1887
Volume 34, Issue 3
  • E-ISSN: 1365-2117

Abstract

[Abstract

An implicit assumption of most sedimentary provenance analyses is a direct link between source and sink. However, recycling of sedimentary detritus from pre‐existing strata interrupts the direct source‐to‐sink link and can result in incorrect interpretations of paleogeography and paleodrainage. Detrital zircon is the favoured proxy of contemporary provenance studies, but its physiochemical resilience makes it particularly prone to recycling. In this study, we integrate geochemical (age, isotope, and trace elements) and grain roundness data of multiple detrital minerals with different physiochemical stabilities (zircon, tourmaline, rutile, and apatite) to evaluate the importance of recycling in an ancient sedimentary basin. We focus on the early Cambrian Lalun Formation of Iran, which forms part of a laterally extensive sandstone‐rich succession deposited along the northern margin of Gondwana. The Lalun Formation preserves a distinct change of compositional maturity between lower arkose and shale units and an upper unit of quartz‐rich sandstone. Detrital zircon, rutile, and apatite data demonstrate that all units of the Lalun Formation share a common source in the Arabian‐Nubian Shield. Whole‐rock geochemical data further indicate that all units have similar chemical alteration indices, suggesting the change in compositional maturity is not a product of differential weathering of the source region. Analysis of grain roundness reveals that detrital zircon, rutile, and tourmaline in the upper quartz‐rich unit are typically more rounded than those in the underlying arkose and shale units. In contrast, detrital apatite grains are nearly all angular in the quartz‐rich unit but mostly rounded in the lower arkose and shale. Together, the detrital mineral provenance, whole‐rock geochemistry, and morphological data are consistent with recycling of the lower arkose and shale units of the Lalun Formation into the uppermost quartz‐rich unit, with the latter also receiving a component of first‐cycle detritus represented by angular detrital apatite. Our findings demonstrate that integrating the features of detrital minerals acquired during a sedimentary cycle (grain rounding and diversity of mineral assemblages) with features inherited from their ultimate source rocks (age, isotopic, and geochemical proxies) can assist in recognising sediment recycling in ancient strata.

,

Sedimentary basins can receive first‐ or recycled detritus or a mixture of both. Inherited features of mineral grains (age, isotope, and trace elements) can help in characterizing the source area of the detritus. Acquired features during the sedimentary cycle (changes in the diversity of mineral assemblages and grain roundness) can help in differentiating between recycled versus first‐cycle sediments.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12650
2022-05-22
2024-04-27
Loading full text...

Full text loading...

References

  1. Agar, R. A. (1992). The tectono‐metallogenic evolution of the arabian shield. Precambrian Research, 58(1), 169–194. https://doi.org/10.1016/0301‐9268(92)90118‐8
    [Google Scholar]
  2. Alavi, M. (2004). Regional stratigraphy of the Zagros fold‐thrust belt of Iran and its proforeland evolution. American Journal of Science, 304(1), 1–20. https://doi.org/10.2475/ajs.304.1.1
    [Google Scholar]
  3. Al‐Husseini, M. I. (2010). Middle EAST geologic time scale 2010: Early Cambrian Asfar Sequence. GeoArabia, 15(1), 137–160. https://doi.org/10.2113/geoarabia1501137
    [Google Scholar]
  4. Al‐Husseini, M. (2011). Late Ediacaran to early Cambrian (Infracambrian) Jibalah Group of Saudi Arabia. GeoArabia, 16(3), 69–90. https://doi.org/10.2113/geoarabia160369
    [Google Scholar]
  5. Ali, K. A., Zoheir, B. A., Stern, R. J., Andresen, A., Whitehouse, M. J., & Bishara, W. W. (2016). Lu–Hf and O isotopic compositions on single zircons from the North Eastern Desert of Egypt, Arabian‐Nubian Shield: Implications for crustal evolution. Gondwana Research, 32, 181–192. https://doi.org/10.1016/j.gr.2015.02.008
