1887
Volume 33 Number 6
  • E-ISSN: 1365-2117

Abstract

Abstract

This contribution investigates the role of a hyperextended rift system in the formation of the Basque–Cantabrian Pyrenees by discussing their present‐day architecture as well as the inherited rift template. Moreover, this work attempts to decipher the onset of reactivation of a hyperextended system and to discuss the related processes during collision. To carry out this study, two regional, crustal‐scale cross‐sections are presented that provide geological and geophysical information and interpretations across the Central and Western Basque–Cantabrian Pyrenees. Moreover, the two sections are restored back to the Cenomanian and Barremian, corresponding to the end of two independent rift stages respectively. The two sections document different structural styles observed along the orogenic belt. The Central section, involving the Iberian and European plates, shows a thin‐skinned structural style, where the Upper Triassic salt acted as a decoupling level between the sedimentary cover and the underlying basement during both extension and reactivation. The Western section, by contrast, crosses only the Iberian plate (i.e., intra‐plate section) and displays a hybrid situation showing both thin‐ and thick‐skinned structural styles that were conditioned by the irregular distribution of Triassic salt. Extensional deformation was localised in the north (i.e., Bay of Biscay) and less important in the south. Despite compressional reactivation, the northern part of the Western section preserves its rift template, which provides key insights to restore the internal part of the Central section. In contrast to the Western section, the Central section shows stacked depocenters, resulting from overprinted Mesozoic rift events that had a first order control on the subsequent reactivation. This study corroborates the importance of rift inheritance during the onset of convergence by reactivating the most distal and weak part of the rift system (i.e., serpentinised mantle) before starting the collision phase. A key learning is that the understanding of the nature and distribution of decoupling levels at a crustal scale is fundamental to reconstruct the structural evolution during the formation and reactivation of a hyperextended rift system.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12595
2021-11-11
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/6/bre12595.html?itemId=/content/journals/10.1111/bre.12595&mimeType=html&fmt=ahah

References

  1. Ábalos, B., Alkorta, A., & Iríbar, V. (2008). Geological and isotopic constraints on the structure of the Bilbao anticlinorium (Basque–Cantabrian basin, North Spain). Journal of Structural Geology, 30(11), 1354–1367. https://doi.org/10.1016/j.jsg.2008.07.008
    [Google Scholar]
  2. Aller, J., & Zeyen, H. J. (1996). A 2.5‐D interpretation of the Basque country magnetic anomaly (northern Spain): Geodynamical implications. Geologische Rundschau, 85(2), 303–309.
    [Google Scholar]
  3. Alonso, J. L., Pulgar, F. J. Á., & Pedreira, D. (2007). El relieve de la Cordillera Cantábrica. Enseñanza De Las Ciencias De La Tierra, 15(2), 151–163.
    [Google Scholar]
  4. Alonso, J. L., Pulgar, J. A., García‐Ramos, J. C., & Barba, P. (1996). Tertiary basins and alpine tectonics in the Cantabrian Mountains, NW Spain. In P. F.Friend & C. J.Dabrio (Eds.), Tertiary basins of Spain: The stratigraphic record of crustal kinematics (pp. 214–227). Cambridge University Press.
    [Google Scholar]
  5. Angrand, P., Mouthereau, F., Masini, E., & Asti, R. (2020). A reconstruction of Iberia accounting for W‐Tethys/N‐Atlantic kinematics since the late Permian‐Triassic. Solid Earth Discussions, 1–24.
    [Google Scholar]
  6. Bally, A. W., Gordy, P. L., & Stewart, G. A. (1966). Structure, seismic data and orogenic evolution of the southern Canadian Rockies. Canadian Society of Petroleum Geologists Bulletin, 14, 337–381.
    [Google Scholar]
  7. Barnett‐Moore, N., Hosseinpour, M., & Maus, S. (2016). Assessing discrepancies between previous plate kinematic models of Mesozoic Iberia and their constraints. Tectonics, 35(8), 1843–1862. https://doi.org/10.1002/2015TC004019
    [Google Scholar]
  8. Beaumont, C., Muñoz, J. A., Hamilton, J., & Fullsack, P. (2000). Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models. Journal of Geophysical Research: Solid Earth, 105(B4), 8121–8145. https://doi.org/10.1029/1999JB900390
    [Google Scholar]
  9. Boillot, G., & Capdevila, R. (1977). The Pyrenees: Subduction and collision?Earth and Planetary Science Letters, 121(5), 151–160. https://doi.org/10.1016/0012‐821X(77)90038‐3
    [Google Scholar]
  10. Brinkmann, R., & Logters, H. (1968). Diapirs in western Pyrenees and foreland, Spain. Diapirism Diapirs, AAPG Spec. Vol. Tulsa, Oklahoma, A153, 275–292.
