine Geology, 417, 106038. https://doi.org/10.1016/j.margeo.2019.106038
    [Google Scholar]
  4. Baumgardner, R. W., Hamlin, H. S., & Rowe, H. D. (2016). Lithofacies of the Wolfcamp and lower Leonard intervals, southern Midland Basin, Texas. Bureau of Economic Geology Report of Investigations 281, Austin, Texas, USA (p. 67).
    [Google Scholar]
  5. Borer, J. M., & Harris, P. M. (1991). Lithofacies and cyclicity of the Yates Formation, Permian Basin: Implications for reservoir heterogeneity 1. AAPG Bulletin, 75(4), 726–779. https://doi.org/10.1306/0c9b283f‐1710‐11d7‐8645000102c1865d
    [Google Scholar]
  6. Brachert, T. C., Forst, M. H., Pais, J. J., Legoinha, P., & Reijmer, J. J. G. (2003). Lowstand carbonates, highstand sandstones?Sedimentary Geology, 155(1), 1–12. https://doi.org/10.1016/S0037‐0738(02)00329‐9
    [Google Scholar]
  7. Brown, L. F., Cleaves, A. W., & Erxleben, A. W. (1973). Pennsylvanian depositional systems in North‐Central Texas: A guide for interpreting terrigenous clastic facies in a cratonic basin (p. 122). University of Texas at Austin, Bureau of Economic Geology Guidebook 14, Austin, Texas, USA.
    [Google Scholar]
  8. Brown, L. F., Solís‐Iriarte, R. F., & Johns, D. A. (1990). Regional depositional systems tracts, paleogeography, and sequence stratigraphy, upper Pennsylvanian and lower Permian strata, North‐and‐West‐Central Texas. Bureau of Economic Geology Report of Investigations 197, Austin, Texas, USA (p. 116).
    [Google Scholar]
  9. Carvajal, C., Steel, R., & Petter, A. (2009). Sediment supply: The main driver of shelf‐margin growth. Earth‐Science Reviews, 96(4), 221–248. https://doi.org/10.1016/j.earscirev.2009.06.008
    [Google Scholar]
  10. Chapman, J. B., Carrapa, B., DeCelles, P. G., Worthington, J., Mancin, N., Cobianchi, M., Stoica, M., Wang, X., Gadoev, M., & Oimahmadov, I. (2020). The Tajik Basin: A composite record of sedimentary basin evolution in response to tectonics in the Pamir. Basin Research, 32(3), 525–545. https://doi.org/10.1111/bre.12381
    [Google Scholar]
  11. Chiarella, D., & Longhitano, S. G. (2012). Distinguishing depositional environments in shallow‐water mixed, bio‐siliciclastic deposits on the basis of the degree of heterolithic segregation (Gelasian, Southern Italy). Journal of Sedimentary Research, 82(12), 969–990. https://doi.org/10.2110/jsr.2012.78
    [Google Scholar]
  12. Chiarella, D., Longhitano, S. G., Sabato, L., & Tropeano, M. (2012). Sedimentology and hydrodynamics of mixed (siliciclastic‐bioclastic) shallow‐marine deposits of Acerenza (Pliocene, Southern Apennines, Italy). Italian Journal of Geosciences, 131(1), 136–151. https://doi.org/10.3301/IJG.2011.36
    [Google Scholar]
  13. Chiarella, D., Longhitano, S. G., & Tropeano, M. (2017). Types of mixing and heterogeneities in siliciclastic‐carbonate sediments. Marine and Petroleum Geology, 88, 617–627. https://doi.org/10.1016/j.marpetgeo.2017.09.010
    [Google Scholar]
  14. Chiarella, D., Longhitano, S. G., & Tropeano, M. (2019). Different stacking patterns along an active fold‐and‐thrust belt—Acerenza Bay, Southern Apennines (Italy). Geology, 47(2), 139–142. https://doi.org/10.1130/G45628.1
    [Google Scholar]
  15. Ćosović, V., Mrinjek, E., Nemec, W., Španiček, J., & Terzić, K. (2018). Development of transient carbonate ramps in an evolving foreland basin. Basin Research, 30(4), 746–765. https://doi.org/10.1111/bre.12274
    [Google Scholar]