    [Google Scholar]
  6. Al‐Saleh, A. M. (2012). The Kirsh gneiss dome: An extensional metamorphic core complex from the SE Arabian Shield. Arabian Journal of Geosciences, 5(2), 335–344. https://doi.org/10.1007/s12517‐010‐0179‐1
    [Google Scholar]
  7. Andersen, T., Elburg, M., & Cawthorn‐Blazeby, A. (2016). U–Pb and Lu–Hf zircon data in young sediments reflect sedimentary recycling in eastern South Africa. Journal of the Geological Society, 173(2), 337. https://doi.org/10.1144/jgs2015‐006
    [Google Scholar]
  8. Andò, S., Garzanti, E., Padoan, M., & Limonta, M. (2012). Corrosion of heavy minerals during weathering and diagenesis: A catalog for optical analysis. Sedimentary Geology, 280, 165–178. https://doi.org/10.1016/j.sedgeo.2012.03.023
    [Google Scholar]
  9. Avigad, D., Sandler, A., Kolodner, K., Stern, R. J., McWilliams, M., Miller, N., & Beyth, M. (2005). Mass‐production of Cambro–Ordovician quartz‐rich sandstone as a consequence of chemical weathering of Pan‐African terranes: Environmental implications. Earth and Planetary Science Letters, 240(3), 818–826. https://doi.org/10.1016/j.epsl.2005.09.021
    [Google Scholar]
  10. Azizi, H., Chung, S.‐L., Tanaka, T., & Asahara, Y. (2011). Isotopic dating of the Khoy metamorphic complex (KMC), northwestern Iran: A significant revision of the formation age and magma source. Precambrian Research, 185(3), 87–94. https://doi.org/10.1016/j.precamres.2010.12.004
    [Google Scholar]
  11. Barham, M., Kirkland, C. L., Hovikoski, J., Alsen, P., Hollis, J., & Tyrrell, S. (2020). Reduce or recycle? Revealing source to sink links through integrated zircon–feldspar provenance fingerprinting. Sedimentology, 68(2), 531–556. https://doi.org/10.1111/sed.12790
    [Google Scholar]
  12. Bayet‐Goll, A., & Daraei, M. (2020). Palaeoecological, sedimentological and stratigraphical insights into microbially induced sedimentary structures of the lower Cambrian successions of Iran. Sedimentology, 67(6), 3199–3235. https://doi.org/10.1111/sed.12745
    [Google Scholar]
  13. Bayet‐Goll, A., Geyer, G., & Daraei, M. (2018). Tectonic and eustatic controls on the spatial distribution and stratigraphic architecture of late early Cambrian successions at the northern Gondwana margin: The siliciclastic‐carbonate successions of the Lalun Formation in central Iran. Marine and Petroleum Geology, 98, 199–228. https://doi.org/10.1016/j.marpetgeo.2018.08.002
    [Google Scholar]
  14. Becker, H., Förster, H., & Soffel, H. C. (1973). Central Iran, a former part of Gondwanaland? Palaeomagnetic evidence from Infracambrian rocks and iron ores of the Bafq area, Central Iran. Zeitschrift für Geophysik, 39, 953–936.
    [Google Scholar]
  15. Be'eri‐Shlevin, Y., Katzir, Y., Blichert‐Toft, J., Kleinhanns, I. C., & Whitehouse, M. J. (2010). Nd–Sr–Hf–O isotope provinciality in the northernmost Arabian‐Nubian Shield: Implications for crustal evolution. Contributions to Mineralogy and Petrology, 160(2), 181–201. https://doi.org/10.1007/s00410‐009‐0472‐8
    [Google Scholar]
  16. Be'eri‐Shlevin, Y., Katzir, Y., & Whitehouse, M. (2009). Post‐collisional tectonomagmatic evolution in the northern Arabian‐Nubian Shield: Time constraints from ion‐probe U–Pb dating of zircon. Journal of the Geological Society, 166(1), 71. https://doi.org/10.1144/0016‐76492007‐169
    [Google Scholar]
  17. Belousova, E., Griffin, W., O'Reilly, S. Y., & Fisher, N. (2002a). Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5), 602–622. https://doi.org/10.1007/s00410‐002‐0364‐7
    [Google Scholar]
  18. Belousova, E. A., Griffin, W. L., O'Reilly, S. Y., & Fisher, N. I. (2002b). Apatite as an indicator mineral for mineral exploration: Trace‐element compositions and their relationship to host rock type. Journal of Geochemical Exploration, 76(1), 45–69. https://doi.org/10.1016/S0375‐6742(02)00204‐2
    [Google Scholar]
  19. Berberian, M., & King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2), 210–265. https://doi.org/10.1139/e81‐019
    [Google Scholar]