  11. Cadenas, P., Fernández‐Viejo, G., Pulgar, J. A., Tugend, J., Manatschal, G., & Minshull, T. A. (2018). Constraints imposed by rift inheritance on the compressional reactivation of a hyperextended margin: Mapping rift domains in the north iberian margin and in the cantabrian mountains. Tectonics, 37(3), 758–785. https://doi.org/10.1002/2016TC004454
    [Google Scholar]
  12. Cadenas, P., Manatschal, G., & Fernández‐Viejo, G. (2020). Unravelling the architecture and evolution of the inverted multi‐stage North Iberian‐Bay of Biscay rift. Gondwana Research, 88, 67–87. https://doi.org/10.1016/j.gr.2020.06.026
    [Google Scholar]
  13. Cámara, P. (2017). Salt and strike‐slip tectonics as main drivers in the structural evolution of the Basque‐Cantabrian Basin, Spain. In Permo‐triassic salt provinces of Europe, North Africa and the Atlantic margins (pp. 371–393). Elsevier. https://doi.org/10.1016/B978‐0‐12‐809417‐4.00018‐5
    [Google Scholar]
  14. Cámara, P. (2020). Inverted turtle salt anticlines in the Eastern Basque‐Cantabrian basin, Spain. Marine and Petroleum Geology, 117, 104358.
    [Google Scholar]
  15. Cámara Rupelo, P. (1989). La terminación estructural occidental de la Cuenca Vasco‐Cantábrica. In Libro Homenaje a Rafael Soler (pp. 27–35).
    [Google Scholar]
  16. Campanyà, J., Ledo, J., Queralt, P., Marcuello, A., Liesa, M., & Muñoz, J. A. (2012). New geoelectrical characterisation of a continental collision zone in the West‐Central Pyrenees: Constraints from long period and broadband magnetotellurics. Earth and Planetary Science Letters, 333, 112–121. https://doi.org/10.1016/j.epsl.2012.04.018
    [Google Scholar]
  17. Campanyà, J., Ledo, J., Queralt, P., Marcuello, A., Muñoz, J. A., Liesa, M., & Jones, A. G. (2018). New geoelectrical characterization of a continental collision zone in the Central‐Eastern Pyrenees: Constraints from 3‐D joint inversion of electromagnetic data. Tectonophysics, 742, 168–179. https://doi.org/10.1016/j.tecto.2018.05.024
    [Google Scholar]
  18. Carola, E., Muñoz, J. A., & Roca, E. (2015). The transition from thick‐skinned to thin‐skinned tectonics in the Basque‐Cantabrian Pyrenees: The Burgalesa Platform and surroundings. International Journal of Earth Sciences, 104(8), 2215–2239. https://doi.org/10.1007/s00531‐015‐1177‐z
    [Google Scholar]
  19. Carola, E., Tavani, S., Ferrer, O., Granado, P., Quintà, A., Butillé, M., & Muñoz, J. A. (2013). Along‐strike extrusion at the transition between thin‐and thick‐skinned domains in the Pyrenean Orogen (northern Spain). Geological Society, London, Special Publications, 377(1), 119–140. https://doi.org/10.1144/SP377.3
    [Google Scholar]
  20. Chevrot, S., Sylvander, M., Diaz, J., Martin, R., Mouthereau, F., Manatschal, G., Masini, E., Calassou, S., Grimaud, F., Pauchet, H., & Ruiz, M. (2018). The non‐cylindrical crustal architecture of the Pyrenees. Scientific Reports, 8(1), 9591. https://doi.org/10.1038/s41598‐018‐27889‐x
    [Google Scholar]
  21. Chevrot, S., Sylvander, M., Diaz, J., Ruiz, M., & Paul, A. (2015). The Pyrenean architecture as revealed by teleseismic P‐to‐S converted waves recorded along two dense transects. Geophysical Journal International, 200(2), 1094–1105. https://doi.org/10.1093/gji/ggu400
    [Google Scholar]
  22. Choukroune, P.Etude Continentale et Océanique par Reflexion et Refraction Sismique (ECORS) Team . (1989). The ECORS Pyrenean deep seismic profiles reflection data and the overall structure of an orogenic belt. Tectonics, 8, 23–39.
    [Google Scholar]
  23. DeFelipe, I., Álvarez Pulgar, F. J., & Pedreira Rodríguez, D. (2018). Crustal structure of the Eastern Basque‐Cantabrian Zone‐western Pyrenees: From the Cretaceous hyperextension to the Cenozoic inversion. Revista De La Sociedad Geológica De España, 31(2), 69–82.
    [Google Scholar]
  24. DeFelipe, I., Pedreira, D., Pulgar, J. A., Iriarte, E., & Mendia, M. (2017). Mantle exhumation and metamorphism in the Basque‐Cantabrian Basin (NS pain): Stable and clumped isotope analysis in carbonates and comparison with ophicalcites in the North‐Pyrenean Z one (Urdach and Lherz). Geochemistry, Geophysics, Geosystems, 18(2), 631–652. https://doi.org/10.1002/2016GC006690
    [Google Scholar]
  25. Diaz, J., Pedreira, D., Ruiz, M., Pulgar, J. A., & Gallart, J. (2012). Mapping the indentation between the Iberian and Eurasian plates beneath the Western Pyrenees/Eastern Cantabrian Mountains from receiver function analysis. Tectonophysics, 570, 114–122. https://doi.org/10.1016/j.tecto.2012.07.005
    [Google Scholar]
  26. Ducoux, M., Jolivet, L., Callot, J.‐P., Aubourg, C., Masini, E., Lahfid, A., Homonnay, E., Cagnard, F., Gumiaux, C., & Baudin, T. (2019). The Nappe des Marbres Unit of the Basque‐Cantabrian Basin: The Tectono‐thermal evolution of a Fossil Hyperextended Rift Basin. Tectonics, 38(11), 3881–3915. https://doi.org/10.1029/2018TC005348
    [Google Scholar]
  27. Epin, M.‐E., Manatschal, G., & Amann, M. (2017). Defining diagnostic criteria to describe the role of rift inheritance in collisional orogens: The case of the Err‐Platta nappes (Switzerland). Swiss Journal of Geosciences, 110(2), 419–438. https://doi.org/10.1007/s00015‐017‐0271‐6
    [Google Scholar]
  28. Espina, R. G. (1994). Mesozoic extension and Alpine compression in the western border of the Vasco‐Cantabrian basin. Cuadernos do Laboratorio Xeolóxico de Laxe, 19, 137–150.