  16. Cumberpatch, Z. A., Soutter, E. L., Kane, I. A., Casson, M., & Vincent, S. J. (2020). Evolution of a mixed siliciclastic‐carbonate deep‐marine system on an unstable margin: The Cretaceous of the Eastern Greater Caucasus, Azerbaijan. Basin Research, 33(1), 612–647. https://doi.org/10.1111/bre.12488
    [Google Scholar]
  17. D'agostini, D. P., Bastos, A. C., & Dos Reis, A. T. (2015). The Modern mixed carbonate‐siliciclastic abrolhos shelf: Implications for a mixed depositional model. Journal of Sedimentary Research, 85(2), 124–139. https://doi.org/10.2110/jsr.2015.08
    [Google Scholar]
  18. Dietz, R. S., & Menard, H. W. (1951). Origin of abrupt change in slope at continental shelf margin. AAPG Bulletin, 35(9), 1994–2016. https://doi.org/10.1306/3D934319‐16B1‐11D7‐8645000102C1865D
    [Google Scholar]
  19. Dutton, S. P., Kim, E. M., Broadhead, R. F., Raatz, W. D., Breton, C. L., Ruppel, S. C., & Kerans, C. (2005). Play analysis and leading‐edge oil‐reservoir development methods in the Permian basin: Increased recovery through advanced technologies. AAPG Bulletin, 89(5), 553–576. https://doi.org/10.1306/12070404093
    [Google Scholar]
  20. Fitchen, W. M., Starcher, M., Buffler, R., & Wilde, G. (1995). Sequence stratigraphic framework and facies models of early Permian carbonate platform margins, Sierra Diablo, West Texas (Vol. 95–97, pp. 23–66). West Texas Geological Society Publication.
    [Google Scholar]
  21. Galloway, W. E., & Brown, L. F. (1972). Depositional systems and shelf‐slope relationships in upper Pennsylvanian rocks, north‐central Texas. Bureau of Economic Geology Report of Investigations 75, Austin, Texas, USA (p. 62).
    [Google Scholar]
  22. Galloway, W. E., & Brown, L. (1973). Depositional systems and shelf‐slope relations on cratonic basin margin, uppermost Pennsylvanian of north‐central Texas. AAPG Bulletin, 57(7), 1185–1218. https://doi.org/10.1306/83D90E85‐16C7‐11D7‐8645000102C1865D
    [Google Scholar]
  23. Galloway, W. E., Whiteaker, T. L., & Ganey‐Curry, P. (2011). History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin. Geosphere, 7(4), 938–973. https://doi.org/10.1130/GES00647.1
    [Google Scholar]
  24. Gao, Z., Perez, N. D., Miller, B., & Pope, M. C. (2020). Competing sediment sources during Paleozoic closure of the Marathon‐Ouachita remnant ocean basin. Geological Society of America Bulletin, 132(1–2), 3–16. https://doi.org/10.1130/B35201.1
    [Google Scholar]
  25. Goodbred, S. L.Jr., & Kuehl, S. A. (2000). Enormous Ganges‐Brahmaputra sediment discharge during strengthened early Holocene monsoon. Geology, 28(12), 1083–1086. https://doi.org/10.1130/0091‐7613(2000)28<1083:egsdds>2.0.co;2
    [Google Scholar]
  26. Hamlin, H. S. (2009). Ozona sandstone, Val Verde Basin, Texas: Synorogenic stratigraphy and depositional history in a Permian foredeep basin. AAPG Bulletin, 93(5), 573–594. https://doi.org/10.1306/01200908121
    [Google Scholar]
  27. Hamlin, H. S., & Baumgardner, R. W. (2012). Wolfberry (Wolfcampian‐Leonardian) deep‐water depositional systems in the Midland Basin: Stratigraphy, lithofacies, reservoirs, and source rocks. University of Texas at Austin, Bureau of Economic Geology Report of Investigations 277, Austin, Texas, USA (p. 62).
    [Google Scholar]
  28. Handford, C. R. (1980a). Facies patterns and depositional history of a Permian sabkha complex–Red Cave Formation, Texas Panhandle. University of Texas at Austin, Bureau of Economic Geology Geological Circular 80‐9, Austin, Texas, USA (p. 38).