  20. Bernet, M., van der Beek, P., Pik, R., Huyghe, P., Mugnier, J.‐L., Labrin, E., & Szulc, A. (2006). Miocene to Recent exhumation of the central Himalaya determined from combined detrital zircon fission‐track and U/Pb analysis of Siwalik sediments, western Nepal. Basin Research, 18(4), 393–412. https://doi.org/10.1111/j.1365‐2117.2006.00303.x
    [Google Scholar]
  21. Brown, G. F., Schmidt, D. L., & HuffmanJr, A. C. (1989). Geology of the Arabian Peninsula; shield area of western Saudi Arabia (560A). Retrieved from Reston, VA. http://pubs.er.usgs.gov/publication/pp560A
    [Google Scholar]
  22. Bruand, E., Fowler, M., Storey, C., & Darling, J. (2017). Apatite trace element and isotope applications to petrogenesis and provenance. American Mineralogist, 102(1), 75–84. https://doi.org/10.2138/am‐2017‐5744
    [Google Scholar]
  23. Campbell, I. H., Reiners, P. W., Allen, C. M., Nicolescu, S., & Upadhyay, R. (2005). He–Pb double dating of detrital zircons from the Ganges and Indus Rivers: Implication for quantifying sediment recycling and provenance studies. Earth and Planetary Science Letters, 237(3–4), 402–432. https://doi.org/10.1016/j.epsl.2005.06.043
    [Google Scholar]
  24. Cao, H., Huang, Y., Li, G., Zhang, L., Wu, J., Dong, L., Dai, Z., & Lu, L. (2018). Late Triassic sedimentary records in the northern Tethyan Himalaya: Tectonic link with Greater India. Geoscience Frontiers, 9(1), 273–291. https://doi.org/10.1016/j.gsf.2017.04.001
    [Google Scholar]
  25. Cawood, P. A., Hawkesworth, C. J., & Dhuime, B. (2012). Detrital zircon record and tectonic setting. Geology, 40(10), 875–878. https://doi.org/10.1130/G32945.1
    [Google Scholar]
  26. Cawood, P. A., Martin, E. L., Murphy, J. B., & Pisarevsky, S. A. (2021). Gondwana's interlinked peripheral orogens. Earth and Planetary Science Letters, 568, 117057. https://doi.org/10.1016/j.epsl.2021.117057
    [Google Scholar]
  27. Chakraborty, T., Taral, S., More, S., & Bera, S. (2020). Cenozoic Himalayan Foreland basin: An overview and regional perspective of the evolving sedimentary succession. In N.Gupta & S. K.Tandon (Eds.), Geodynamics of the Indian Plate: Evolutionary perspectives (pp. 395–437). Springer International Publishing.
    [Google Scholar]
  28. Chamberlain, K. R., & Bowring, S. A. (2001). Apatite–feldspar U–Pb thermochronometer: A reliable, mid‐range (∼450°C), diffusion‐controlled system. Chemical Geology, 172(1), 173–200. https://doi.org/10.1016/S0009‐2541(00)00242‐4
    [Google Scholar]
  29. Cherniak, D. J. (2000). Pb diffusion in rutile. Contributions to Mineralogy and Petrology, 139(2), 198–207. https://doi.org/10.1007/PL00007671
    [Google Scholar]
  30. Cherniak, D. J., & Watson, E. B. (2001). Pb diffusion in zircon. Chemical Geology, 172(1), 5–24. https://doi.org/10.1016/S0009‐2541(00)00233‐3
    [Google Scholar]
  31. Chew, D. M., Petrus, J. A., & Kamber, B. S. (2014). U–Pb LA‐ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology, 363, 185–199. https://doi.org/10.1016/j.chemgeo.2013.11.006
    [Google Scholar]
  32. Chew, D. M., Sylvester, P. J., & Tubrett, M. N. (2011). U–Pb and Th–Pb dating of apatite by LA‐ICPMS. Chemical Geology, 280(1), 200–216. https://doi.org/10.1016/j.chemgeo.2010.11.010
    [Google Scholar]
  33. Chiu, H.‐Y., Chung, S.‐L., Zarrinkoub, M. H., Melkonyan, R., Pang, K.‐N., Lee, H.‐Y., Wang, K.‐L., Mohammadi, S. S., & Khatib, M. M. (2017). Zircon Hf isotopic constraints on magmatic and tectonic evolution in Iran: Implications for crustal growth in the Tethyan orogenic belt. Journal of Asian Earth Sciences, 145, 652–669. https://doi.org/10.1016/j.jseaes.2017.06.011
    [Google Scholar]
  34. Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104(1), 1–37. https://doi.org/10.1016/0009‐2541(93)90140‐E
    [Google Scholar]
  35. Cox, R., & Lowe, D. (1995). A conceptual review of regional‐scale controls on the composition of clastic sediment and the co‐evolution of continental blocks and their sedimentary cover. Journal of Sedimentary Research. Section A, Sedimentary Petrology and Processes: An International Journal of SEPM (Society for Sedimentary Geology), 65A(1), 1–12.
