1887
  • E-ISSN: 1365-2117

Abstract

[Abstract

This study combines field structural analysis with thin‐section petrography, U‐Pb dating, and strontium, carbon and oxygen isotopic analysis of calcite fracture fills to constrain the evolution of the 2‐5 km scale paleofluid system around the faulted, plunging fold nose comprising the southern termination of the Gypsum Valley salt wall in the Paradox Basin, U.S.A. Brittle deformation in this region began with the formation of a down‐to‐the‐northeast, counter‐regional fault and then progressed into jointing and faulting in a radial pattern, followed by jointing in a concentric pattern. Coupled with increases in fracture abundance toward the faults, multiple stages of mineralization suggest that the faults served as efficient and long‐lived conduits for vertical fluid migration. Although fracture cement textures and calcite colour are variable throughout the area, the distribution of these characteristics does not correlate with fracture orientation, relative age, stratigraphic or structural position. Irrespective of the type of calcite comprising the fracture cements, δ13C values average near −7‰ (VPDB), whereas δ18O values cluster into groups whose averages are roughly 6‰ apart, with the more negative grouping stratigraphically restricted to fracture cements in Jurassic rocks. The stratigraphic segregation of δ18O values suggests the paleofluid system contained two distinct paleofluids, a more recent one comprised of meteoric waters and an older one comprising brine that originated in Pennsylvanian strata. 87Sr/86Sr ratios in fracture‐filling calcite cements indicate that the older fluid underwent fluid‐rock interaction with Permian strata and that this evolved fluid migrated upwards along the faults until the Triassic or Jurassic. Thereafter, fluid migrating along the faults was more meteoric and appears to have migrated downward along the faults, where it interacted with Permian strata. Consistent U‐Pb dates from carbonates precipitated from the older fluid suggest this stage of the paleofluid system was active around 240 Ma. Local burial history models and published temperatures for fracture cements elsewhere in the basin suggest the younger stage of the paleofluid system occurred during the Latest Cretaceous to Oligocene. This study highlights the spatial and temporal complexity of fluid systems in the vicinity of salt structures and emphasises the need to interpret them through careful integration of high resolution stratigraphic and structural data in the context of evolving salt tectonics.

,

Schematic representation of the hypothetical, time‐varying paleofluid system at the southeastern termination of the Gypsum Valley salt wall. Different colored arrows indicate varying fluid sources or geochemistry. Circular arrows are intended to generally illustrate mixing over a certain scale, not precise flow paths. (a) Paleofluid system that existed at the end of the Pennsylvanian. (b) Paleofluid system that existed around the time of the middle Permian. (c) Paleofluid system that existed at some time after deposition of the Morrison Formation (ca. 147 Ma) and from which Group 2 fracture cements precipitated. (d) Possibly stratigraphically segregated and fault‐controlled paleofluid system that existed in the Latest Cretaceous. Note that unit thicknesses near the diapir are highly schematic because the cross section cuts through the plunging nose of the salt wall, geometries vary rapidly into and out of the plane of the section and there may have been substantial out of plane motion of material. See the stratigraphic column in Figure 2 for the unit names, ages and labels. The fundamentals of each cross‐section geometry are based on the present day geometry shown in Figure 4b as well as the regional cross section restoration of Rowan et al. (2016).

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12649
2022-05-22
2022-06-27
Loading full text...

Full text loading...

References

  1. Alsop, G. I. (1996). Physical modelling of fold and fracture geometries associated with salt diapirism. In: G. I.Alsop, D. J.Blundell, & I.Davison (Eds.), Salt Tectonics (pp. 227–241). Geological Society, London, Special Publications, 100.
    [Google Scholar]
  2. Alsop, G. I., Brown, J. P., Davison, I., & Gibling, M. R. (2000). The geometry of drag zones adjacent to salt diapirs. Journal of the Geological Society, 157, 1019–1029. https://doi.org/10.1144/jgs.157.5.1019
    [Google Scholar]
  3. Alsop, G. I., Weinberger, R., Levi, T., & Marco, S. (2016). Cycles of passive versus active diapirism recorded along an exposed salt wall. Journal of Structural Geology, 84, 47–67. https://doi.org/10.1016/j.jsg.2016.01.008
    [Google Scholar]
  4. Aschoff, J. L., & Giles, K. A. (2005). Salt diapir‐influenced shallow‐marine sediment dispersal patterns: Insights from outcrop analogs. American Association of Petroleum Geologists Bulletin, 89(4), 447–469. https://doi.org/10.1306/10260404016
    [Google Scholar]
  5. Banga, T., Capuano, R. M., & van Nieuwenhuise, D. S. (2002). Fluid flow, stratigraphy and structure in the vicinity of the South Liberty salt dome, Texas. Transactions ‐ Gulf Coast Association of Geological Societies, 52, 25–36.