    [Google Scholar]
  29. Espina, R. G. (1996). Tectónica extensional en el borde occidental de la Cuenca Vasco‐ Cantábrica (Cordillera Cantábrica, NO de España). Geogaceta, 20(4), 890–892.
    [Google Scholar]
  30. Espina, R. G., Alonso, J. L., & Pulgar, J. A. (1996). Growth and propagation of buckle folds determined from syntectonic sediments (the Ubierna Fold Belt, Cantabrian Mountains, N Spain). Journal of Structural Geology, 18(4), 431–441. https://doi.org/10.1016/0191‐8141(95)00103‐K
    [Google Scholar]
  31. Fernández, O. (2004). Reconstruction of geological structures in 3D: An example from the southern Pyrenees. In Departament de Geodinàmica I Geofísica (p. 376, Doctoral thesis). Univeraitat de Barcelona.
    [Google Scholar]
  32. Fernández‐Viejo, G., Gallart, J., Pulgar, J. A., Córdoba, D., & Dañobeitia, J. J. (2000). Seismic signature of Variscan and Alpine tectonics in NW Iberia: Crustal structure of the Cantabrian Mountains and Duero basin. Journal of Geophysical Research: Solid Earth, 105(B2), 3001–3018. https://doi.org/10.1029/1999JB900321
    [Google Scholar]
  33. Fernández‐Viejo, G., & Gallastegui, J. (2005). The ESCI‐N Project after a decade: A síntesis of the results and open questions. Trabajos De Geología, 25(25), 9–27.
    [Google Scholar]
  34. Ferrer, O., Roca, E., & Vendeville, B. C. (2014). The role of salt layers in the hangingwall deformation of kinked‐planar extensional faults: Insights from 3D analogue models and comparison with the Parentis Basin. Tectonophysics, 636, 338–350. https://doi.org/10.1016/j.tecto.2014.09.013
    [Google Scholar]
  35. Fillon, C., Pedreira, D., Van der Beek, P. A., Huismans, R. S., Barbero, L., & Pulgar, J. A. (2016). Alpine exhumation of the central Cantabrian Mountains. Northwest Spain. Tectonics, 35(2), 339–356. https://doi.org/10.1002/2015TC004050
    [Google Scholar]
  36. Gallastegui, J., Pulgar, J. A., & Gallart, J. (2016). Alpine tectonic wedging and crustal delamination in the Cantabrian Mountains (NW Spain). Solid Earth, 7(4), 1043–1057. https://doi.org/10.5194/se‐7‐1043‐2016
    [Google Scholar]
  37. García de Cortázar, A., & Pujalte, V. (1982). Litoestratigrafia y facies del grupo Cabuerniga (Malm‐Valangiense inferior?) al sur de Cantabria, NE de Palencia. Cuadernos De Geología Ibérica, 8, 5–21.
    [Google Scholar]
  38. García Mondéjar, J. (1982). Tectónica sinsedimentaria en el Aptiense y Albiense de la región vascocantábrica occidental. Cuadernos De Geología Ibérica, 8, 23–36.
    [Google Scholar]
  39. García‐Mondéjar, J. (1989). Strike‐slip Subsidence of the Basque‐Cantabrian Basin of Northern Spain and its Relationship to Aptian‐Albian Opening of Bay of Biscay. In A. J.Tankard & H. R.Balkwill (Eds.), Extensional tectonics and stratigraphy of the North Atlantic margins (pp. 395–409). American Association of Petroleum Geologist, Memoir 46.
    [Google Scholar]
  40. García‐Mondéjar, J., Agirrezabala, L. M., Aranburu, A., Fernández‐Mendiola, P. A., Gomez‐Perez, I., López‐Horgue, M. A., & Rosales, I. (1996). The Aptian–Albian tectonic pattern of the Basque Cantabrian Basin (Northern Spain). Geological Journal, 31, 13–45. https://doi.org/10.1002/(SICI)1099‐1034(199603)31:1<13:AID‐GJ689>3.0.CO;2‐Y
    [Google Scholar]
  41. García‐Mondéjar, J., & Fernández‐Mendiola, P. A. (1993). Sequence stratigraphy and systems tracts of a mixed carbonate and siliciclastic platform‐basin setting: The Albian of Lunada and Soba, northern Spain. AAPG Bulletin, 77(2), 245–275.
    [Google Scholar]
  42. García‐Mondéjar, J., & Robador, A. (1987). Sedimentación y paleografía del Complejo Urgoniano (Aptiense‐Albiense) en el área de Bermeo (región Vasco‐Cantábrica septentional). Acta Geológica Hispánica, 21(1), 411–418.