    [Google Scholar]
  36. Crook, K. A. W. (1968). Weathering and roundness of quartz sand grains. Sedimentology, 11(3–4), 171–182. https://doi.org/10.1111/j.1365‐3091.1968.tb00851.x
    [Google Scholar]
  37. Dabbagh, M. E., & Rogers, J. J. W. (1983). Depositional environments and tectonic significance of the Wajid Sandstone of southern Saudi Arabia. Journal of African Earth Sciences (1983), 1(1), 47–57. https://doi.org/10.1016/0899‐5362(83)90031‐3
    [Google Scholar]
  38. Dahl, P. S. (1997). A crystal‐chemical basis for Pb retention and fission‐track annealing systematics in U‐bearing minerals, with implications for geochronology. Earth and Planetary Science Letters, 150(3), 277–290. https://doi.org/10.1016/S0012‐821X(97)00108‐8
    [Google Scholar]
  39. Das, B. K., Al‐Mikhlafi, A. S., & Kaur, P. (2006). Geochemistry of Mansar Lake sediments, Jammu, India: Implication for source‐area weathering, provenance, and tectonic setting. Journal of Asian Earth Sciences, 26(6), 649–668. https://doi.org/10.1016/j.jseaes.2005.01.005
    [Google Scholar]
  40. Dickinson, W. R., Lawton, T. F., & Gehrels, G. E. (2009). Recycling detrital zircons: A case study from the Cretaceous Bisbee Group of southern Arizona. Geology, 37(6), 503–506. https://doi.org/10.1130/G25646A.1
    [Google Scholar]
  41. Dietz, V. (1973). Experiments on the influence of transport on shape and roundness of heavy minerals. Contributions to Sedimentary Geology, 1, 69–102.
    [Google Scholar]
  42. El‐Sawy, E.‐S.‐K., & El‐Shafei, M. K. (2019). Geometric and tectonic analysis of Ad‐Damm mega‐scale fold: Implication of Neoproterozoic Transpressive Regime in the west‐central Arabian Shield. Arabian Journal of Geosciences, 12(7), 224. https://doi.org/10.1007/s12517‐019‐4391‐3
    [Google Scholar]
  43. Etemad‐Saeed, N., Hosseini‐Barzi, M., Adabi, M. H., Miller, N. R., Sadeghi, A., Houshmandzadeh, A., & Stockli, D. F. (2016). Evidence for ca. 560 Ma Ediacaran glaciation in the Kahar Formation, central Alborz Mountains, northern Iran. Gondwana Research, 31, 164–183. https://doi.org/10.1016/j.gr.2015.01.005
    [Google Scholar]
  44. Etemad‐Saeed, N., Hosseini‐Barzi, M., & Armstrong‐Altrin, J. S. (2011). Petrography and geochemistry of clastic sedimentary rocks as evidences for provenance of the Lower Cambrian Lalun Formation, Posht‐e‐badam block, Central Iran. Journal of African Earth Sciences, 61(2), 142–159. https://doi.org/10.1016/j.jafrearsci.2011.06.003
    [Google Scholar]
  45. Fedo, C. M., Wayne Nesbitt, H., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10), 921–924. https://doi.org/10.1130/0091‐7613(1995)023<0921:UTEOPM>2.3.CO;2
    [Google Scholar]
  46. Flowerdew, M. J., Fleming, E. J., Morton, A. C., Frei, D., Chew, D. M., & Daly, J. S. (2019). Assessing mineral fertility and bias in sedimentary provenance studies: Examples from the Barents Shelf. Geological Society, London, Special Publications, 484(SP484), 411. https://doi.org/10.1144/SP484.11
    [Google Scholar]
  47. Folk, R. L., Andrews, P. B., & Lewis, D. W. (1970). Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand Journal of Geology and Geophysics, 13(4), 937–968. https://doi.org/10.1080/00288306.1970.10418211
    [Google Scholar]
  48. Freise, F. W. (1931). Untersuchung von Mineralen auf Abnutzbarkeit bei Verfrachtung im Wasser. Zeitschrift für Kristallographie, Mineralogie und Petrographie, 41(1), 1–7. https://doi.org/10.1007/BF02949762
    [Google Scholar]
  49. Fritz, H., Abdelsalam, M., Ali, K. A., Bingen, B., Collins, A. S., Fowler, A. R., Ghebreab, W., Hauzenberger, C. A., Johnson, P. R., Kusky, T. M., Macey, P., Muhongo, S., Stern, R. J., & Viola, G. (2013). Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution. Journal of African Earth Science, 86, 65–106. https://doi.org/10.1016/j.jafrearsci.2013.06.004
    [Google Scholar]
  50. Gärtner, A., Linnemann, U., Sagawe, A., Hofmann, M., Ullrich, B., & Kleber, A. (2013). Morphology of zircon crystal grains in sediments—Characteristics, classifications, definitions. Journal od Central European Geology, Geologica Saxonica, 59, 65–73.
