1887
Volume 33, Issue 4
  • E-ISSN: 1365-2117

Abstract

[Abstract

This work examines the mode of basal to substrate interaction, and flow dynamics of recurrent mass wasting events from a high‐quality 3D seismic reflection data. The Taranaki Basin, offshore New Zealand offers a unique environment to understand these processes, as the Neogene succession of the area preserves vertical stacks of mass transport deposits (MTDs) from the Miocene to Pliocene. The approach used here combines seismic interpretation of the basal shear zones (BSZs) of the MTD, seismic attribute analyses and colour rendering of both RMS amplitude and energy gradient maps. The five mass transport deposits are characterized into blocky‐MTDs consisting of moderate to high amplitude and variably deformed rafted blocks, and chaotic masses composed of slides and debris flow deposits. Classic examples of kinematic indicators at the BSZ of the MTDs akin to free‐slip flow processes such as liquefaction, hydroplaning and shear wetting are convolute flow fabrics and basal shear zone cut‐offs (fractures). Striations, grooves, mega scours, U‐ and V‐shaped scours, substrate erosion, monkey fingers (peel backs), substrate deformation and shearing are associated with no‐slip flows, suggesting that the mass movements efficiently interacted with the underlying substrate. Importantly, the intersection of different kinematic indicators along the BSZs of all the MTDs suggests an overlap of flow regimes, flow overprinting and transformation during mass movement. Although basal tooling by rafted blocks seems dominant during remobilization of the blocky MTDs, the presence of other kinematic indicators signifies combined mechanisms involving both free‐flow and no‐slip processes during their translation. The classification scheme evaluated here innovatively shows mass movements habitually occur through a combination of flow mechanisms rather than an independent flow regime.

,

Panel a: Conceptual classification of mass movements into free‐flow and no‐slip flow (redrawn after Sobiesiak et al., 2018). Panel b: Kinematic indicators observed in the study area include variably oriented convolute fabrics, basal shear zone fractures (cut‐offs or cracks), striations, grooves and monkey fingers (responsible for peeling back of the BSZs). Panel c‐ Classification of the five interpreted mass transport deposits into those with free flow and no‐slip flow. The BSZ for MTD 1, 3, 4 and 5 is marked using blue, green, pink and orange lines.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12560
2021-07-17
2024-04-27
Loading full text...

Full text loading...

References

  1. Alsop, G. I., & Marco, S. (2012). A large‐scale radial pattern of seismogenic slumping towards the Dead Sea Basin. Journal of the Geological Society, 169(1), 99–110.
    [Google Scholar]
  2. Alsop, G. I., & Marco, S. (2014). Fold and fabric relationships in temporally and spatially evolving slump systems: A multi‐cell flow model. Journal of Structural Geology, 63, 27–49.
    [Google Scholar]
  3. Alves, T. M. (2015). Submarine slide blocks and associated soft‐sediment deformation in deep‐water basins: A review. Marine and Petroleum Geology, 67, 262–285. https://doi.org/10.1016/j.marpetgeo.2015.05.010
    [Google Scholar]
  4. Alves, T. M., & Lourenço, S. D. N. (2010). Geomorphologic features related to gravitational collapse: Submarine landsliding to lateral spreading on a Late Miocene‐Quaternary slope (SE Crete, eastern Mediterranean). Geomorphology, 123, 13–33. https://doi.org/10.1016/j.geomorph.2010.04.030
    [Google Scholar]
  5. Alves, T. M., Strasser, M., & Moore, G. F. (2014). Erosional features as indicators of thrust fault activity (Nankai Trough, Japan). Marine Geology, 356, 5–18.
    [Google Scholar]
  6. Bhattacharya, H. N., & Bandyopadhyay, S. (1998). Seismites in a Proterozoic tidal succession, Singhbhum, Bihar, India. Sedimentary Geology, 119, 239–252. https://doi.org/10.1016/S0037‐0738(98)00051‐7
    [Google Scholar]
  7. Bischoff, A., Barrier, A., Beggs, M., Nicol, A., Cole, J., & Sahoo, T. (2020). Magmatic and tectonic interactions revealed by buried volcanoes in Te Riu‐a‐Māui/Zealandia sedimentary basins. New Zealand Journal of Geology and Geophysics, 63(4), 378–401.