    [Google Scholar]
  43. García‐Senz, J., Pedrera, A., Ayala, C., Ruiz‐Constán, A., Robador, A., & Rodríguez‐Fernández, L. R. (2019). Inversion of the north Iberian hyperextended margin: The role of exhumed mantle indentation during continental collision. Geological Society, London, Special Publications, 490(1), 177–198. https://doi.org/10.1144/SP490‐2019‐112
    [Google Scholar]
  44. Gillard, M., Autin, J., Manatschal, G., Sauter, D., Munschy, M., & Schaming, M. (2015). Tectonomagmatic evolution of the final stages of rifting along the deep conjugate Australian‐Antarctic magma‐poor rifted margins: Constraints from seismic observations: Australian‐Antarctic margins evolution. Tectonics, 34(4), 753–783. https://doi.org/10.1002/2015TC003850
    [Google Scholar]
  45. Gillard, M., Tugend, J., Müntener, O., Manatschal, G., Karner, G. D., Autin, J., Sauter, D., Figueredo, P. H., & Ulrich, M. (2019). The role of serpentinization and magmatism in the formation of decoupling interfaces at magma‐poor rifted margins. Earth‐Science Reviews, 196, 102882. https://doi.org/10.1016/j.earscirev.2019.102882
    [Google Scholar]
  46. Gómez, J. J., Goy, A., & Barrón, E. (2007). Events around the Triassic‐Jurassic boundary in northern and eastern Spain: A review. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1–4), 89–110.
    [Google Scholar]
  47. Gómez‐Romeu, J., Masini, E., Tugend, J., Ducoux, M., & Kusznir, N. (2019). Role of rift structural inheritance in orogeny highlighted by the Western Pyrenees case‐study. Tectonophysics, 766, 131–150. https://doi.org/10.1016/j.tecto.2019.05.022
    [Google Scholar]
  48. Haupert, I., Manatschal, G., Decarlis, A., & Unternehr, P. (2016). Upper‐plate magma‐poor rifted margins: Stratigraphic architecture and structural evolution. Marine and Petroleum Geology, 69, 241–261. https://doi.org/10.1016/j.marpetgeo.2015.10.020
    [Google Scholar]
  49. Hernaiz, P. P., Serrano, A., Malagón, J., & Rodríguez Cañas, C. (1994). Evolución estructural del margen SO de la cuenca Vasco‐Cantábrica. Geogaceta, 15(7994), 743–746.
    [Google Scholar]
  50. Jamieson, R. A., & Beaumont, C. (2013). On the origin of orogens. Geological Society of America Bulletin, 125(11–12), 1671–1702. https://doi.org/10.1130/B30855.1
    [Google Scholar]
  51. Jammes, S., Lavier, L., & Manatschal, G. (2010). Extreme crustal thinning in the Bay of Biscay and the Western Pyrenees: From observations to modeling. Geochemistry, Geophysics, Geosystems, 11(10), https://doi.org/10.1029/2010GC003218
    [Google Scholar]
  52. Jammes, S., Manatschal, G., Lavier, L., & Masini, E. (2009). Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics, 28(4). https://doi.org/10.1029/2008TC002406
    [Google Scholar]
  53. Lagabrielle, Y., Asti, R., Duretz, T., Clerc, C., Fourcade, S., Teixell, A., Labaume, P., Corre, B., & Saspiturry, N. (2020). A review of cretaceous smooth‐slopes extensional basins along the Iberia‐Eurasia plate boundary: How pre‐rift salt controls the modes of continental rifting and mantle exhumation. Earth‐Science Reviews, 201, 103071. https://doi.org/10.1016/j.earscirev.2019.103071
    [Google Scholar]
  54. Lavier, L. L., & Manatschal, G. (2006). A mechanism to thin the continental lithosphere at magma‐poor margins. Nature, 440(7082), 324–328. https://doi.org/10.1038/nature04608
    [Google Scholar]
  55. Lescoutre, R. (2019). Formation and reactivation of the Pyrenean‐Cantabrian rift system: Inheritance, segmentation and thermal evolution (PhD thesis). University of Strasbourg.
    [Google Scholar]
  56. Lescoutre, R., & Manatschal, G. (2020). Role of rift‐inheritance and segmentation for orogenic evolution: Example from the 1636 Pyrenean‐Cantabrian system. BSGF ‐ Earth Sciences Bulletin, 191, 18.
    [Google Scholar]
  57. López‐Gómez, J., Martín‐González, F., Heredia, N., de la Horra, R., Barrenechea, J. F., Cadenas, P., Juncal, M., Diez, J. B., Borruel‐Abadía, V., Pedreira, D., García‐Sansegundo, J., Farias, P., Galé, C., Lago, M., Ubide, T., Fernández‐Viejo, G., & Gand, G. (2019). New lithostratigraphy for the Cantabrian Mountains: A common tectono‐stratigraphic evolution for the onset of the Alpine cycle in the W Pyrenean realm, N Spain. Earth‐Science Reviews, 188, 249–271. https://doi.org/10.1016/j.earscirev.2018.11.008
    [Google Scholar]
  58. Lundin, E. R., & Doré, A. G. (2011). Hyperextension, serpentinization, and weakening: A new paradigm for rifted margin compressional deformation. Geology, 39(4), 347–350. https://doi.org/10.1130/G31499.1
    [Google Scholar]
  59. Macchiavelli, C., Vergés, J., Schettino, A., Fernàndez, M., Turco, E., Casciello, E., Torne, M., Pierantoni, P. P., & Tunini, L. (2017). A new southern North Atlantic isochron map: Insights into the drift of the Iberian plate since the Late Cretaceous. Journal of Geophysical Research: Solid Earth, 122(12), 9603–9626.