    [Google Scholar]
  51. Garzanti, E. (2017). The maturity myth in sedimentology and provenance analysis. Journal of Sedimentary Research, 87(4), 353–365. https://doi.org/10.2110/jsr.2017.17
    [Google Scholar]
  52. Garzanti, E. (2019). The Himalayan Foreland Basin from collision onset to the present: A sedimentary–petrology perspective. Geological Society, London, Special Publications, 483(1), 65. https://doi.org/10.1144/SP483.17
    [Google Scholar]
  53. Garzanti, E., Andò, S., Limonta, M., Fielding, L., & Najman, Y. (2018). Diagenetic control on mineralogical suites in sand, silt, and mud (Cenozoic Nile Delta): Implications for provenance reconstructions. Earth‐Science Reviews, 185, 122–139. https://doi.org/10.1016/j.earscirev.2018.05.010
    [Google Scholar]
  54. Garzanti, E., Padoan, M., Andò, S., Resentini, A., Vezzoli, G., & Lustrino, M. (2013). Weathering and relative durability of detrital minerals in equatorial climate: Sand petrology and geochemistry in the East African Rift. The Journal of Geology, 121(6), 547–580. https://doi.org/10.1086/673259
    [Google Scholar]
  55. Garzanti, E., Resentini, A., Andò, S., Vezzoli, G., Pereira, A., & Vermeesch, P. (2015). Physical controls on sand composition and relative durability of detrital minerals during ultra‐long distance littoral and aeolian transport (Namibia and southern Angola). Sedimentology, 62(4), 971–996. https://doi.org/10.1111/sed.12169
    [Google Scholar]
  56. Geyer, G., Bayet‐Goll, A., Wilmsen, M., Mahboubi, A., & Moussavi‐Harami, R. (2014). Lithostratigraphic revision of the middle Cambrian (Series 3) and upper Cambrian (Furongian) in northern and central Iran. Newsletters on Stratigraphy, 47(1), 21–59. https://doi.org/10.1127/0078‐0421/2014/0039
    [Google Scholar]
  57. Ghavidel‐syooki, M., & Vecoli, M. (2008). Palynostratigraphy of Middle Cambrian to lowermost Ordovician stratal sequences in the High Zagros Mountains, southern Iran: Regional stratigraphic implications, and palaeobiogeographic significance. Review of Palaeobotany and Palynology, 150(1), 97–114. https://doi.org/10.1016/j.revpalbo.2008.01.006
    [Google Scholar]
  58. Ghorbani, M. (2019). Lithostratigraphy of Iran. Springer Geology, Springer.
    [Google Scholar]
  59. Hadley, D. G. (1974). The taphrogeosynclinal Jubaylah Group in the Mashhad area, northwestern Hijaz, Kingdom of Saudi Arabia. Directorate General of Mineral Resources.
    [Google Scholar]
  60. Hargrove, U. S. (2006). Crustal evolution of the Neoproterozoic Bi'r Umq Suture zone, Kingdom of Saudi Arabia: Geochronological, isotopic, and geochemical constraints (PhD thesis). United States, Texas. Retrieved from https://search‐proquest‐com.ezproxy.lib.monash.edu.au/docview/304953080?accountid=12528(3225070)
    [Google Scholar]
  61. Hargrove, U. S., Stern, B., Griffin, W., Johnson, P., & Abdelsalam, M. (2006). From island arc to craton: Timescales of crustal formation along the Neoproterozoic Bi'r Umq Suture zone, Kingdom of Saudi Arabia. Saudi Geological Survey, technical report SGS‐TR‐2006‐6.