    [Google Scholar]
  8. Brown, A. R. (2004). Interpretation of three‐dimensional seismic data (6th ed.). American Association of Petroleum Geologists (AAPG).
    [Google Scholar]
  9. Bull, S., Arnot, M., Browne, G., Crundwell, M., Nicol, A., & Strachan, L. (2019). Neogene and quaternary mass‐transport deposits from the Northern Taranaki Basin (North Island, New Zealand): Morphologies, transportation processes, and depositional controls. In K.Ogata, A.Festa, & G. A.Pini (Eds.), Geophysical monograph series (pp. 171–180). Wiley. https://doi.org/10.1002/9781119500513.ch11
    [Google Scholar]
  10. Bull, S., Browne, G. H., Arnot, M. J., & Strachan, L. J. (2020). Influence of mass transport deposit (MTD) surface topography on deep‐water deposition: An example from a predominantly fine‐grained continental margin, New Zealand. Geological Society, London, Special Publications, 500, 147–171. https://doi.org/10.1144/SP500‐2019‐192
    [Google Scholar]
  11. Bull, S., Cartwright, J., & Huuse, M. (2009). A review of kinematic indicators from mass‐transport complexes using 3D seismic data. Marine and Petroleum Geology, 26, 1132–1151. https://doi.org/10.1016/j.marpetgeo.2008.09.011
    [Google Scholar]
  12. Callot, P., Sempere, T., Odonne, F., & Robert, E. (2008). Giant submarine collapse of a carbonate platform at the Turonian‐Coniacian transition: The Ayabacas Formation, southern Peru: Cretaceous giant submarine collapse in southern Peru. Basin Research, 20, 333–357. https://doi.org/10.1111/j.1365‐2117.2008.00358.x
    [Google Scholar]
  13. Cardona, S., Wood, L. J., Day‐Stirrat, R. J., & Moscardelli, L. (2016). Fabric development and pore‐throat reduction in a mass‐transport deposit in the Jubilee Gas Field, Eastern Gulf of Mexico: Consequences for the sealing capacity of MTDs. In D.CMosher, CShipp, LMoscardelli, CBaxter, HLee, & RUrgeles (Eds.), Submarine mass movements and their consequences (pp. 27–37). Springer.
    [Google Scholar]
  14. Cardona, S., Wood, L. J., Dugan, B., Jobe, Z., & Strachan, L. J. (2020). Characterization of the Rapanui mass‐transport deposit and the basal shear zone: Mount Messenger Formation, Taranaki Basin, New Zealand. Sedimentology, 67(4), 1–38.
    [Google Scholar]
  15. De Blasio, F. V., & Elverhøi, A. (2010). Properties of mass‐transport deposits as inferred from dynamic modelling of subaqueous mass wasting: A short review. In CShipp, PWeimer, & H. W.Possamentier (Eds.), Mass‐transport deposits in deepwater settings. SEPM Special Publication.
    [Google Scholar]
  16. De Blasio, F. V., & Elverhøi, A. (2011). Properties of mass‐transport deposits as inferred from dynamic modeling of subaqueous mass wasting: A short review. In Mass transport deposits in deepwater settings: SEPM Spec. Pub. (Vol. 96, pp. 499–508).
    [Google Scholar]
  17. De Blasio, F. V., Elverhøi, A., Issler, D., Harbitz, C. B., Bryn, P., & Lien, R. (2005). On the dynamics of subaqueous clay rich gravity mass flows—The giant Storegga slide, Norway. Marine and Petroleum Geology, 22, 179–186.
    [Google Scholar]
  18. De Blasio, F. V., Engvik, L. E., & Elverhøi, A. (2006). Sliding of outrunner blocks from submarine landslides. Geophysical Research Letters, 33(L06614), 1–4. https://doi.org/10.1029/2005GL025165
    [Google Scholar]
  19. Dott, R. H. (1963). Dynamics of subaqueous gravity depositional processes. AAPG Bulletin, 47, 104–128.
    [Google Scholar]
  20. Dunlap, D. B., Wood, L. J., Weisenberger, C., & Jabour, H. (2010). Seismic geomorphology of offshore Morocco's east margin, Safi Haute Mer Area. AAPG Bulletin, 94(5), 615–642.