    [Google Scholar]
  29. Handford, C. R. (1980b). Lower Permian facies of the Palo Duro Basin, Texas: Depositional systems, shelf‐margin evolution, paleogeography, and petroleum potential. University of Texas at Austin, Bureau of Economic Geology Report of Investigations 102, Austin, Texas, USA (p. 31).
    [Google Scholar]
  30. Handford, C. R. (1981). Sedimentology and genetic stratigraphy of Dean and Spraberry formations (Permian), Midland basin, Texas. AAPG Bulletin, 65(9), 1602–1616. https://doi.org/10.1306/03B5962A‐16D1‐11D7‐8645000102C1865D
    [Google Scholar]
  31. Hatcher, R. D., Tollo, R., Bartholomew, M., Hibbard, J., & Karabinos, P. (2010). The Appalachian orogen: A brief summary. In R. P.Tollo, M. J.Bartholomew, J. P.Hibbard, & P. M.Karabinos (Eds.), From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region (Vol. 206, pp. 1–19). Geological Society of America Memoir.
    [Google Scholar]
  32. Henderson, C. M., Davydov, V. I., Wardlaw, B. R., Gradstein, F. M., & Hammer, O. (2012). The Permian period. In F. M.Gradstein, J. G.Ogg, M. D.Schmitz, & G. M.Ogg (Eds.), The geologic time scale (pp. 653–679). Amsterdam: Elsevier.
    [Google Scholar]
  33. Hentz, T. F., & Ambrose, W. A. (2019). Lowstand deltas and incised valleys of the Tannehill Sandstone (Cisco Group) of the Southern Eastern Shelf of the Permian Basin, West Texas. GCAGS Transactions, 69(1), 97–110.
    [Google Scholar]
  34. Hentz, T. F., Ambrose, W. A., & Hamlin, H. S. (2017). Upper Pennsylvanian and Lower Permian shelf‐to‐basin facies architecture and trends, eastern shelf of the Southern Midland Basin, West Texas. University of Texas at Austin, Bureau of Economic Geology Report of Investigations 282, Austin, Texas, USA (p. 68).
    [Google Scholar]
  35. Hu, D., Böning, P., Köhler, C. M., Hillier, S., Pressling, N., Wan, S., Brumsack, H. J., & Clift, P. D. (2012). Deep sea records of the continental weathering and erosion response to East Asian monsoon intensification since 14ka in the South China Sea. Chemical Geology, 326–327, 1–18. https://doi.org/10.1016/j.chemgeo.2012.07.024
    [Google Scholar]
  36. Hurd, G. S., Kerans, C., Frost, E. L., Simo, J. A., & Janson, X. (2018). Sediment gravity‐flow deposits and three‐dimensional stratigraphic architectures of the linked Cutoff, upper Bone Spring, and upper Avalon system, Delaware Basin. AAPG Bulletin, 102(9), 1703–1737. https://doi.org/10.1306/02061817121
    [Google Scholar]
  37. Keppie, J. D., Dostal, J., Murphy, J. B., & Nance, R. D. (2008). Synthesis and tectonic interpretation of the westernmost Paleozoic Variscan orogen in southern Mexico: From rifted Rheic margin to active Pacific margin. Tectonophysics, 461(1), 277–290. https://doi.org/10.1016/j.tecto.2008.01.012
    [Google Scholar]
  38. Kerans, C., & Fitchen, W. M. (1995). Sequence hierarchy and facies architecture of a carbonate‐ramp system: San Andres Formation of Algerita escarpment and western Guadalupe Mountains, west Texas and New Mexico: University of Texas at Austin, Bureau of Economic Geology Report of Investigations 235, 86 pp.
  39. Kerans, C., & Kempter, K. A. (2002). Hierarchical stratigraphic analysis of a carbonate platform, Permian of the Guadalupe Mountains. In AAPG Datapages/Discovery Series, 5, CD‐ROM.