    [Google Scholar]
  60. Martínez Catalán, J. R., Arenas, R., García, F. D., Cuadra, P. G., Gómez‐Barreiro, J., Abati, J., Castiñeiras, P., Fernández‐Suárez, J., Sánchez Martínez, S., Andonaegui, P., González Clavijo, E., Díez Montes, A., Rubio Pascual, F., & Valle Aguado, B. (2007). Space and time in the tectonic evolution of the northwestern Iberian Massif: Implications for the Variscan belt. In Geological Society of America Memoirs (Vol. 200, pp. 403–423). Geological Society of America. https://doi.org/10.1130/2007.1200(21)
    [Google Scholar]
  61. Masini, E., Manatschal, G., Tugend, J., Mohn, G., & Flament, J.‐M. (2014). The tectono‐sedimentary evolution of a hyper‐extended rift basin: The example of the Arzacq‐Mauléon rift system (Western Pyrenees, SW France). International Journal of Earth Sciences, 103(6), 1569–1596. https://doi.org/10.1007/s00531‐014‐1023‐8
    [Google Scholar]
  62. Matte, P. (1991). Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics, 196(3–4), 309–337. https://doi.org/10.1016/0040‐1951(91)90328‐P
    [Google Scholar]
  63. McClay, K., Muñoz, J. A., & García‐Senz, J. (2004). Extensional salt tectonics in a contractional orogen: A newly identified tectonic event in the Spanish Pyrenees. Geology, 32(9), 737. https://doi.org/10.1130/G20565.1
    [Google Scholar]
  64. McQuarrie, N., Horton, B. K., Zandt, G., Beck, S., & DeCelles, P. G. (2005). Lithospheric evolution of the Andean fold–thrust belt, Bolivia, and the origin of the central Andean plateau. Tectonophysics, 399(1–4), 15–37. https://doi.org/10.1016/j.tecto.2004.12.013
    [Google Scholar]
  65. Mencos, J., Carrera, N., & Muñoz, J. A. (2015). Influence of rift basin geometry on the subsequent postrift sedimentation and basin inversion: The Organyà Basin and the Bóixols thrust sheet (south central Pyrenees). Tectonics, 34(7), 1452–1474. https://doi.org/10.1002/2014TC003692
    [Google Scholar]
  66. Meschede, M. (1987). The tectonic and sedimentary development of the Biscay synclinorium in northern Spain. Geologische Rundschau, 76(2), 567–577. https://doi.org/10.1007/BF01821092
    [Google Scholar]
  67. Miró, J., Muñoz, J. A., Manatschal, G., & Roca, E. (2020). The Basque – Cantabrian Pyrenees: Report of data analysis. BSGF – Earth Sciences Bulletin, 191(1), 22.
    [Google Scholar]
  68. Mohn, G., Manatschal, G., Beltrando, M., Masini, E., & Kusznir, N. (2012). Necking of continental crust in magma‐poor rifted margins: Evidence from the fossil Alpine Tethys margins. Tectonics, 31(1). https://doi.org/10.1029/2011TC002961
    [Google Scholar]
  69. Mouthereau, F., Filleaudeau, P.‐Y., Vacherat, A., Pik, R., Lacombe, O., Fellin, M. G., Castelltort, S., Christophoul, F., & Masini, E. (2014). Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. Tectonics, 33(12), 2283–2314. https://doi.org/10.1002/2014TC003663
    [Google Scholar]
  70. Muñoz, J. A. (1992). Evolution of a continental collision belt: ECORS‐Pyrenees crustal balanced cross‐section. In Thrust tectonics (pp. 235–246). Springer.
    [Google Scholar]
  71. Muñoz, J. A. (2019). Alpine orogeny: Deformation and structure in the northern Iberian margin (Pyrenees sl). In C.Quesada, & J.Tomás Oliveira (Eds.), The geology of Iberia: A geodynamic approach (pp. 433–451). Springer.
    [Google Scholar]
  72. Muñoz, J. A., Mencos, J., Roca, E., Carrera, N., Gratacós, O., Ferrer, O., & Fernández, O. (2018). The structure of the South‐Central‐Pyrenean fold and thrust belt as constrained by subsurface data. Geologica Acta, 22, 439–460.