    [Google Scholar]
  21. Eruteya, O. E., Niyazi, Y., Omosanya, K. O., Ierodiaconou, D., & Moscariello, A. (2020). Evolution and morphology of rafted blocks in an ancient deepwater mass transport complex (Exmouth Plateau, offshore NW Australia). Interpretation, 8(4), 1–67.
    [Google Scholar]
  22. Eruteya, O. E., Safadi, M., Waldmann, N., Makovsky, Y., & Ben‐Avraham, Z. (2016). Seismic geomorphology of the Israel slump complex in the Levant basin (SE Mediterranean). In Submarine mass movements and their consequences, advances in natural and technological hazards research (pp. 39–47). Springer International Publishing.
    [Google Scholar]
  23. Fallgatter, C., Kneller, B., Paim, P. S. G., & Milana, J. P. (2017). Transformation, partitioning and flow‐deposit interactions during the run‐out of megaflows. Sedimentology, 64, 359–387. https://doi.org/10.1111/sed.12307
    [Google Scholar]
  24. Festa, A., Ogata, K., Pini, G. A., Dilek, Y., & Alonso, J. L. (2016). Origin and significance of olistostromes in the evolution of orogenic belts: A global synthesis. Gondwana Research, 39, 180–203.
    [Google Scholar]
  25. Fossen, H., & Cavalcante, G. C. G. (2017). Shear zones–A review. Earth Science Reviews, 171, 434–455.
    [Google Scholar]
  26. Frey Martinez, J., Cartwright, J., & Hall, B. (2005). 3D seismic interpretation of slump complexes: Examples from the continental margin of Israel. Basin Research, 17, 83–108. https://doi.org/10.1111/j.1365‐2117.2005.00255.x
    [Google Scholar]
  27. Gamberi, F., Rovere, M., & Marani, M. (2011). Mass‐transport complex evolution in a tectonically active margin (Gioia Basin, Southeastern Tyrrhenian Sea). Marine Geology, 279, 98–110.
    [Google Scholar]
  28. Gamboa, D., Alves, T., & Cartwright, J. (2011). Distribution and characterization of failed (mega)blocks along salt ridges, southeast Brazil: Implications for vertical fluid flow on continental margins. Journal of Geophysical Research, 116(B08103), 1–20. https://doi.org/10.1029/2011JB008357
    [Google Scholar]
  29. Gamboa, D., Alves, T., Cartwright, J., & Terrinha, P. (2010). MTD distribution on a ‘passive’ continental margin: The Espírito Santo Basin (SE Brazil) during the Palaeogene. Marine and Petroleum Geology, 27, 1311–1324. https://doi.org/10.1016/j.marpetgeo.2010.05.008
    [Google Scholar]
  30. Gawthorpe, R. L., & Clemmey, H. (1985). Geometry of submarine slides in the Bowland Basin (Dinantian) and their relation to debris flows. Journal of the Geological Society, 142, 555–565.
    [Google Scholar]
  31. Gee, M. J. R., Gawthorpe, R. L., & Friedman, J. S. (2006). Triggering and evolution of a giant submarine landslide, offshore Angola, revealed by 3D seismic stratigraphy and geomorphology. Journal of Sedimentary Research, 76, 9–19.