    [Google Scholar]
  40. Kerans, C., Lucia, F. J., & Senger, R. (1994). Integrated characterization of carbonate ramp reservoirs using Permian San Andres Formation outcrop analogs. AAPG Bulletin, 78(2), 181–216. https://doi.org/10.1306/BDFF905A‐1718‐11D7‐8645000102C1865D
    [Google Scholar]
  41. Kerans, C., & Tinker, S. W. (1999). Extrinsic stratigraphic controls on development of the Capitan reef complex. In SEPM Special Publication No. 6, 15–36.
    [Google Scholar]
  42. Kessler, J. L. P., Soreghan, G. S., & Wacker, H. J. (2001). Equatorial aridity in western Pangea: Lower permian loessite and dolomitic paleosols in northeastern New Mexico, USA. Journal of Sedimentary Research, 71(5), 817–832. https://doi.org/10.1306/2dc4096b‐0e47‐11d7‐8643000102c1865d
    [Google Scholar]
  43. King, P. B. (1948). Geology of the southern Guadalupe Mountains, Texas (Vol. 215). US Government Printing Office.
    [Google Scholar]
  44. Kluth, C. F., & Coney, P. J. (1981). Plate tectonics of the Ancestral Rocky Mountains. Geology, 9(1), 10–15. https://doi.org/10.1130/0091‐7613(1981)9<10:PTOTAR>2.0.CO;2
    [Google Scholar]
  45. Lawton, T., Blakey, R. C., Blakey, R., Stockli, D. F., & Liu, L. (in press). Late Palaeozoic (Late Mississippian–middle Permian) sediment provenance and dispersal in western equatorial Pangaea. Palaeogeography, Palaeoclimatology, Palaeoecology.
    [Google Scholar]
  46. Le Roy, P., Jorry, S., Jouet, G., Ehrhold, A., Michel, G., Gautier, V., & Guérin, C. (2019). Late Pleistocene evolution of the mixed siliciclastic and carbonate southwestern New Caledonia continental shelf/lagoon. Palaeogeography, Palaeoclimatology, Palaeoecology, 514, 502–521. https://doi.org/10.1016/j.palaeo.2018.10.014
    [Google Scholar]
  47. Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K., & Vernikovsky, V. (2008). Assembly, configuration, and break‐up history of Rodinia: A synthesis. Precambrian Research, 160(1), 179–210. https://doi.org/10.1016/j.precamres.2007.04.021
    [Google Scholar]
  48. Liu, L., & Stockli, D. F. (2020). U‐Pb ages of detrital zircons in lower Permian sandstone and siltstone of the Permian Basin, west Texas, USA: Evidence of dominant Gondwanan and peri‐Gondwanan sediment input to Laurentia. Geological Society of America Bulletin, 132(1–2), 245–262. https://doi.org/10.1130/b35119.1
    [Google Scholar]
  49. Mack, G. H., & Dinterman, P. A. (2002). Depositional environments and paleogeography of the Lower Permian (Leonardian) Yeso and correlative formations in New Mexico. The Mountain Geologist, 39, 75–88.
    [Google Scholar]
  50. Martens, U., Weber, B., & Valencia, V. A. (2010). U/Pb geochronology of Devonian and older Paleozoic beds in the southeastern Maya block, Central America: Its affinity with peri‐Gondwanan terranes. Geological Society of America Bulletin, 122(5–6), 815–829. https://doi.org/10.1130/b26405.1
    [Google Scholar]
  51. Mazzullo, S. J. (1982). Stratigraphy and depositional mosaics of lower Clear Fork and Wichita Groups (Permian), northern Midland Basin, Texas. AAPG Bulletin, 66(2), 210–227. https://doi.org/10.1306/03B59A67‐16D1‐11D7‐8645000102C1865D
    [Google Scholar]
  52. Mazzullo, S., Hipke, W., Wiedemeir, T., Wingate, T., Gaylord, M., & Reid, A. (1989). Dynamic stratigraphy of the Tubb and Dean formations (Early Permian), northern Midland Basin, Texas. West Texas Geological Society Bulletin, 29, 5–11.
    [Google Scholar]
  53. McGuire, P. R. (2017). U‐Pb detrital zircon signature of the Ouachita orogenic belt (M.S. thesis). (p. 87). Texas Christian University.