    [Google Scholar]
  6. Barbeau, D. L. (2003). A flexural model for the Paradox Basin: Implications for the tectonics of the Ancestral Rocky Mountains. Basin Research, 15, 97–115. https://doi.org/10.1046/j.1365‐2117.2003.00194.x
    [Google Scholar]
  7. Barton, M. D., Barton, I. F., & Thorson, J. P. (2018a). Paradox Basin fluids and Colorado Plateau copper, uranium, and vanadium deposits: Introduction: Society of Economic Geologists. Guidebook Series, 59, 1–12.
    [Google Scholar]
  8. Barton, I. F., Barton, M. D., & Thorson, J. P. (2018b). Characteristics of Cu and U‐V deposits in the Paradox Basin (Colorado Plateau) and associated alteration: Society of Economic Geologists. Guidebook Series, 59, 73–102.
    [Google Scholar]
  9. Becker, S. P., Eichhubl, P., Laubach, S. E., Reed, R. M., Lander, R. H., & Bodnar, R. J. (2010). A 48 m.y. history of fracture opening, temperature, and fluid pressure: Cretaceous Travis Peak Formation, East Texas Basin. Geological Society of America Bulletin, 122, 1081–1093. https://doi.org/10.1130/B30067.1
    [Google Scholar]
  10. Beitler, B., Chan, M. A., & Parry, W. T. (2003). Bleaching of Jurassic Navajo Sandstone on Colorado Plateau Laramide highs: evidence of exhumed hydrocarbon supergiants?Geology, 31(12), 1041–1044.
    [Google Scholar]
  11. Beitler, B., Parry, W. T., & Chan, M. A. (2005). Fingerprints of Fluid Flow: Chemical Diagenetic History of the Jurassic Navajo Sandstone, Southern Utah, U.S.A. Journal of Sedimentary Research, 75(4), 547–561.
    [Google Scholar]
  12. Bense, V. F., Gleeson, T., Loveless, S. E., Bour, O., & Scibek, J. (2013). Fault zone hydrogeology. Earth‐Science Reviews, 127, 171–192. https://doi.org/10.1016/j.earscirev.2013.09.008
    [Google Scholar]
  13. Bergman, S. C., Huntington, K. W., & Crider, J. G. (2013). Tracing paleofluid sources using clumped isotope thermometry of diagenetic cements along the Moab Fault, Utah. American Journal of Science, 313, 490–515. https://doi.org/10.2475/05.2013.03
    [Google Scholar]
  14. Bons, P. D. (2001). Development of crystal morphology during unitaxial growth in a progressively widening vein: I. The numerical model. Journal of Structural Geology, 23(6), 865–872. https://doi.org/10.1016/S0191‐8141(00)00159‐0
    [Google Scholar]
  15. Bons, P. D., Elburg, M. A., & Gomez‐Rivas, E. (2012). A review of the formation of tectonic veins and their microstructures. Journal of Structural Geology, 43, 33–62. https://doi.org/10.1016/j.jsg.2012.07.005
    [Google Scholar]
  16. Breit, G. N., Goldhaber, M. B., Shawe, D. R., & Simmons, E. C. (1990). Authigenic barite as an indicator of fluid movement through sandstones within the Colorado Plateau. Journal of Sedimentary Research, 60(6), 884–896. https://doi.org/10.1306/d426763b‐2b26‐11d7‐8648000102c1865d
    [Google Scholar]
  17. Breit, G. N., & Meunier, J. (1990). Fluid inclusion, δ18O, and 87Sr/86Sr Evidence for the origin of fault‐controlled copper mineralization. Lisbon Valley, Utah, and Slick Rock District, Colorado.Economic Geology, 85, 884–891.
    [Google Scholar]
  18. Bruno, R. S., & Hanor, J. S. (2003). Large‐Scale Fluid Migration Driven by Salt Dissolution, Bay Marchand Dome, Offshore Louisiana: Gulf Coast Association of Geological Societies/Gulf Coast Section of Society for Sedimentary Geology Transactions 53rd Annual Convention, vol. 53, p. 97–107.
  19. Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24(11), 1025–1028. https://doi.org/10.1130/0091‐7613(1996)024<1025:FZAAPS>2.3CO;2
    [Google Scholar]
  20. Canova, D. P., Fischer, M. P., Jayne, R. S., & Pollyea, R. M. (2018). Advective heat transport and the salt chimney effect: A numerical analysis. Geofluids, 2018, 1–18.