    [Google Scholar]
  32. Gee, M. J. R., Gawthorpe, R. L., & Friedmann, J. S. (2005). Giant striations at the base of a submarine landslide. Marine Geology, 214, 287–294. https://doi.org/10.1016/j.margeo.2004.09.003
    [Google Scholar]
  33. Giba, M., Nicol, A., & Walsh, J. J. (2010). Evolution of faulting and volcanism in a back‐arc basin and its implications for subduction processes. Tectonics, 29(TC4020), 1–18. https://doi.org/10.1029/2009TC002634
    [Google Scholar]
  34. Hansen, R. J., & Kamp, P. J. J. (2004). Late Miocene to early Pliocene stratigraphic record in northern Taranaki Basin: Condensed sedimentation ahead of Northern Graben extension and progradation of the modern continental margin. New Zealand Journal of Geology and Geophysics, 47, 645–662. https://doi.org/10.1080/00288306.2004.9515081
    [Google Scholar]
  35. Higgs, K. E., King, P. R., Raine, J. I., Sykes, R., Browne, G. H., Crouch, E. M., & Baur, J. R. (2012). Sequence stratigraphy and controls on reservoir sandstone distribution in an Eocene marginal marine‐coastal plain fairway, Taranaki Basin, New Zealand. Marine and Petroleum Geology, 32, 110–137. https://doi.org/10.1016/j.marpetgeo.2011.12.001
    [Google Scholar]
  36. Holt, W. E., & Stern, T. A. (1994). Subduction, platform subsidence, and foreland thrust loading: The late Tertiary development of Taranaki Basin, New Zealand. Tectonics, 13, 1068–1092. https://doi.org/10.1029/94TC00454
    [Google Scholar]
  37. Ilstad, T., De Blasio, F. V., Elverhøi, A., Harbitz, C. B., Engvik, L. E., Longva, O., & Marr, J. G. (2004). On the frontal dynamics and morphology of submarine debris flows. Marine Geology, 213, 481–497. https://doi.org/10.1016/j.margeo.2004.10.020
    [Google Scholar]
  38. Jackson, C. A. (2011). Three‐dimensional seismic analysis of megaclast deformation within a mass transport deposit; implications for debris flow kinematics. Geology, 39(3), 203–206. https://doi.org/10.1130/G31767.1
    [Google Scholar]
  39. King, P. R., Naish, T. R., Browne, G. H., Field, B. D., & Edbrooke, S. W. (2011). Cretaceous to recent sedimentary patterns in New Zealand. Digitally remastered version (CD) (1st ed.). GNS Science. Institute of Geological & Nuclear Sciences.
    [Google Scholar]
  40. King, P. R., & Thrasher, G. P. (1996). Cretaceous‐cenozoic geology and petroleum systems of the Taranaki Basin, New Zealand. Institute of Geological & Nuclear Sciences. Monograph 13.
    [Google Scholar]
  41. King, P. R., Thrasher, G. P., Bland, K. J., Carthew, P., D’Cruz, D., Griffin, A. G., Jones, C. M., & Strogen, D. P. (2010). Cretaceous‐Cenozoic geology and petroleum systems of the Taranaki Basin, New Zealand (1st ed.). GNS Science. Institute of Geological & Nuclear Sciences.
    [Google Scholar]
  42. Kneller, B., Dykstra, M., Fairweather, L., & Milana, J. P. (2016). Mass‐transport and slope accommodation: Implications for turbidite sandstone reservoirs. AAPG Bulletin, 100, 213–235. https://doi.org/10.1306/09011514210
    [Google Scholar]
  43. Knox, G. J. (1982). Taranaki Basin, structural style and tectonic setting. New Zealand Journal of Geology and Geophysics, 25, 125–140. https://doi.org/10.1080/00288306.1982.10421405
    [Google Scholar]
  44. Kumar, P. C., Alves, T., & Sain, K. (2021). Forced folding in the Kora Volcanic Complex, New Zealand: A case study of relevance to the production of hydrocarbons and geothermal energy. Geothermics, 89(101965), 1–17.
    [Google Scholar]
  45. Kumar, P. C., Kamal’deen, O. O., Alves, T. M., & Sain, K. (2019). A neural network approach for elucidating fluid leakage along hard‐linked normal faults. Marine and Petroleum Geology, 110, 518–538.
    [Google Scholar]
  46. Kumar, P. C., Omosanya, K. O., & Sain, K. (2019). Sill Cube: An automated approach for the interpretation of magmatic sill complexes on seismic reflection data. Marine and Petroleum Geology, 100, 60–84.