    [Google Scholar]
  54. Miller, R. P., & Heller, P. L. (1994). Depositional framework and controls on mixed carbonate‐siliciclastic gravity flows: Pennsylvanian‐Permian shelf to basin transect, south‐western Great Basin, USA. Sedimentology, 41(1), 1–20. https://doi.org/10.1111/j.1365‐3091.1994.tb01389.x
    [Google Scholar]
  55. Mount, J. F. (1984). Mixing of siliciclastic and carbonate sediments in shallow shelf environments. Geology, 12(7), 432–435. https://doi.org/10.1130/0091‐7613(1984)12<432:mosacs>2.0.co;2
    [Google Scholar]
  56. Nelson, K. D., Lillie, R. J., de Voogd, B., Brewer, J. A., Oliver, J. E., Kaufman, S., Brown, L., & Viele, G. W. (1982). Cocorp seismic reflection profiling in the Ouachita Mountains of western Arkansas: Geometry and geologic interpretation. Tectonics, 1(5), 413–430. https://doi.org/10.1029/TC001i005p00413
    [Google Scholar]
  57. Nie, J., Ruetenik, G., Gallagher, K., Hoke, G., Garzione, C. N., Wang, W., Stockli, D., Hu, X., Wang, Z., Wang, Y., Stevens, T., Danišík, M., & Liu, S. (2018). Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation. Nature Geoscience, 11(12), 944–948. https://doi.org/10.1038/s41561‐018‐0244‐z
    [Google Scholar]
  58. O'Grady, D. B., Syvitski, J. P. M., Pratson, L. F., & Sarg, J. F. (2000). Categorizing the morphologic variability of siliciclastic passive continental margins. Geology, 28(3), 207–210. https://doi.org/10.1130/0091‐7613(2000)28<207:ctmvos>2.0.co;2
    [Google Scholar]
  59. Olariu, C., & Steel, R. J. (2009). Influence of point‐source sediment‐supply on modern shelf‐slope morphology: Implications for interpretation of ancient shelf margins. Basin Research, 21(5), 484–501. https://doi.org/10.1111/j.1365‐2117.2009.00420.x
    [Google Scholar]
  60. Palacios Albujar, F. C. (2018). Stratigraphic framework and incised‐valley systems (lower Hope sandstone) of the Upper Pennsylvanian lower Cisco Group, southern Eastern Shelf of the Permian Basin, West Texas (Master thesis) (p. 111). University of Texas at Austin, Austin, Texas, USA.
    [Google Scholar]
  61. Porębski, S. J., & Steel, R. J. (2003). Shelf‐margin deltas: Their stratigraphic significance and relation to deepwater sands. Earth‐Science Reviews, 62(3), 283–326. https://doi.org/10.1016/S0012‐8252(02)00161‐7
    [Google Scholar]
  62. Rankey, E. C., & Lehrmann, D. J. (1996). Anatomy and origin of toplap in a mixed carbonate‐clastic system, Seven Rivers Formation (Permian, Guadalupian), Guadalupe Mountains, New Mexico, USA. Sedimentology, 43(5), 807–826. https://doi.org/10.1111/j.1365‐3091.1996.tb01504.x
    [Google Scholar]
  63. Ross, C. A. (1979). Late Paleozoic collision of North and South America. Geology, 7(1), 41–44. https://doi.org/10.1130/0091‐7613(1979)7<41:LPCONA>2.0.CO;2
    [Google Scholar]
  64. Ross, C. A. (1986). Paleozoic evolution of southern margin of Permian basin. Geological Society of America Bulletin, 97(5), 536–554. https://doi.org/10.1130/0016‐7606(1986)97<536:peosmo>2.0.co;2
    [Google Scholar]
  65. Ross, W. C., Halliwell, B. A., May, J. A., Watts, D. E., & Syvitski, J. P. M. (1994). Slope readjustment: A new model for the development of submarine fans and aprons. Geology, 22(6), 511–514. https://doi.org/10.1130/0091‐7613(1994)022<0511:SRANMF>2.3.CO;2
    [Google Scholar]
  66. Ruppel, S. C., & Ariza, E. (2002). Cycle and sequence stratigraphy of the Clear Fork reservoir at South Wasson field: Gaines County, Texas. In Integrated outcrop and subsurface studies of the interwell environment of carbonate reservoirs: Clear Fork (Leonardian‐Age) reservoirs, West Texas and New Mexico, 59–93.