    [Google Scholar]
  73. Nirrengarten, M., Manatschal, G., Tugend, J., Kusznir, N., & Sauter, D. (2018). Kinematic evolution of the southern North Atlantic: Implications for the formation of hyperextended rift systems. Tectonics, 37(1), 89–118. https://doi.org/10.1002/2017TC004495
    [Google Scholar]
  74. Pedreira, D., Afonso, J. C., Pulgar, J. A., Gallastegui, J., Carballo, A., Fernàndez, M., Garcia‐Castellanos, D., Jiménez‐Munt, I., Semprich, J., & García‐Moreno, O. (2015). Geophysical‐petrological modeling of the lithosphere beneath the Cantabrian Mountains and the North‐Iberian margin: Geodynamic implications. Lithos, 230, 46–68. https://doi.org/10.1016/j.lithos.2015.04.018
    [Google Scholar]
  75. Pedreira, D., Pulgar, J. A., Díaz, J., Alonso, J. L., Gallastegui, J., & Teixell, A. (2018). Comment on “reconstruction of the exhumed mantle across the north Iberian margin by crustal‐scale 3‐D gravity inversion and geological cross section” by Pedrera et al.Tectonics, 37(11), 4338–4345. https://doi.org/10.1029/2018TC005129
    [Google Scholar]
  76. Pedreira, D., Pulgar, J. A., Gallart, J., & Díaz, J. (2003). Seismic evidence of Alpine crustal thickening and wedging from the western Pyrenees to the Cantabrian Mountains (north Iberia). Journal of Geophysical Research: Solid Earth, 108(B4). https://doi.org/10.1029/2001JB001667
    [Google Scholar]
  77. Pedreira, D., Pulgar, J. A., Gallart, J., & Torné, M. (2007). Three‐dimensional gravity and magnetic modeling of crustal indentation and wedging in the western Pyrenees‐Cantabrian Mountains. Journal of Geophysical Research, 112(B12), B12405. https://doi.org/10.1029/2007JB005021
    [Google Scholar]
  78. Pedrera, A., García‐Senz, J., Ayala, C., Ruiz‐Constán, A., Rodríguez‐Fernández, L. R., Robador, A., & González Menéndez, L. (2017). Reconstruction of the exhumed mantle across the north Iberian margin by crustal‐scale 3‐D gravity inversion and geological cross section: Mantle Along the Basque‐Cantabrian Basin. Tectonics, 36(12), 3155–3177. https://doi.org/10.1002/2017TC004716
    [Google Scholar]
  79. Pedrera, A., García‐Senz, J., Ayala, C., Ruiz‐Constán, A., Rodríguez‐Fernández, L. R., Robador, A., Menéndez, G., & González Menéndez, L. (2018). Reply to comment by Pedreira et al on “reconstruction of the exhumed mantle across the north Iberian margin by crustal‐scale 3‐D gravity inversion and geological cross section”. Tectonics, 37(11), 4346–4356. https://doi.org/10.1029/2018TC005222
    [Google Scholar]
  80. Pedrera, A., García‐Senz, J., Peropadre, C., Robador, A., López‐Mir, B., Díaz‐Alvarado, J., & Rodríguez‐Fernández, L. R. (2021). The Getxo crustal‐scale cross‐section: Testing tectonic models in the Bay of Biscay‐Pyrenean rift system. Earth‐Science Reviews, 212, 103429. https://doi.org/10.1016/j.earscirev.2020.103429
    [Google Scholar]
  81. Pérez‐García, A., Arnáiz Giménez‐Coral, A., & De Castillo, J. G. (2009). Stratigraphy, facies analysis, depositional model and petroleum system of the Xana Oil Accumulation: A complex Upper Cretaceous turbidite reservoir. 6º Simposio Sobre El Margen Ibérico Atlántico MIA09, Oviedo, 101–104.
    [Google Scholar]
  82. Péron‐Pinvidic, G., & Manatschal, G. (2009). The final rifting evolution at deep magma‐poor passive margins from Iberia‐Newfoundland: A new point of view. International Journal of Earth Sciences, 98(7), 1581–1597. https://doi.org/10.1007/s00531‐008‐0337‐9
    [Google Scholar]
  83. Péron‐Pinvidic, G., Manatschal, G., Dean, S. M., & Minshull, T. A. (2008). Compressional structures on the West Iberia rifted margin: Controls on their distribution. Geological Society, London, Special Publications, 306(1), 169–183. https://doi.org/10.1144/SP306.8
    [Google Scholar]
  84. Pous, J., Muñoz, J., Ledo, J., & Liesa, M. (1995). Partial melting of subducted continental lower crust in the Pyrenees. Journal of the Geological Society, 152(2), 217–220. https://doi.org/10.1144/gsjgs.152.2.0217
    [Google Scholar]
  85. Pujalte, V. (1979). Control tectónico de la sedimentación “purbeck‐weald” en las provincias de Santander y N. de Burgos. Acta Geológica Hispánica, 14, 216–222.
    [Google Scholar]
  86. Pujalte, V. (1981). Sedimentary succession and palaeoenvironments within fault‐controlled basin: The “Wealden” of the Santander area, Northern Spain. Sedimentary Geology, 28, 293–325.
    [Google Scholar]
  87. Pujalte, V. (1982). La evolución paleogeográfica de la cuenca ‘Wealdense’de Cantabria. Cuadernos De Geología Ibérica, 8, 65–83.
    [Google Scholar]
  88. Pujalte, V. (1989). Ensayo de correlación de las sucesiones del Oxfordiense‐Barremiense de la Región Vasco‐Cantábrica basado en macrosecuencias deposicionales: Implicaciones paleogeográficas. Cuadernos De Geología Ibérica, 13, 199–215.