    [Google Scholar]
  47. Kumar, P. C., & Sain, K. (2018). Attribute amalgamation‐aiding interpretation of faults from seismic data: An example from Waitara 3D prospect in Taranaki basin off New Zealand. The Journal of Applied Geophysics, 159, 52–68.
    [Google Scholar]
  48. Laberg, J. S., & Vorren, T. O. (2000). The Trænadjupet Slide, offshore Norway ‐ Morphology, evacuation and triggering mechanisms. Marine Geology, 171, 95–114.
    [Google Scholar]
  49. Li, W., Alves, T. M., Rebesco, M., Sun, J., Li, J., Li, S., & Wu, S. (2020). The Baiyun Slide Complex, South China Sea: A modern example of slope instability controlling submarine‐channel incision on continental slopes. Marine and Petroleum Geology, 114, 104231. https://doi.org/10.1016/j.marpetgeo.2020.104231
    [Google Scholar]
  50. Lowe, D. R. (1976). Subaqueous liquefied and fluidized sediment flows and their deposits. Sedimentology, 23(3), 285–308.
    [Google Scholar]
  51. Lucente, C. C., & Pini, G. A. (2003). Anatomy and emplacement mechanism of a large submarine slide within a Miocene foredeep in the northern Apennines, Italy: A field perspective. American Journal of Science, 303, 565–602.
    [Google Scholar]
  52. Macdonald, D. I., Moncrieff, A. C., & Butterworth, P. J. (1993). Giant slide deposits from a Mesozoic fore‐arc basin, Alexander Island, Antarctica. Geology, 21(11), 1047–1050.
    [Google Scholar]
  53. Maltman, A. J., & Bolton, A. (2003). How sediments become mobilized. Geological Society, London, Special Publications, 216(1), 9–20.
    [Google Scholar]
  54. Martinsen, O. J. (1994). Mass movements. In A.Maltman (Ed.), The geological deformation of sediments (pp. 127–165). Chapman and Hall.
    [Google Scholar]
  55. Masson, D. G., Huggett, Q. J., & Brunsden, D. (1993). The surface texture of the Saharan debris flow deposit and some speculations on submarine debris flow processes. Sedimentology, 40(3), 583–598.
    [Google Scholar]
  56. Mayall, M., Jones, E., & Casey, M. (2006). Turbidite channel reservoirs—Key elements in facies prediction and effective development. Marine and Petroleum Geology, 23, 821–841. https://doi.org/10.1016/j.marpetgeo.2006.08.001
    [Google Scholar]
  57. Mc Gilvery, T. A., & Cook, D. L. (2003). The influence of local gradients on accommodation space and linked depositional elements across a stepped slope profile, offshore Brunei. In H. H.Roberts, N. C.Rosen, R. H.Fillon, & J. B.Anderson (Eds.), Shelf margin deltas and linked down slope petroleum systems: Global significance and future exploration potential: Gulf coast section. Presented at the SEPM 23rd Annual Research Conference (pp. 387–419).
    [Google Scholar]
  58. McHargue, T., Pyrcz, M. J., Sullivan, M. D., Clark, J. D., Fildani, A., Romans, B. W., Covault, J. A., Levy, M., Posamentier, H. W., & Drinkwater, N. J. (2011). Architecture of turbidite channel systems on the continental slope: Patterns and predictions. Marine and Petroleum Geology, Thematic Set on stratigraphic evolution of deep‐water architecture, 28, 728–743. https://doi.org/10.1016/j.marpetgeo.2010.07.008
    [Google Scholar]
  59. Mohrig, D., Ellis, C., Parker, G., Whipple, K. X., & Hondzo, M. (1998). Hydroplaning of subaqueous debris flows. GSA Bulletin, 110, 387–394. https://doi.org/10.1130/0016‐7606(1998)110<0387:HOSDF>2.3.CO;2
    [Google Scholar]
  60. Mohrig, D., Elverhøi, A., & Parker, G. (1999). Experiments on the relative mobility of muddy subaqueous and subaerial debris flows, and their capacity to remobilize antecedent deposits. Marine Geology, 154, 117–129. https://doi.org/10.1016/S0025‐3227(98)00107‐8
    [Google Scholar]
  61. Moscardelli, L., & Wood, L. (2008). New classification system for mass transport complexes in offshore Trinidad. Basin Research, 20(1), 73–98.