    [Google Scholar]
  67. Ruppel, S. C., & Ward, W. B. (2013). Outcrop‐based characterization of the Leonardian carbonate platform in west Texas: Implications for sequence‐stratigraphic styles in the Lower Permian. AAPG Bulletin, 97(2), 223–250. https://doi.org/10.1306/05311212013
    [Google Scholar]
  68. Sarg, J. F. (1989). Middle–Late Permian depositional sequences, Permian basin, west Texas and New Mexico. In A. W.Bally (Ed.), Atlas of seismic stratigraphy: American Association of Petroleum Geologists Studies in Geology 27 (Vol. 3, pp. 140–155).
    [Google Scholar]
  69. Sharman, G. R., Covault, J. A., Stockli, D. F., Wroblewski, A.‐F.‐J., & Bush, M. A. (2017). Early Cenozoic drainage reorganization of the United States Western Interior‐Gulf of Mexico sediment routing system. Geology, 45(2), 187–190. https://doi.org/10.1130/G38765.1
    [Google Scholar]
  70. Sharman, G. R., Sharman, J. P., & Sylvester, Z. (2018). detritalPy: A Python‐based toolset for visualizing and analysing detrital geo‐thermochronologic data. The Depositional Record, 4(2), 202–215. https://doi.org/10.1002/dep2.45
    [Google Scholar]
  71. Sharman, G. R., Sylvester, Z., & Covault, J. A. (2019). Conversion of tectonic and climatic forcings into records of sediment supply and provenance. Scientific Reports, 9(1), 1–7. https://doi.org/10.1038/s41598‐019‐39754‐6
    [Google Scholar]
  72. Silver, B. A., & Todd, R. G. (1969). Permian cyclic strata, northern Midland and Delaware basins, west Texas and southeastern New Mexico. AAPG Bulletin, 53(11), 2223–2251. https://doi.org/10.1306/5D25C94D‐16C1‐11D7‐8645000102C1865D
    [Google Scholar]
  73. Sinclair, S., Crespo, L., Waite, L., Smith, K., & Leslie, C. (2017). Resource assessment in the northern Midland Basin: Detailed mapping of Late Pennsylvanian, Wolfcampian, and Early Leonardian margins and flooding surfaces using well logs and seismic data: Proceedings of the 5th Unconventional Resources Technology Conference, Austin, Texas, July 24–26, pp. 2781–2793. https://doi.org/10.15530/urtec‐2017‐2692102
  74. Soreghan, G. S., & Soreghan, M. J. (2013). Tracing clastic delivery to the Permian Delaware Basin, USA: Implications for paleogeography and circulation in westernmost equatorial Pangea. Journal of Sedimentary Research, 83(9), 786–802. https://doi.org/10.2110/jsr.2013.63
    [Google Scholar]
  75. Soreghan, G. S., Soreghan, M. J., & Hamilton, M. A. (2008). Origin and significance of loess in late Paleozoic western Pangaea: A record of tropical cold?Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3), 234–259. https://doi.org/10.1016/j.palaeo.2008.03.050
    [Google Scholar]
  76. Soreghan, M. J., & Soreghan, G. S. (2007). Whole‐rock geochemistry of upper Paleozoic loessite, western Pangaea: Implications for paleo‐atmospheric circulation. Earth and Planetary Science Letters, 255(1), 117–132. https://doi.org/10.1016/j.epsl.2006.12.010
    [Google Scholar]
  77. Soreghan, M. J., Soreghan, G. S., & Hamilton, M. A. (2002). Paleowinds inferred from detrital‐zircon geochronology of upper Paleozoic loessite, western equatorial Pangea. Geology, 30(8), 695–698. https://doi.org/10.1130/0091‐7613(2002)030%3c0695:PIFDZG%3e2.0.CO;2
    [Google Scholar]
  78. Soreghan, M., Swift, M., & Soreghan, G. (2018). Provenance of Permian eolian and related strata in the North American midcontinent: Tectonic and climatic controls on sediment dispersal in western tropical Pangea. In R. V.Ingersoll, T. F.Lawton, & S. A.Graham (Eds.), Tectonics, sedimentary basins, and provenance: A celebration of William R. Dickinson’s Career. Geological Society of America Special Paper 540 (pp. 661–687).