    [Google Scholar]
  89. Pujalte, V., Robles, S., & Hernández, J. M. (1996). La sedimentación continental del Grupo Campóo (Malm‐Cretácico basal de Cantabria, Burgos y Palencia): Testimonio de un reajuste hidrográfico al inicio de una fase rift. Cuadernos De Geología, 21, 227–251.
    [Google Scholar]
  90. Pujalte, V., Robles, S., Orue‐etxebarría, X., Zapata, M., & García‐Portero, J. (1989). Influencia del eustatismo y la tectónica en la génesis de secuencias y macrosecuencias deposicionales del Maastrichtiense superior‐Eoceno inferior de la Cuenca Vasca. In Congreso Español De Sedimentologia, 12, Simposios, pp. 147–156.
    [Google Scholar]
  91. Pulgar, J. A., Alonso, J. L., Espina, R. G., & Marín, J. A. (1999). La deformación alpina en el basamento varisco de la Zona Cantábrica. Trabajos De Geologia, 21(21), 283–295.
    [Google Scholar]
  92. Pulgar, J., Gallart, J., Fernández‐Viejo, G., Pérez‐Estaún, A., & Álvarez‐Marrón, J.; ESCIN Group . (1996). Seismic image of the Cantabrian Mountains in the western extension of the Pyrenees from integrated ESCIN reflection and refraction data. Tectonophysics, 264, 1–19. https://doi.org/10.1016/S0040‐1951(96)00114‐X
    [Google Scholar]
  93. Quintana, L. (2012). Extensión e Inversión Tectónica en el sector central de la Región Vasco‐Cantábrica (Cantabria‐Vizcaya, norte de España) (PhD tesis). Universidad de Oviedo.
    [Google Scholar]
  94. Quintana, L., Pulgar, J. A., & Alonso, J. L. (2015). Displacement transfer from borders to interior of a plate: A crustal transect of Iberia. Tectonophysics, 663, 378–398. https://doi.org/10.1016/j.tecto.2015.08.046
    [Google Scholar]
  95. Riba, O., & Jurado, M. J. (1992). Reflexiones sobre la geología de la parte occidental de la depresión del Ebro. Acta Geológica Hispánica, 27(1–2), 177–193.
    [Google Scholar]
  96. Robles, S. (2004). El Pérmico de la Cuenca Vasco‐Cantábrica. In J. A.Vera (Ed.), Geología de España (pp. 269–271). Sociedad Geológica de España – Instituto Geológico y Minero de España.
    [Google Scholar]
  97. Robles, S., Aranburu, A., & Apraiz, A. (2014). La Cuenca Vasco‐Cantábrica: génesis y evolución tectonosedimentaria. Enseñanza De Las Ciencias De La Tierra, 22(2), 99.
    [Google Scholar]
  98. Robles, S., & Pujalte, V. (2004). El Triásico de la Cordillera Cantábrica. In J. A.Vera (Ed.), Geología de España (pp. 274–276). Sociedad Geológica de España – Instituto Geológico y Minero de España.
    [Google Scholar]
  99. Robles, S., Pujalte, V., Hernández, J. M., & Quesada, S. (1996). La sedimentación aluvio‐lacustre de la Cuenca de Cires (Jurásico sup.‐Berriasiense de Cantabria): Un modelo evolutivo de las cuencas lacustres ligadas a la etapa temprana del rift noribérico. Cuadernos De Geología Ibérica, 21, 253–275.
    [Google Scholar]
  100. Roca, E., Ferrer, O., Rowan, M. G., Muñoz, J. A., Butillé, M., Giles, K. A., Arbués, A., & de Matteis, M. (2020). Salt tectonics and controls on halokinetic‐sequence development of an exposed deepwater diapir: The Bakio Diapir, Basque‐Cantabrian Basin, Pyrenees. Marine and Petroleum Geology, 123, 104770. https://doi.org/10.1016/j.marpetgeo.2020.104770
    [Google Scholar]
  101. Roca, E., Muñoz, J. A., Ferrer, O., & Ellouz, N. (2011). The role of the Bay of Biscay Mesozoic extensional structure in the configuration of the Pyrenean orogen: Constraints from the MARCONI deep seismic reflection survey. Tectonics, 30(2). https://doi.org/10.1029/2010TC002735
    [Google Scholar]
  102. Rodríguez‐Cañas, C. R., Hernaiz, P. P., Malagón, J., & Serrano, A. (1994). Notas sobre la estructura cabalgante de Rojas‐Santa Casilda. Geogaceta, 15, 135–138.
    [Google Scholar]
  103. Roest, W. R., & Srivastava, S. P. (1991). Kinematics of the plate boundaries between Eurasia, Iberia, and Africa in the North Atlantic from the Late Cretaceous to the present. Geology, 19(6), 613–616. https://doi.org/10.1130/0091‐7613(1991)019<0613:KOTPBB>2.3.CO;2
    [Google Scholar]
  104. Roma, M., Ferrer, O., Roca, E., Pla, O., Escosa, F. O., & Butillé, M. (2018). Formation and inversion of salt‐detached ramp‐syncline basins. Results from analog modeling and application to the Columbrets Basin (Western Mediterranean). Tectonophysics, 745, 214–228. https://doi.org/10.1016/j.tecto.2018.08.012
    [Google Scholar]
  105. Ruiz, M. (2007). Caracterizació estructural i sismotectònica de la litosfera en el domini Pirenaico‐Cantàbric a partir de mètodes de sísmica activa i pasiva (PhD tesis). University fo Barcelona.