    [Google Scholar]
  62. Moscardelli, L., & Wood, L. (2015). Morphometry of mass‐transport deposits as a predictive tool. Geological Society of America Bulletin, 128(1–2), 47–80.
    [Google Scholar]
  63. Moscardelli, L., Wood, L., & Mann, P. (2006). Mass‐transport complexes and associated processes in the offshore area of Trinidad and Venezuela. AAPG Bulletin, 90, 1059–1088. https://doi.org/10.1306/02210605052
    [Google Scholar]
  64. Nissen, S. E., Haskell, N. L., Steiner, C. T., & Coterill, K. L. (1999). Debris flow outrunner blocks, glide tracks, and pressure ridges identified on the Nigerian continental slope using 3‐D seismic coherency. The Leading Edge, 18, 595–599. https://doi.org/10.1190/1.1438343
    [Google Scholar]
  65. Nugraha, H. D., Jackson, C.‐A.‐L., Johnson, H., & Hodgson, D. M. (2020). Evolution of flow cells within a mass‐transport complex: Insights from the Gorgon Slide, offshore NW Australia (preprint). EarthArXiv. https://doi.org/10.31223/osf.io/zswe7
    [Google Scholar]
  66. Nwoko, J., Kane, I., & Huuse, M. (2020a). Megaclasts within mass‐transport deposits: Their origin, characteristics and effect on substrates and succeeding flows. Geological Society, London, Special Publications, 500, 515–530. https://doi.org/10.1144/SP500‐2019‐146
    [Google Scholar]
  67. Nwoko, J., Kane, I., & Huuse, M. (2020b). Mass transport deposit (MTD) relief as a control on post‐MTD sedimentation: Insights from the Taranaki Basin, offshore New Zealand. Marine and Petroleum Geology, 120, 104489. https://doi.org/10.1016/j.marpetgeo.2020.104489
    [Google Scholar]
  68. Odonne, F., Callot, P., Debroas, E. J., Sempere, T., Hoareau, G., & Maillard, A. (2011). Soft‐sediment deformation from submarine sliding: Favourable conditions and triggering mechanisms in examples from the Eocene Sobrarbe delta (Ainsa, Spanish Pyrenees) and the mid‐Cretaceous Ayabacas Formation (Andes of Peru). Sedimentary Geology, 235(3–4), 234–248. https://doi.org/10.1016/j.sedgeo.2010.09.013
    [Google Scholar]
  69. Ogata, K., Mountjoy, J. J., Pini, G. A., Festa, A., & Tinterri, R. (2014). Shear zone liquefaction in mass transport deposit emplacement: A multi‐scale integration of seismic reflection and outcrop data. Marine Geology, 356, 50–64. https://doi.org/10.1016/j.margeo.2014.05.001
    [Google Scholar]
  70. Ogata, K., Pini, G. A., Festa, A., Pogačnik, Ž., Tunis, G., Mountjoy, J. J., Senger, K., & Strasser, M. (2014). High‐resolution studies of mass transport deposits: Outcrop perspective for understanding modern submarine slope failure and associated natural hazards. In G.Lollino, A.Manconi, J.Locat, Y.Huang, & M.Canals Artigas (Eds.), Engineering geology for society and territory (Vol. 4, pp. 209–213). Springer International Publishing. https://doi.org/10.1007/978‐3‐319‐08660‐6_40
    [Google Scholar]
  71. Omeru, T., & Cartwright, J. A. (2019). The efficacy of kinematic indicators in a complexly deformed Mass Transport Deposit: Insights from the deepwater Taranaki Basin, New Zealand. Marine and Petroleum Geology, 106, 74–87. https://doi.org/10.1016/j.marpetgeo.2019.04.037
    [Google Scholar]
  72. Omosanya, K. O. (2018). Episodic fluid flow as a trigger for Miocene‐Pliocene slope instability on the Utgard High, Norwegian Sea. Basin Research, 30, 942–964. https://doi.org/10.1111/bre.12288
    [Google Scholar]