    [Google Scholar]
  79. Soto‐Kerans, G. M., Stockli, D. F., Janson, X., Lawton, T. F., & Covault, J. A. (2020). Orogen proximal sedimentation in the Permian foreland basin. Geosphere, 16(2), 567–593. https://doi.org/10.1130/GES02108.1
    [Google Scholar]
  80. Steel, R. J., Olariu, C., Zhang, J., & Chen, S. (2020). What is the topset of a shelf‐margin prism?Basin Research, 32(2), 263–278. https://doi.org/10.1111/bre.12394
    [Google Scholar]
  81. Sun, Y., Yan, Y., Nie, J., Li, G., Shi, Z., Qiang, X., Chang, H., & An, Z. (2020). Source‐to‐sink fluctuations of Asian aeolian deposits since the late Oligocene. Earth‐Science Reviews, 200, 102963. https://doi.org/10.1016/j.earscirev.2019.102963
    [Google Scholar]
  82. Tcherepanov, E. N., Droxler, A. W., Lapointe, P., Dickens, G. R., Bentley, S. J., Beaufort, L., Peterson, L. C., Daniell, J., & Opdyke, B. N. (2008). Neogene evolution of the mixed carbonate‐siliciclastic system in the Gulf of Papua, Papua New Guinea. Journal of Geophysical Research: Earth Surface, 113(F1), F01S21. https://doi.org/10.1029/2006JF000684
    [Google Scholar]
  83. Tcherepanov, E. N., Droxler, A. W., Lapointe, P., Mohn, K., & Larsen, O. A. (2010). Siliciclastic influx and burial of the Cenozoic carbonate system in the Gulf of Papua. Marine and Petroleum Geology, 27(2), 533–554. https://doi.org/10.1016/j.marpetgeo.2009.09.002
    [Google Scholar]
  84. Thomas, W. A., Gehrels, G. E., Greb, S. F., Nadon, G. C., Satkoski, A. M., & Romero, M. C. (2017). Detrital zircons and sediment dispersal in the Appalachian foreland. Geosphere, 13(6), 2206–2230. https://doi.org/10.1130/ges01525.1
    [Google Scholar]
  85. Tyler, N., Ghoston, J., & Guevara, E. (1997). Basin morphological controls on submarine‐fan depositional trends: Spraberry sandstone, Permian Basin, Texas (p. 43): University of Texas at Austin, Bureau of Economic Geology, Geologic Circular 97‐6.
    [Google Scholar]
  86. Van Siclen, D., & Merriam, D. (1964). Depositional topography in relation to cyclic sedimentation. In D. F.Merriam (Ed.), Symposium on cyclic sedimentation (Vol. 169, pp. 533–539). Kansas Geological Survey Bulletin.
    [Google Scholar]
  87. Vieira, F. V., Bastos, A. C., Quaresma, V. S., Leite, M. D., Costa, A., Oliveira, K. S. S., Dalvi, C. F., Bahia, R. G., Holz, V. L., Moura, R. L., & Amado Filho, G. M. (2019). Along‐shelf changes in mixed carbonate‐siliciclastic sedimentation patterns. Continental Shelf Research, 187, 103964. https://doi.org/10.1016/j.csr.2019.103964
    [Google Scholar]
  88. Viele, G., & Thomas, W. (1989). Tectonic synthesis of the Ouachita orogenic belt. In R. D.Hatcher, W. A.Thomas, & G. W.Viele (Eds.), The Appalachian‐Ouachita orogenic belt in the United States (Vol. F–2, pp. 695–728). Geological Society of America, Geology of North America.