    [Google Scholar]
  21. Carruthers, D., Cartwright, J., Jackson, M. P. A., & Schutjens, P. (2013). Origin and timing of layer‐bound radial faulting around North Sea salt stocks: New insights into the evolving stress state around rising diapirs. Marine and Petroleum Geology, 48, 130–148. https://doi.org/10.1016/j.marpetgeo.2013.08.001
    [Google Scholar]
  22. Chan, A., Parry, W., Petersen, E., & Hall, C. (2001). 40Ar/39Ar age and chemistry of manganese mineralization in the Moab and Lisbon fault systems, southeastern Utah. Geology, 29(4), 331–334. https://doi.org/10.1130/0091‐7613(2001)029<0331:AAAACO>2.0.CO;2
    [Google Scholar]
  23. Chan, M. A., Parry, W. T., & Bowman, J. R. (2000). Diagenetic Hematite and Manganese Oxides and Fault‐Related Fluid Flow in Jurassic Sandstones. Southeastern Utah: Bulletin of the American Association of Petroleum Geologists, 84(9), 1281–1310. https://doi.org/10.1306/A9673E82‐1738‐11D7‐8645000102C1865D
    [Google Scholar]
  24. Chenoweth, W. L. (1996). The uranium industry in the Paradox Basin. In: A. C.Huffman Jr, W. R.Lund, & L. H.Godwin (Eds.), Geology and Resources of the Paradox Basin: Utah Geological Association Guidebook 25 (pp. 95–108). Utah Geological Association.
    [Google Scholar]
  25. Chew, D. M., Petrus, J. A., & Kamber, B. S. (2014). U‐Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology, 363, 185–199. https://doi.org/10.1016/j.chemgeo.2013.11.006
    [Google Scholar]
  26. Choi, J.‐H., Edwards, P., Ko, K., & Kim, Y.‐S. (2016). Definition and classification of fault damage zones: A review and a new methodological approach. Earth‐Science Reviews, 152, 70–87. https://doi.org/10.1016/j.earscirev.2015.11.006
    [Google Scholar]
  27. Clayton, A. L. (1986). Chemical and Sr Isotope Investigations of the Lo Permian Hutchinson Salt Member of the Wellington Formation, Rice County, Kansas. MSc Thesis, Kansas State University, Manhattan, Kansas (p. 78).
  28. Coleman, A. J., Jackson, C.‐ A.‐L., Duffy, O. B., & Nikolinakou, M. A. (2018). How, where, and when do radial faults grow near salt diapirs?Geology, 46(7), 655–658. https://doi.org/10.1130/G40338.1
    [Google Scholar]
  29. Condon, S. M. (1997). Geology of the Pennsylvanian and Permian Cutler Group and Permian Kaibab Limestone in the Paradox Basin, Southeastern Utah and Southwestern Colorado. US Department of the Interior, US Geological Survey Bulletin, 2000‐P, p. 46.
  30. Criss, R. E., & Taylor, H. P. (1986). Meteoric‐hydrothermal systems. In: J. W.Valley, H. P.TaylorJr, & J. R.O’Neil (Eds.), Stable isotopes in high‐temperature geological processes. Reviews in Mineralogy, v. 16, (p. 373–424). doi.org/https://doi.org/10.1515/9781501508936‐016
    [Google Scholar]
  31. Davison, I., Alsop, G. I., Evans, N. G., & Safaricz, M. (2000). Overburden deformation patterns and mechanisms of salt diapir penetration in the Central Graben, North Sea. Marine and Petroleum Geology, 17(5), 601–618. https://doi.org/10.1016/S0264‐8172(00)00011‐8
    [Google Scholar]
  32. Deatrick, K. T. (2019). Sequence stratigraphy, diagenesis, and depositional facies of an exposed megaflap: Pennsylvanian Hermosa Group, Gypsum Valley salt wall, Paradox Basin, Colorado. Master thesis, University of Texas, El Paso.
  33. Deatrick, K. T., Giles, K., Langford, R., Rowan, M. G., & Hearon, T. E.IV (2015). Geometry and Depositional Facies of an Exposed Megaflap: Pensylvanian Honaker Trail Formation, Gypsum Valley Salt Wall, Paradox Basin, Colorado (abs.). AAPG Annual Convention and ExhibitionDenver, COMay 31‐June 3, 2015.
  34. Drost, K., Chew, D., Petrus, J. A., Scholze, F., Woodhead, J. D., Schneider, J. W., & Harper, D. A. T. (2018). An image mapping approach to U‐Pb LA‐ICP‐MS carbonate dating and applications to direct dating of carbonate sedimentation. Geochemistry, Geophysics, Geosystems, 19(12), 4631–4648. https://doi.org/10.1029/2018GC007850
    [Google Scholar]
  35. Eichhubl, P., Davatzes, N. C., & Becker, S. P. (2009). Structural and diagenetic control of fluid migration and cementation along the Moab Fault, Utah. AAPG Bulletin, 93(5), 653–681. https://doi.org/10.1306/02180908080
    [Google Scholar]
  36. Enos, J. S., & Kyle, J. R. (2002). Diagenesis of the Carrizo Sandstone at Butler salt dome, East Texas Basin, U.S.A.: Evidence for fluid‐sediment interaction near halokinetic structures. Journal of Sedimentary Research, 72(1), 68–81. https://doi.org/10.1306/061101720068
    [Google Scholar]
  37. Esch, W. L., & Hanor, J. S. (1995). Fault and fracture control of fluid and diagenesis around the Iberia salt dome, Iberia Parish, Louisiana. Gulf Coast Association of Geological Societies Transactions, 45, 181–187.