  73. Omosanya, K. O. (2020). Cenozoic tectonic inversion in the Naglfar Dome, Norwegian North Sea. Marine and Petroleum Geology, 118, 104461. https://doi.org/10.1016/j.marpetgeo.2020.104461
    [Google Scholar]
  74. Omosanya, K. O., & Alves, T. M. (2013a). Ramps and flats of mass‐transport deposits (MTDs) as markers of seafloor strain on the flanks of rising diapirs (Espírito Santo Basin, SE Brazil). Marine Geology, 340, 82–97. https://doi.org/10.1016/j.margeo.2013.04.013
    [Google Scholar]
  75. Omosanya, K. O., & Alves, T. M. (2013b). A 3‐dimensional seismic method to assess the provenance of Mass‐Transport Deposits (MTDs) on salt‐rich continental slopes (Espírito Santo Basin, SE Brazil). Marine and Petroleum Geology, 44, 223–239. https://doi.org/10.1016/j.marpetgeo.2013.02.006
    [Google Scholar]
  76. Owen, G. (1987). Deformation processes in unconsolidated sands. Geological Society, London, Special Publications, 29(1), 11–24. https://doi.org/10.1144/GSL.SP.1987.029.01.02
    [Google Scholar]
  77. Owen, G. (1996). Experimental soft‐sediment deformation: Structures formed by the liquefaction of unconsolidated sands and some ancient examples. Sedimentology, 43(2), 279–293. https://doi.org/10.1046/j.1365‐3091.1996.d01‐5.x
    [Google Scholar]
  78. Palmer, J. A., & Andrews, P. R. (1993). Cretaceous‐Tertiary sedimentation and implied tectonic controls on structural evolution of Taranaki Basin, New Zealand. In South Pacific sedimentary basins: Sedimentary basins of the world (pp. 309–328). Elsevier.
    [Google Scholar]
  79. Pilaar, W. F. H., & Wakefield, L. L. (1978). Structural and stratigraphic evolution of the Taranaki Basin, Offshore North Island, New Zealand. APPEA Journal, 18, 93–101. https://doi.org/10.1071/aj77011
    [Google Scholar]
  80. Posamentier, H. W., & Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. Journal of Sedimentary Research, 73, 367–388. https://doi.org/10.1306/111302730367
    [Google Scholar]
  81. Posamentier, H. W., & Martinsen, O. J. (2011). The character and genesis of submarine mass‐transport deposits: Insights from outcrop and 3D seismic data. In R. C.Shipp, P.Weimer, & H. W.Posamentier (Eds.), Mass‐transport deposits in deepwater settings. SEPM Society for Sedimentary Geology, p. 0. https://doi.org/10.2110/sepmsp.096.007
    [Google Scholar]
  82. Posamentier, H. W., Martinsen, O. J., & Shipp, R. C. (2011). The character and genesis of submarine mass‐transport deposits: Insights from outcrop and 3D seismic data. Mass‐transport deposits in deepwater. Settings Tulsa SEPM Special Publications (Vol. 96, pp. 7–38).
    [Google Scholar]
  83. Prior, D. B., Bornhold, B. D., & Johns, M. W. (1984). Depositional characteristics of a submarine debris flow. The Journal of Geology, 92, 707–727. https://doi.org/10.1086/628907
    [Google Scholar]
  84. Richardson, S. E. J., Richard, J. D., Mark, B. A., & Grant, F. S. (2011). Structure and evolution of mass transport deposits in the South Caspian Basin, Azerbaijan. Basin Research, 23, 702–719. https://doi.org/10.1111/j.1365‐2117.2011.00508.x
    [Google Scholar]
  85. Rupke, N. A. (1976). Large‐scale slumping in a flysch basin, southwestern Pyrenees. Journal of the Geological Society, 132(2), 121–130. https://doi.org/10.1144/gsjgs.132.2.0121
    [Google Scholar]
  86. Rusconi, F. J. (2017). 3D Seismic Interpretation of a Plio‐Pleistocene Mass Transport Deposit in the Deepwater Taranaki Basin of New Zealand.