    [Google Scholar]
  89. Waite, L., Fan, M., Collins, D., Gehrels, G., & Stern, R. J. (2020). Detrital zircon provenance evidence for an early Permian longitudinal river flowing into the Midland Basin of west Texas. International Geology Review, 62(9), 1–21. https://doi.org/10.1080/00206814.2020.1756930
    [Google Scholar]
  90. Walsh, J. P., & Nittrouer, C. A. (2004). Mangrove‐bank sedimentation in a mesotidal environment with large sediment supply, Gulf of Papua. Marine Geology, 208(2), 225–248. https://doi.org/10.1016/j.margeo.2004.04.010
    [Google Scholar]
  91. Walsh, J. P., Nittrouer, C. A., Palinkas, C. M., Ogston, A. S., Sternberg, R. W., & Brunskill, G. J. (2004). Clinoform mechanics in the Gulf of Papua, New Guinea. Continental Shelf Research, 24(19), 2487–2510. https://doi.org/10.1016/j.csr.2004.07.019
    [Google Scholar]
  92. Wan, S., Li, A., Clift, P. D., & Jiang, H. (2006). Development of the East Asian summer monsoon: Evidence from the sediment record in the South China Sea since 8.5 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 241(1), 139–159. https://doi.org/10.1016/j.palaeo.2006.06.013
    [Google Scholar]
  93. Weber, B., Schaaf, P., Valencia, V. A., Iriondo, A., & Ortega‐Gutiérrez, F. (2006). Provenance ages of late Paleozoic sandstones (Santa Rosa Formation) from the Maya Block, SE México: Implications on the tectonic evolution of western Pangea. Revista Mexicana De Ciencias Geológicas, 23(3), 262–276.
    [Google Scholar]
  94. Weber, B., Valencia, V. A., Schaaf, P., Pompa‐Mera, V., & Ruiz, J. (2008). Significance of provenance ages from the Chiapas Massif Complex (Southeastern Mexico): Redefining the Paleozoic basement of the Maya Block and its evolution in a peri‐Gondwanan realm. The Journal of Geology, 116(6), 619–639. https://doi.org/10.1086/591994
    [Google Scholar]
  95. Wright, W. R. (2011). Pennsylvanian paleodepositional evolution of the greater Permian Basin, Texas and New Mexico: Depositional systems and hydrocarbon reservoir analysis. AAPG Bulletin, 95(9), 1525–1555. https://doi.org/10.1306/01031110127
    [Google Scholar]
  96. Yang, K.‐M., & Dorobek, S. L. (1995). The Permian Basin of west Texas and New Mexico: Tectonic history of a “composite” foreland basin and its effects on stratigraphic development. Stratigraphic Evolution of Foreland Basins: SEPM Special Publication, 52, 149–174.
    [Google Scholar]
  97. Ye, H., Royden, L., Burchfiel, C., & Schuepbach, M. (1996). Late Paleozoic deformation of interior North America: The greater ancestral Rocky Mountains. AAPG Bulletin, 80(9), 1397–1432. https://doi.org/10.1306/64ED9A4C‐1724‐11D7‐8645000102C1865D
    [Google Scholar]
  98. Yose, L. A., & Heller, P. L. (1989). Sea‐level control of mixed‐carbonate‐siliciclastic, gravity‐flow deposition: Lower part of the Keeler Canyon Formation (Pennsylvanian), southeastern California. Geological Society of America Bulletin, 101(3), 427–439. https://doi.org/10.1130/0016‐7606(1989)101<0427:SLCOMC>2.3.CO;2
    [Google Scholar]
  99. Zambito, J. J., & Benison, K. C. (2013). Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite. Geology, 41(5), 587–590. https://doi.org/10.1130/G34078.1
    [Google Scholar]
  100. Zecchin, M., & Catuneanu, O. (2017). High‐resolution sequence stratigraphy of clastic shelves VI: Mixed siliciclastic‐carbonate systems. Marine and Petroleum Geology, 88, 712–723. https://doi.org/10.1016/j.marpetgeo.2017.09.012
    [Google Scholar]
  101. Zhang, J., Covault, J., Pyrcz, M., Sharman, G., Carvajal, C., & Milliken, K. (2018). Quantifying sediment supply to continental margins: Application to the Paleogene Wilcox Group, Gulf of Mexico. AAPG Bulletin, 102(9), 1685–1702. https://doi.org/10.1306/01081817308
    [Google Scholar]
  102. Zhang, J., Kim, W., Olariu, C., & Steel, R. (2019). Accommodation‐ versus supply‐dominated systems for sediment partitioning to deep water. Geology, 47(5), 419–422. https://doi.org/10.1130/g45730.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12557
Loading
/content/journals/10.1111/bre.12557
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error