    [Google Scholar]
  38. Escosa, F. O., Rowan, M. G., Giles, K. A., Deatrick, K. T., Mast, A. M., Langford, R. P., Hearon, T. E. IV, & Roca, E. (2018). Lateral terminations of salt walls and megaflaps: An example from Gypsum Valley Diapir, Paradox Basin, Colorado, USA. Basin Research, 31, 191–212.
    [Google Scholar]
  39. Evans, D. G., Nunn, J. A., & Hanor, J. S. (1991). Mechanisms driving groundwater flow near salt domes. Geophysical Research Letters, 18, 927–930. https://doi.org/10.1029/91GL00908
    [Google Scholar]
  40. Evans, M. A., & Fischer, M. P. (2012). On the distribution of fluids in folds: A review of controlling factors and processes. Journal of Structural Geology, 44, 2–24. https://doi.org/10.1016/j.jsg.2012.08.003
    [Google Scholar]
  41. Ge, H., Jackson, M. P. A., & Vendeville, B. C. (1996). Extensional origin of breached Paradox diapirs, Utah and Colorado: Field observations and scaled physical models. In: A. C.Huffman Jr, W. R.Lund, & L. H.Godwin (Eds.), Geology and Resources of the Paradox Basin: Utah Geological Association Guidebook 25 (pp. 285–293).Utah Geological Association.
    [Google Scholar]
  42. Ghazban, F., & Al‐Asam, I. S. (2010). Hydrocarbon‐induced diagenetic dolomite and pyrite formation associated with the Hormoz Island salt dome, offshore Iran. Journal of Petroleum Geology, 33(2), 1–14. https://doi.org/10.1111/j.1747‐5457.2010.00472.x
    [Google Scholar]
  43. Giles, K. A., Druke, D. C., Mercer, D. W., & Hunnicutt‐Mack, L. (2008). Controls on Upper Cretaceous (Maastrichtian) heterozoan carbonate platforms developed on salt diapirs, La Popa Basin, NE Mexico. In J.Lukasik, & J. A. T.Simo (Eds.), Controls on Carbonate Platform and Reef Development. SEPM (Society for Sedimentary Geology) Special Publication, 89. (p. 107–124).
    [Google Scholar]
  44. Giles, K. A., & Lawton, T. F. (2002). Halokinetic sequence stratigraphy adjacent to the El Papalote diapir, northeastern Mexico. AAPG Bulletin, 86(5), 823–840. https://doi.org/10.1306/61EEDBAC‐173E‐11D7‐8645000102C1865D
    [Google Scholar]
  45. Gregory, R. T., & Criss, R. E. (1986). Isotopic exchange in open and closed systems. In J. W.Valley, H. P.TaylorJr, & J. R.O’Neil (Eds.), Stable isotopes in high‐temperature Geological Processes, Reviews in Mineralogy, (vol. 16, pp. 91–127). The Mineralogical Society of America. https://doi.org/10.1515/9781501508936‐008
    [Google Scholar]
  46. Hahn, G. A., & Thorson, J. P. (2005). Geology of the Lisbon Valley sandstone‐hosted disseminated copper deposits, San Juan County, Utah. In J. P.Thorson (Ed.), Lisbon Valley sediment‐hosted copper deposits and Paradox Basin fluids field trip. Guidebook Series of the Society of Economic Geologists Inc., Guidebook, 37, (pp. 19–42).The Society of Economic Geologists.
    [Google Scholar]
  47. Hanor, J. S., & McIntosh, J. C. (2007). Diverse origins and timing of formation of basinal brines in the Gulf of Mexico sedimentary basin. Geofluids, 7, 227–237.
    [Google Scholar]
  48. Hansley, P. L. (1995). Diagenetic and burial history of the Lower Permian White Rim Sandstone in the Tar Sand Triangle, Paradox Basin, Southeastern Utah: U.S. Geological Survey Bulletin 2000‐I, p. 34.
  49. Hearon, T. E., Rowan, M. G., Giles, K. A., Kernen, R. A., Gannaway, C. E., Lawton, T. F., & Fiduk, J. C. (2015). Allochthonous salt initiation and advance in the northern Flinders and eastern Willouran ranges, South Australia: Using outcrops to test subsurface‐based models from the northern Gulf of Mexico. AAPG Bulletin, 99(2), 293–331.
    [Google Scholar]
  50. Hill, C. A., Polyak, V. J., Asmerom, Y., & Provencio, P. (2016). Constraints on a Late Cretaceous uplift, denudation, and incision of the Grand Canyon region, southwestern Colorado Plateau. USA, from U‐Pb Dating of Lacustrine Limestone. Tectonics, 35(4), 896–906. https://doi.org/10.1002/2016TC004166
    [Google Scholar]
  51. Hite, R. J., & Buckner, D. H. (1981). Stratigraphic Correlations, Facies Concepts, and Cyclicity in Pennsylvanian Rocks of the Paradox Basin. Rocky Mountain Association of Geologists, 1981 Field Conference, p. 13.