  87. Scott Wilkerson, M., Apotria, T., & Farid, T. (2002). Interpreting the geologic map expression of contractional fault‐related fold terminations: Lateral/oblique ramps versus displacement gradients. Journal of Structural Geology, 24, 593–607. https://doi.org/10.1016/S0191‐8141(01)00111‐0
    [Google Scholar]
  88. Shanmugam, G. (2017). Global case studies of soft‐sediment deformation structures (SSDS): Definitions, classifications, advances, origins, and problems. Journal of Palaeogeography, 6, 251–320. https://doi.org/10.1016/j.jop.2017.06.004
    [Google Scholar]
  89. Sobiesiak, M. S., Alsop, G. I., Kneller, B., & Milana, J. P. (2017). Sub‐seismic scale folding and thrusting within an exposed mass transport deposit: A case study from NW Argentina. Journal of Structural Geology, 96, 176–191. https://doi.org/10.1016/j.jsg.2017.01.006
    [Google Scholar]
  90. Sobiesiak, M. S., Kneller, B., Alsop, G. I., & Milana, J. P. (2016). Inclusion of substrate blocks within a mass transport deposit: A case study from cerro. In A.Bola, G.Lamarche, J.Mountjoy, S.Bull, T.Hubble, S.Krastel, E.Lane, A.Micallef, L.Moscardelli, C.Mueller, I.Pecher, & S.Woelz (Eds.), Submarine mass movements and their consequences, advances in natural and technological hazards research (pp. 487–496). Springer International Publishing. https://doi.org/10.1007/978‐3‐319‐20979‐1_49
    [Google Scholar]
  91. Sobiesiak, M. S., Kneller, B., Alsop, G. I., & Milana, J. P. (2018). Styles of basal interaction beneath mass transport deposits. Marine and Petroleum Geology, 98, 629–639. https://doi.org/10.1016/j.marpetgeo.2018.08.028
    [Google Scholar]
  92. Stagpoole, V., & Nicol, A. (2008). Regional structure and kinematic history of a large subduction back thrust: Taranaki Fault, New Zealand. Journal of Geophysical Research, 113, B01403. https://doi.org/10.1029/2007JB005170
    [Google Scholar]
  93. Steventon, M. J., Jackson, C. A. L., Hodgson, D. M., & Johnson, H. D. (2019). Strain analysis of a seismically imaged mass‐transport complex, offshore Uruguay. Basin Research, 31(3), 600–620.
    [Google Scholar]
  94. Strachan, L. (2002). Slump‐initiated and controlled syndepositional sandstone remobilisation: An example from the Namurian of County Clare, Ireland. Sedimentology, 49, 25–41.
    [Google Scholar]
  95. Talling, P. J., Malgesini, G., & Felletti, F. (2013). Can liquefied debris flows deposit clean sand over large areas of sea floor? Field evidence from the Marnoso‐arenacea Formation, Italian Apennines. Sedimentology, 60(3), 720–762.
    [Google Scholar]
  96. Trincardi, F., & Argnani, A. (1990). Gela submarine slide: A major basin wide event in the Plio‐Quaternary foredeep of Sicily. Geo‐Marine Letters, 10, 13–21. https://doi.org/10.1007/BF02431017
    [Google Scholar]
  97. Varnes, D. J. (1978). Slope movement types and processes. R. L.Schuster, & R. J.Kruse (Eds.), Landslides, analysis and control: Special Report, 176. National Academy of Sciences.
    [Google Scholar]
  98. Ward, N. I. P., Alves, T. M., & Blenkinsop, T. G. (2018). Submarine sediment routing over a blocky mass‐transport deposit in the Espírito Santo Basin, SE Brazil. Basin Research, 30, 816–834. https://doi.org/10.1111/bre.12282
    [Google Scholar]
  99. Wilson, C. K., Long, D., & Bulat, J. (2004). The morphology, setting and process of the Afen Slide. Marine Geology, 213, 149–167.
    [Google Scholar]
  100. Woodcock, N. H. (1979). The use of slump structures as palaeoslope orientation estimators. Sedimentology, 26(1), 83–99.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12560
Loading
/content/journals/10.1111/bre.12560
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error