  62. Hargrove, U. S., Stern, R. J., Kimura, J. I., Manton, W. I., & Johnson, P. R. (2006). How juvenile is the Arabian‐Nubian Shield? Evidence from Nd isotopes and pre‐Neoproterozoic inherited zircon in the Bi'r Umq suture zone, Saudi Arabia. Earth and Planetary Science Letters, 252(3), 308–326. https://doi.org/10.1016/j.epsl.2006.10.002
    [Google Scholar]
  63. Harrison, T. M. (1982). Diffusion of 40 Ar in hornblende. Contributions to Mineralogy and Petrology, 78(3), 324–331. https://doi.org/10.1007/BF00398927
    [Google Scholar]
  64. Hassanzadeh, J., Stockli, D. F., Horton, B. K., Axen, G. J., Stockli, L. D., Grove, M., Schmitt, A. K., & Walker, J. D. (2008). U–Pb zircon geochronology of late Neoproterozoic‐Early Cambrian granitoids in Iran: Implications for paleogeography, magmatism, and exhumation history of Iranian basement. Tectonophysics, 451(1), 71–96. https://doi.org/10.1016/j.tecto.2007.11.062
    [Google Scholar]
  65. Hawkesworth, C. J., & Kemp, A. I. S. (2006). Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226(3–4), 144–162. https://doi.org/10.1016/j.chemgeo.2005.09.018
    [Google Scholar]
  66. Henrichs, I. A., Chew, D. M., O'Sullivan, G. J., Mark, C., McKenna, C., & Guyett, P. (2019). Trace element (Mn–Sr–Y–Th–REE) and U–Pb isotope systematics of metapelitic apatite during progressive greenschist‐ to amphibolite‐facies Barrovian metamorphism. Geochemistry, Geophysics, Geosystems, 20(8), 4103–4129. https://doi.org/10.1029/2019GC008359
    [Google Scholar]
  67. Henrichs, I. A., O'Sullivan, G., Chew, D. M., Mark, C., Babechuk, M. G., McKenna, C., & Emo, R. (2018). The trace element and U–Pb systematics of metamorphic apatite. Chemical Geology, 483, 218–238. https://doi.org/10.1016/j.chemgeo.2017.12.031
    [Google Scholar]
  68. Hietpas, J., Samson, S., Moecher, D., & Schmitt, A. K. (2010). Recovering tectonic events from the sedimentary record: Detrital monazite plays in high fidelity. Geology, 38(2), 167–170. https://doi.org/10.1130/G30265.1
    [Google Scholar]
  69. Honarmand, M., Li, X.‐H., Nabatian, G., Rezaeian, M., & Etemad‐Saeed, N. (2016). Neoproterozoic‐Early Cambrian tectono‐magmatic evolution of the Central Iranian terrane, northern margin of Gondwana: Constraints from detrital zircon U–Pb and Hf–O isotope studies. Gondwana Research, 37, 285–300. https://doi.org/10.1016/j.gr.2016.05.007
    [Google Scholar]
  70. Honarmand, M., Xiao, W., Nabatian, G., Blades, M. L., dos Santos, M. C., Collins, A. S., & Ao, S. (2018). Zircon U–Pb–Hf isotopes, bulk‐rock geochemistry and Sr–Nd–Pb isotopes from late Neoproterozoic basement in the Mahneshan area, NW Iran: Implications for Ediacaran active continental margin along the northern Gondwana and constraints on the late Oligocene crustal anatexis. Gondwana Research, 57, 48–76. https://doi.org/10.1016/j.gr.2017.12.009
    [Google Scholar]
  71. Horton, B. K., Hassanzadeh, J., Stockli, D. F., Axen, G. J., Gillis, R. J., Guest, B., Amini, A., Fakhari, M. D., Zamanzadeh, S. M., & Grove, M. (2008). Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics. Tectonophysics, 451(1), 97–122. https://doi.org/10.1016/j.tecto.2007.11.063
    [Google Scholar]
  72. Hoskin, P. W. O., & Ireland, T. R. (2000). Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28(7), 627–630. https://doi.org/10.1130/0091‐7613(2000)28<627:REECOZ>2.0.CO;2
    [Google Scholar]
  73. Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi‐Dickinson point‐counting method. Journal of Sedimentary Research, 54(1), 103–116. https://doi.org/10.1306/212F83B9‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  74. Johnson, P. R. (2003). Post‐amalgamation basins of the NE Arabian shield and implications for Neoproterozoic III tectonism in the northern East African orogen. Precambrian Research, 123(2), 321–337. https://doi.org/10.1016/S0301‐9268(03)00074‐3
    [Google Scholar]
  75. Johnson, P. R., Andresen, A., Collins, A. S., Fowler, A. R., Fritz, H., Ghebreab, W., Kusky, T., & Stern, R. J. (2011). Late Cryogenian‐Ediacaran history of the Arabian‐Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. Journal of African Earth Sciences, 61(3), 167–232. https://doi.org/10.1016/j.jafrearsci.2011.07.003
    [Google Scholar]
  76. Johnson, P. R., & Woldehaimanot, B. (2003). Development of the Arabian‐Nubian Shield: Perspectives on accretion and deformation in the northern East African Orogen and the assembly of Gondwana. Geological Society, London, Special Publications, 206(1), 289. https://doi.org/10.1144/GSL.SP.2003.206.01.15
    [Google Scholar]
  77. Johnson, R. P., Halverson, P. G., Kusky, M. T., Stern, J. R., & Pease, V. (2013). Volcanosedimentary basins in the Arabian‐Nubian Shield: Markers of repeated exhumation and denudation in a Neoproterozoic accretionary orogen. Geosciences, 3(3), 389–445. https://doi.org/10.3390/geosciences3030389
    [Google Scholar]
  78. Johnson, S. P., Kirkland, C. L., Evans, N. J., McDonald, B. J., & Cutten, H. N. (2018). The complexity of sediment recycling as revealed by common Pb isotopes in K‐feldspar. Geoscience Frontiers, 9(5), 1515–1527. https://doi.org/10.1016/j.gsf.2018.03.009
    [Google Scholar]
  79. Johnsson, M. J. (1993). The system controlling the composition of clastic sediments. In M. J.Johnsson & A.Basu (Eds.), Processes controlling the composition of clastic sediments (Vol. 284, pp. 91–108). Geological Society of America.