  52. Horstwood, M. S. A., Košler, J., Gehrels, G., Jackson, S. E., McLean, N. M., Paton, C., Pearson, N. J., Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J. F., Condon, D. J., & Schoene, B. (2016). Community‐derived standards for LA‐ICP‐MS U‐(Th‐)Pb geochronology – uncertainty propagation. Age Interpretation and Data Reporting. Geostandards and Geoanalytical Research, 40(3), 311–332.
    [Google Scholar]
  53. Hudec, M. R., & Jackson, M. P. A. (2007). Terra infirma: Understanding salt tectonics. Earth‐Science Reviews, 82(1), 1–28. https://doi.org/10.1016/j.earscirev.2007.01.001
    [Google Scholar]
  54. Jackson, M. P. A., & Talbot, C. J. (1986). External shapes, strain rates, and dynamics of salt structures. Geological Society of America Bulletin, 97, 305–323.
    [Google Scholar]
  55. Jacobs, M., & Kerr, P. (1965). Hydrothermal alteration along the Lisbon Valley fault zone, San Juan County, Utah. Geological Society of America, GSA Bulletin, 76, 423–440.
    [Google Scholar]
  56. Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D. E., Stracke, A., Birbaum, K., Frick, D. A., Günther, D., & Enzweiler, J. (2011). Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards and Geoanalytical Research, 35(4), 397–429. https://doi.org/10.1111/j.1751‐908X.2011.00120.x
    [Google Scholar]
  57. Kenroy, P. R. (2013). Fracture‐Controlled Paleohydrologic Systems in the Vicinity of Salt Diapirs. M.S. Thesis, Northern Illinois University, (p. 184).
  58. Kim, S.‐T., & O’Neil, J. R. (1997). Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochemica Et Cosmochimica Acta, 61(16), 3461–3475. https://doi.org/10.1016/S0016‐7037(97)00169‐5
    [Google Scholar]
  59. Kloppmann, W., Negrel, P. H., Casanova, J., Klinge, H., Schelkes, K., & Guerrot, C. (2001). Halite dissolution derived brines in the vicinity of a Permian salt dome (N German Basin). Evidence from boron, strontium, oxygen, and hydrogen isotopes. Geochimica et Cosmochimica Acta, 65(22), 4087–4101. https://doi.org/10.1016/S0016‐7037(01)00640‐8
    [Google Scholar]
  60. Kluth, C. F., & Coney, P. J. (1981). Plate tectonics of the Ancestral Rocky Mountains. Geology, 9, 10–15. https://doi.org/10.1130/0091‐7613(1981)9<10:ptotar>2.0.co;2
    [Google Scholar]
  61. Kluth, C. F., & DuChene, H. R. (2009). Late Pennsylvanian and early Permian structural geology and tectonic history of the Paradox Basin and Uncompahgre uplift, Colorado and Utah. In W. S.Houston, L. L.Wray, & P. G.Moreland (Eds.), The Paradox Basin revisited—New developments in petroleum systems and basin analysis (pp. 178–197). Rocky Mountain Association of Geologists, Special Paper (CD‐ROM).
    [Google Scholar]
  62. Laubach, S. E. (2003). Practical approaches to identifying sealed and open fractures. AAPG Bulletin, 87(4), 561–579. https://doi.org/10.1306/11060201106
    [Google Scholar]
  63. Litwin, R. J., Traverse, A., & Ash, S. R. (1991). Preliminary palynological zonation of the Chinle Formation, southwestern U.S.A., and its correlation to the Newark Supergroup (eastern U.S.A.). Review of Paleobotany and Palynology, 77, 269–287. https://doi.org/10.1016/0034‐6667(91)90028‐2
    [Google Scholar]
  64. Ludwig, K. R. (2012). User's manual for Isoplot 3.75, Berkley Geochronology Center Special. Publication, 5, 1–75.
  65. MacIntyre, T., Thorson, J., & Hitzman, M. (2005) Fault‐related bleaching and sedimentary rock‐hosted copper mineralization around the Paradox Valley, Montrose County, Colorado. In H.Rhodes, R.Steininger, & P.Vikre (Eds.), Geological society of nevada symposium volume (pp. 709–712). The Geological Society of Nevada.
    [Google Scholar]
  66. Matthews, W. J., Hampson, G. J., Trudgill, B. D., & Underhill, J. R. (2007). Controls on fluviolacustrine reservoir distribution and architecture in passive salt‐diapir provinces: Insights from outcrop analogs. American Association of Petroleum Geologists Bulletin, 91(10), 1367–1403. https://doi.org/10.1306/05310706123
    [Google Scholar]
  67. McArthur, J. M., Howarth, R. J., & Bailey, T. R. (2001). Strontium isotope stratigraphy: LOWESS Version 3: Best fit to the marine Sr‐ isotope curve for 0–509 MA and accompanying look‐up table for deriving numerical age. The Journal of Geology, 109, 155–170. https://doi.org/10.1086/319243
    [Google Scholar]
  68. Morrison, S. J., & Parry, W. T. (1986). Formation of carbonate‐sulfate veins associated with copper ore deposits from saline basin brines, Lisbon Valley, Utah; fluid inclusion and isotopic evidence. Economic Geology, 81, 1853–1866. https://doi.org/10.2113/gsecongeo.81.8.1853
    [Google Scholar]
  69. Neson, S. T. (2000). Sample vial influences on the accuracy and precision of carbon and oxygen isotope ratio analysis in continuous flow mass spectrometric applications. Rapid Communications in Mass Spectrometry, 14, 293–297.