    [Google Scholar]
  106. Ruiz, M., Díaz, J., Pedreira, D., Gallart, J., & Pulgar, J. A. (2017). Crustal structure of the North Iberian continental margin from seismic refraction/wide‐angle reflection profiles. Tectonophysics, 717, 65–82. https://doi.org/10.1016/j.tecto.2017.07.008
    [Google Scholar]
  107. Salas, R., Guimerà, J., Mas, R., Martín‐Closas, C., Meléndez, A., & Alonso, A. (2001). Evolution of the Mesozoic central Iberian Rift System and its Cainozoic inversion (Iberian chain). Peri‐Tethys Memoir, 6, 145–185.
    [Google Scholar]
  108. Sutra, E., & Manatschal, G. (2012). How does the continental crust thin in a hyperextended rifted margin? Insights from the Iberia margin. Geology, 40(2), 139–142. https://doi.org/10.1130/G32786.1
    [Google Scholar]
  109. Sutra, E., Manatschal, G., Mohn, G., & Unternehr, P. (2013). Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins: Strain distribution along rifted margins. Geochemistry, Geophysics, Geosystems, 14(8), 2575–2597. https://doi.org/10.1002/ggge.20135
    [Google Scholar]
  110. Tavani, S., Bertok, C., Granado, P., Piana, F., Salas, R., Vigna, B., & Muñoz, J. A. (2018). The Iberia‐Eurasia plate boundary east of the Pyrenees. Earth‐Science Reviews, 187, 314–337. https://doi.org/10.1016/j.earscirev.2018.10.008
    [Google Scholar]
  111. Tavani, S., Carola, E., Granado, P., Quintà, A., & Muñoz, J. A. (2013). Transpressive inversion of a Mesozoic extensional forced fold system with an intermediate décollement level in the Basque‐Cantabrian Basin (Spain). Tectonics, 32(2), 146–158. https://doi.org/10.1002/tect.20019
    [Google Scholar]
  112. Tavani, S., Quintà, A., & Granado, P. (2011). Cenozoic right‐lateral wrench tectonics in the Western Pyrenees (Spain): The Ubierna Fault System. Tectonophysics, 509(3–4), 238–253. https://doi.org/10.1016/j.tecto.2011.06.013
    [Google Scholar]
  113. Teixell, A., Labaume, P., Ayarza, P., Espurt, N., de Saint Blanquat, M., & Lagabrielle, Y. (2018). Crustal structure and evolution of the Pyrenean‐Cantabrian belt: A review and new interpretations from recent concepts and data. Tectonophysics, 724–725, 146–170. https://doi.org/10.1016/j.tecto.2018.01.009
    [Google Scholar]
  114. Teixell, A., Labaume, P., & Lagabrielle, Y. (2016). The crustal evolution of the west‐central Pyrenees revisited: Inferences from a new kinematic scenario. Comptes Rendus Geoscience, 348(3–4), 257–267. https://doi.org/10.1016/j.crte.2015.10.010
    [Google Scholar]
  115. Tugend, J., Manatschal, G., & Kusznir, N. J. (2015). Spatial and temporal evolution of hyperextended rift systems: Implication for the nature, kinematics, and timing of the Iberian‐European plate boundary. Geology, 43(1), 15–18. https://doi.org/10.1130/G36072.1
    [Google Scholar]
  116. Tugend, J., Manatschal, G., Kusznir, N. J., Masini, E., Mohn, G., & Thinon, I. (2014). Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay‐Pyrenees. Tectonics, 33(7), 1239–1276. https://doi.org/10.1002/2014TC003529
    [Google Scholar]
  117. Van Dalfsen, W., Doornenbal, J. C., Dortland, S., & Gunnink, J. L. (2006). A comprehensive seismic velocity model for the Netherlands based on lithostratigraphic layers. Netherlands Journal of Geosciences, 85(4), 277–292. https://doi.org/10.1017/S0016774600023076
    [Google Scholar]
  118. Vergés, J., & García‐Senz, J. (2001). Mesozoic evolution and Cainozoic inversion of the Pyrenean rift. Mémoires Du Muséum National D'histoire Naturelle, 1993(186), 187–212.
    [Google Scholar]
  119. Wehr, H., Chevrot, S., Courrioux, G., & Guillen, A. (2018). A three‐dimensional model of the Pyrenees and their foreland basins from geological and gravimetric data. Tectonophysics, 734, 16–32. https://doi.org/10.1016/j.tecto.2018.03.017
    [Google Scholar]
  120. Willett, S., Beaumont, C., & Fullsack, P. (1993). Mechanical model for the tectonics of doubly vergent compressional orogens. Geology, 21(4), 371–374. https://doi.org/10.1130/0091‐7613(1993)021<0371:MMFTTO>2.3.CO;2
    [Google Scholar]
  121. Ziegler, P. A. (1988). Post‐Hercynian plate reorganization in the Tethys and Arctic‐North Atlantic domains. In Developments in geotectonics (Vol. 22, pp. 711–755). Elsevier. https://doi.org/10.1016/B978‐0‐444‐42903‐2.50035‐X
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12595
Loading
/content/journals/10.1111/bre.12595
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error