    [Google Scholar]
  80. Johnsson, M. J., Stallard, R. F., & Lundberg, N. (1991). Controls on the composition of fluvial sands from a tropical weathering environment: Sands of the Orinoco River drainage basin, Venezuela and Colombia. GSA Bulletin, 103(12), 1622–1647. https://doi.org/10.1130/0016‐7606(1991)103<1622:COTCOF>2.3.CO;2
    [Google Scholar]
  81. Johnsson, M. J., Stallard, R. F., & Meade, R. H. (1988). First‐cycle quartz arenites in the Orinoco River Basin, Venezuela and Colombia. The Journal of Geology, 96(3), 263–277. https://doi.org/10.1086/629219
    [Google Scholar]
  82. Kemp, A. I. S., Hawkesworth, C. J., Paterson, B. A., & Kinny, P. D. (2006). Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature, 439(7076), 580–583. https://doi.org/10.1038/nature04505
    [Google Scholar]
  83. Kenny, G. G., O'Sullivan, G. J., Alexander, S., Simms, M. J., Chew, D. M., & Kamber, B. S. (2019). On the track of a Scottish impact structure: A detrital zircon and apatite provenance study of the Stac Fada Member and wider Stoer Group, NW Scotland. Geological Magazine, 156(11), 1863–1876. https://doi.org/10.1017/S0016756819000220
    [Google Scholar]
  84. Kinny, P. D., & Maas, R. (2003). Lu–Hf and Sm–Nd isotope systems in zircon. Reviews in Mineralogy and Geochemistry, 53(1), 327–341. https://doi.org/10.2113/0530327
    [Google Scholar]
  85. Kooijman, E., Mezger, K., & Berndt, J. (2010). Constraints on the U–Pb systematics of metamorphic rutile from in situ LA‐ICP‐MS analysis. Earth and Planetary Science Letters, 293(3), 321–330. https://doi.org/10.1016/j.epsl.2010.02.047
    [Google Scholar]
  86. Kröner, A., & Sassi, F. P. (1996). Evolution of the northern Somali basement: New constraints from zircon ages. Journal of African Earth Sciences, 22(1), 1–15. https://doi.org/10.1016/0899‐5362(95)00121‐2
    [Google Scholar]
  87. Kuenen, P. H. (1959a). Experimental abrasion; 3, Fluviatile action on sand. American Journal of Science, 257, 172. https://doi.org/10.2475/ajs.257.3.172
    [Google Scholar]
  88. Kuenen, P. H. (1959b). Sand—Its origin, transportation, abrasion, and accumulation. Geological Society of South Africa.
    [Google Scholar]
  89. Lasemi, Y., & Amin‐Rasouli, H. (2016). The lower–middle Cambrian transition and the Sauk I‐II unconformable boundary in Iran, a record of late early Cambrian global Hawke Bay regression. In R.Sorkhabi (Ed.), Tectonic evolution, collision, and seismicity of southwest asia; in honor of Manuel Berberian's forty‐five years of research contributions (Vol. 525, pp. 343–366). Geological Society of America Special Papers.