    [Google Scholar]
  70. Nikolinakou, M. A., Heidari, M., Flemings, P. B., & Hudec, M. R. (2018). Geomechanical modeling of pore pressure in evolving salt systems. Marine and Petroleum Geology, 93, 272–286. https://doi.org/10.1016/j.marpetgeo.2018.03.013
    [Google Scholar]
  71. Nuccio, V. F. & Condon, M. (1996). Burial and thermal history of the Paradox basin, Utah and Colorado, and petroleum potential of the Middle Pennsylvanian Paradox Formation. US Department of the Interior, US Geological Survey Bulletin, 2000‐O, p. 41.
  72. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508–2518. https://doi.org/10.1039/C1JA10172B
    [Google Scholar]
  73. Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A., & Maas, R. (2010). Improved laser ablation U‐Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, 11(3), Q0AA06. doi:https://doi.org/10.1029/2009gc002618
    [Google Scholar]
  74. Peacock, D. C. P., Dimmen, V., Rotevatn, A., & Sanderson, D. J. (2017). A broader classification of damage zones. Journal of Structural Geology, 102, 179–192. https://doi.org/10.1016/j.jsg.2017.08.004
    [Google Scholar]
  75. Peterson, J. A., & Hite, R. J. (1969). Pennsylvanian evaporite‐carbonate cycles and their relation to petroleum occurrence, southern Rocky Mountains. American Association of Petroleum Geologists Bulletin, 53(4), 884–908. https://doi.org/10.1306/5D25C807‐16C1‐11D7‐8645000102C1865D
    [Google Scholar]
  76. Petrus, J. A., Chew, D. M., Leybourne, M. I., & Kamber, B. S. (2017). A new approach to laser‐ablation inductively‐coupled‐plasma mass‐spectrometry (LA‐ICP‐MS) using the flexible map interrogation tool ‘Monocle’. Chemical Geology, 463, 76–93. https://doi.org/10.1016/j.chemgeo.2017.04.027
    [Google Scholar]
  77. Petrus, J. A., & Kamber, B. S. (2012). VizualAge: A novel approach to laser ablation ICP‐MS U‐Pb geochronology data reduction. Geostandards and Geoanalytical Research, 36(3), 247–270. https://doi.org/10.1111/j.1751‐908X.2012.00158.x
    [Google Scholar]
  78. Pichel, L. M., & Jackson, C. A. L. (2020). Four‐dimensional variability of composite halokinetic sequences. Basin Research, 32, 1277–1299. 10.1111.bre.12428
    [Google Scholar]
  79. Reuning, L., Schoenherr, J., Heimann, A., Urai, J. L., Littke, R., Kukla, P. A., & Rawahi, Z. (2009). Constraints on the diagenesis, stratigraphy and internal dynamics of the surface‐piercing salt domes in the Ghaba Salt Basin (Oman): A comparison to the Ara Group in the South Oman Salt Basin. GeoArabia, 14(3), 83–120.
    [Google Scholar]
  80. Rigenbach, J.‐C., Salel, J.‐F., Kergaravat, C., Ribes, C., Bonnel, C., & Callot, J.‐P. (2013). Salt tectonics in the Sivas Basin, Turkey: Outstanding seismic analogues from outcrops. First Break, 31, 93–101. https://doi.org/10.3997/1365‐2397.2013016
    [Google Scholar]
  81. Roberts, N. M. W., Drost, K., Horstwood, M. S. A., Condon, D. J., Chew, D., Drake, H., Milodowski, A. E., Mclean, N. M., Smye, A. J., Walker, R. J., Haslam, R., Hodson, K., Imber, J., Beaudoin, N., & Lee, J. K. (2020). LA‐ICP‐MS U‐Pb carbonate geochronology: strategies, progress, and application to fracture‐fill calcite. Geochronology Discuss, 2019, 1–67. https://doi.org/10.5194/gchron‐2019‐15
    [Google Scholar]
  82. Roberts, N. M. W., Rasbury, E. T., Parrish, R. R., Smith, C. J., Horstwood, M. S. A., & Condon, D. J. (2017). A calcite reference material for LA‐ICP‐MS U‐Pb geochronology. Geochemistry, Geophysics, Geosystems, 18(7), 2807–2814. https://doi.org/10.1002/2016GC006784
    [Google Scholar]
  83. Rohrbaugh, M. B., Dunne, W. M., & Mauldon, M. (2002). Estimated fracture trace intensity, density, and mean length using circular scan lines and windows. AAPG Bulletin, 86(12), 2089–2104. https://doi.org/10.1306/61EEDE0E‐173E‐11D7‐8645000102C1865D
    [Google Scholar]
  84. Rouvier, H., Perthuisot, V., & Manouri, A. (1985). Pb‐Zn deposits and salt‐bearing diapirs in southern Europe and north Africa. Economic Geology, 80, 666–687. https://doi.org/10.2113/gsecongeo.80.3.666
    [Google Scholar]
  85. Rowan, M. G., Giles, K. A., Hearon, T. E.IV, & Fiduk, J. C. (2016). Megaflaps adjacent to salt diapirs. AAPG Bulletin, 100(11), 1723–1747. https://doi.org/10.1306/05241616009
    [Google Scholar]
  86. Rowan, M. G., Jackson, M. P. A., & Trudgill, B. D. (1999). Salt‐related fault families and fault welds in the Northern Gulf of Mexico. AAPG Bulletin, 83(9), 1454–1484. https://doi.org/10.1306/E4FD41E3‐1732‐11D7‐8645000102C1865D
    [Google Scholar]
  87. Rowan, M. G., Lawton, T. F., Giles, K. A., & Ratliff, R. A. (2003). Near‐salt deformation in La Popa basin, Mexico, and the northern Gulf of Mexico: A general model for passive diapirism. American Association of Petroleum Geologists Bulletin, 87(5), 733–756. https://doi.org/10.1306/01150302012.
    [Google Scholar]
  88. Rowan, M. G., Muñoz, J. A., Giles, K. A., Roca, E., Hearon, T. E. IV, Fiduk, J. C., Ferrer, O., & Fischer, M. P. (2020). Folding and fracturing of rocks adjacent to salt diapirs. Journal of Structural Geology.
    [Google Scholar]
  89. Sanford, R. F. (1982). Preliminary model of regional Mesozoic ground‐water flow and uranium deposition in the Colorado Plateau. Geology, 10, 348–352. https://doi.org/10.1130/0091‐7613(1982)10<348:PMORMG>2.0.CO;2
    [Google Scholar]
  90. Sarkar, A., Nunn, J. A., & Hanor, J. S. (1995). Free thermohaline convection beneath allochthonous salt sheets; an agent for salt tectonics and fluid flow in Gulf Coast sediments: Papers Presented at the Gulf Coast Section. Society of Economic Paleontologists and Mineralogists Foundation Annual Research Conference, 16, 245–252.
    [Google Scholar]
  91. Savage, H. M., & Brodsky, E. E. (2011). Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones. Journal of Geophysical Research, 116, B03405. https://doi.org/10.1029/2010JB007665
    [Google Scholar]
  92. Schultz‐Ela, D. D., Jackson, M. P. A., & Vendeville, B. C. (1993). Mechanics of active salt diapirism. Tectonophysics, 228, 275–312. https://doi.org/10.1016/0040‐1951(93)90345‐K
    [Google Scholar]
  93. Shawe, D. (2011). Uranium‐vanadium deposits of the Slick Rock district, Colorado: U.S. Geological Survey, Prof. Paper 576‐F, p. 89.
  94. Shipton, Z. K., & Cowie, P. A. (2001). Damage zone and slip‐surface evolution over μm to km scales in high‐porosity Navajo sandstone, Utah. Journal of Structural Geology, 23, 1825–1844. https://doi.org/10.1016/S0191‐8141(01)00035‐9
    [Google Scholar]
  95. Shoemaker, E. M. (1954). Structural Features of Southeastern Utah and Adjacent Parts of Colorado, New Mexico, and Arizona. Utah Geological Society, Guidebook to the Geology of Utah, No, 9, pp. 48–69.
  96. Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two‐stage model. Earth and Planetary Science Letters, 26, 207–221. https://doi.org/10.1016/0012‐821X(75)90088‐6
    [Google Scholar]
  97. Steen, A. K., Nunn, J. A., & Hanor, J. S. (2011). Indications of formation water flow and compartmentalization on the flank of a salt structure derived from salinity and seismic data. Geofluids, 11(2), 199–208.
    [Google Scholar]
  98. Taylor, H. P. (1974). Application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69(6), 843–883. https://doi.org/10.2113/gsecongeo.69.6.843
    [Google Scholar]
  99. Taylor, H. P. (1977). Water/rock interactions and the origin of H2O in granitic batholiths. Journal of the Geological Society of London, 133(6), 509–558. https://doi.org/10.1144/gsjgs.133.6.0509
    [Google Scholar]
  100. Thompson Jobe, J. A., Giles, K. A., Hearon, T. E.IV, Rowan, M. G., Trudgill, B., Gannaway Dalton, C. E., & Jobe, Z. R. (2019). Controls on the structural and stratigraphic evolution of the megaflap‐bearing Sinbad Valley salt wall, NE Paradox Basin, SW Colorado. Geosphere, 16(1), 297–328. https://doi.org/10.1130/GES02089.1
    [Google Scholar]
  101. Thorson , (2018). Paradox Basin fluids and Colorado Plateau copper, uranium, and vanadium deposits: Overview: Society of Economic Geologists. Guidebook Series, 59, 13–46.
    [Google Scholar]
  102. Trudgill, B. D. (2011). Evolution of salt structures in the northern Paradox Basin: Controls on evaporite deposition, salt wall growth, and supra‐salt stratigraphic architecture. Basin Research, 23(2), 208–238. https://doi.org/10.1111/j.1365‐2117.2010.00478.x
    [Google Scholar]
  103. Trujillo, K. C., Chamberlain, K. R., & Strickland, A. (2006). Oxfordian U/Pb ages from SHRIMP analysis for the Upper Jurassic Morrison Formation of southeastern Wyoming with implications for biostratigraphic correlations. Geological Society of America Abstracts with Programs, 38(6), 7.
    [Google Scholar]
  104. Trujillo, K. C., & Kowallis, B. J. (2015). Recalibrated legacy 40Ar/39Ar ages for the Upper Jurassic Morrison Formation, Western Interior, U.S.A.Geology of the Intermountain West, 2, 1–8.
    [Google Scholar]
  105. Vandeginste, V., Stehle, M. C., Jourdan, A.‐L., Bradbury, H. J., Manning, C., & Cosgrove, J. W. (2017). Diagenesis in salt dome roof strata: Barite ‐ calcite assemblage in Jebel Madar, Oman. Marine and Petroleum Geology, 86, 408–425.
    [Google Scholar]
  106. Veizer, J., Ala, D., Azmy, K., Brukschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawelleck, F., Podlaha, O., & Strauss, H. (1999). 87Sr/86Sr, δ13C, and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161(1‐3), 59–88.
    [Google Scholar]
  107. Villa, I. M., De Bièvre, P., Holden, N. E., & Renne, P. R. (2015). IUPAC‐IUGS recommendation on the half life of 87Rb. Geochimica Et Cosmochimica Acta, 164, 382–385.https://doi.org/https://doi.org/10.1016/j.gca.2015.05.025
    [Google Scholar]
  108. Wareham, C. D., Rice, C. M., Boyce, A. J., & Rogers, G. (1998). S, C, Sr, and Pb sources in the Pliocene Silver Creek porphyry, Mo system Rio, Colorado. Economic Geology, 93(1), 32–46. https://doi.org/10.2113/gsecongeo.93.1.32
    [Google Scholar]
  109. Wigley, M., Kampman, N., Dubacq, B., & Bickle, M. (2012). Fluid‐mineral reactions and trace metal mobilization in an exhumed natural CO2 reservoir, Green River, Utah. Geology, 40(6), 555–558. https://doi.org/10.1130/G32946
    [Google Scholar]
  110. Wilson, A., & Ruppel, C. (2007). Salt tectonics and shallow subseafloor fluid convection: Models of coupled fluid‐heat‐salt transport. Geofluids, 7(4), 377–386.
    [Google Scholar]
  111. Withjack, M. O., & Scheiner, C. (1982). Fault patterns associated with domes–an experimental and analytical study. American Association of Petroleum Geologists Bulletin, 66, 302–316. https://doi.org/10.1306/03B59AFD‐16D1‐11D7‐8645000102C1865D
    [Google Scholar]
  112. Woodhead, J. D., & Hergt, J. M. (2001). Strontium, neodymium and lead isotope analyses of NIST Glass certified reference materials: SRM 610, 612, 614. Geostandards Newsletter, 25(2–3), 261–266. https://doi.org/10.1111/j.1751‐908X.2001.tb00601.x
    [Google Scholar]
  113. Yu, Z., Lerche, I., & Lowrie, A. (1992). Thermal impact of salt: Simulation of thermal anomalies in the Gulf of Mexico. Pure and Applied Geophysics, 138(2), 181–192. https://doi.org/10.1007/BF00878894
    [Google Scholar]
  114. Zechner, E., Dresmann, H., Mocuta, M., Danchiv, A., Huggenberger, P., Scheidler, S., Wiesmeier, S., Popa, I., & Zlibut, A. (2019). Salt dissolution potential estimated from two‐dimensional vertical thermohaline flow and transport modeling along a Transylvanian salt diapir, Romania. Hydrogeology Journal, 27, 1245–1256. https://doi.org/10.1007/s10040‐018‐1912‐1
    [Google Scholar]
  115. Zhuo, Q. G., Meng, F. W., Zhao, M. J., Li, Y., Lu, X. S., & Ni, P. (2016). The salt chimney effect: Delay of thermal evolution of deep hydrocarbon source rocks due to high thermal conductivity of evaporite. Geofluids, 16(3), 440–451.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12649
Loading
/content/journals/10.1111/bre.12649
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): fault; fluid; Gypsum Valley; Paradox Basin; salt; U‐Pb carbonate dating
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error