    [Google Scholar]
  90. McClure, H. A. (1984). Late quaternary palaeoenvironments of the Rub' Al Khali (PhD thesis). University of London. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284800
    [Google Scholar]
  91. Mehring, J. L., & McBride, E. F. (2007). Origin of modern quartzarenite beach sands in a temperate climate, Florida and Alabama, USA. Sedimentary Geology, 201(3), 432–445. https://doi.org/10.1016/j.sedgeo.2007.07.010
    [Google Scholar]
  92. Milliken, K. L., & Mack, L. E. (1990). Subsurface dissolution of heavy minerals, Frio Formation sandstones of the ancestral Rio Grande Province, South Texas. Sedimentary Geology, 68(3), 187–199. https://doi.org/10.1016/0037‐0738(90)90111‐6
    [Google Scholar]
  93. Moecher, D. P., Kelly, E. A., Hietpas, J., & Samson, S. D. (2019). Proof of recycling in clastic sedimentary systems from textural analysis and geochronology of detrital monazite: Implications for detrital mineral provenance analysis. GSA Bulletin, 131(7–8), 1115–1132. https://doi.org/10.1130/B31947.1
    [Google Scholar]
  94. Morag, N., Avigad, D., Gerdes, A., Belousova, E., & Harlavan, Y. (2011). Crustal evolution and recycling in the northern Arabian‐Nubian Shield: New perspectives from zircon Lu–Hf and U–Pb systematics. Precambrian Research, 186(1), 101–116. https://doi.org/10.1016/j.precamres.2011.01.004
    [Google Scholar]
  95. Morton, A. C. (1984). Stability of detrital heavy minerals in Tertiary sandstones from the North Sea Basin. Clay Minerals, 19(3), 287–308. https://doi.org/10.1180/claymin.1984.019.3.04
    [Google Scholar]
  96. Morton, A. (2012). Value of heavy minerals in sediments and sedimentary rocks for provenance, transport history and stratigraphic correlation. In P.Sylvester (Ed.), Quantitative mineralogy and microanalysis of sediments and sedimentary rocks (Vol. 42, pp. 133–165). Mineralogical Association of Canada Short Course Series.
    [Google Scholar]
  97. Morton, A. C., & Hallsworth, C. R. (1999). Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124(1), 3–29. https://doi.org/10.1016/S0037‐0738(98)00118‐3
    [Google Scholar]
  98. Morton, A. C., & Hallsworth, C. (2007). Chapter 7 Stability of detrital heavy minerals during burial diagenesis. In M. A.Mange & D. T.Wright (Eds.), Developments in sedimentology (Vol. 58, pp. 215–245). Elsevier.
    [Google Scholar]
  99. Morton, A. C., & Johnsson, M. J. (1993). Factors influencing the composition of detrital heavy mineral suites in Holocene sands of the Apure River drainage basin, Venezuela. In M. J.Johnsson & A.Basu (Eds.), Processes controlling the composition of clastic sediments (pp. 171–185). Geological Society of America.
    [Google Scholar]
  100. Morton, A., & Yaxley, G. (2007). Detrital apatite geochemistry and its application in provenance studies. In J.Arribas, M. J.Johnsson, & S.Critelli (Eds.), Sedimentary provenance and petrogenesis: Perspectives from petrography and geochemistry (Vol. 420, pp. 199–219). Geological Society of America.
    [Google Scholar]
  101. Mulder, J. A., Halpin, J. A., Daczko, N. R., Orth, K., Meffre, S., Thompson, J. M., & Morrissey, L. J. (2019). A Multiproxy provenance approach to uncovering the assembly of East Gondwana in Antarctica. Geology, 47(7), 645–649. https://doi.org/10.1130/G45952.1
    [Google Scholar]
  102. Mulder, J. A., Karlstrom, K. E., Fletcher, K., Heizler, M. T., Timmons, J. M., Crossey, L. J., Gehrels, G. E., & Pecha, M. (2017). The syn‐orogenic sedimentary record of the Grenville Orogeny in southwest Laurentia. Precambrian Research, 294, 33–52. https://doi.org/10.1016/j.precamres.2017.03.006
    [Google Scholar]
  103. Najman, Y., Appel, E., Boudagher‐Fadel, M., Bown, P., Carter, A., Garzanti, E., Godin, L., Han, J., Liebke, U., Oliver, G., Parrish, R., & Vezzoli, G. (2010). Timing of India‐Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research: Solid Earth, 115(B12), 12416. https://doi.org/10.1029/2010JB007673
    [Google Scholar]
  104. Najman, Y., Johnson, K., White, N., & Oliver, G. (2004). Evolution of the Himalayan foreland basin, NW India. Basin Research, 16(1), 1–24. https://doi.org/10.1111/j.1365‐2117.2004.00223.x
    [Google Scholar]
  105. Nauton‐Fourteu, M., Tyrrell, S., Morton, A., Mark, C., O'Sullivan, G. J., & Chew, D. M. (2021). Constraining recycled detritus in quartz‐rich sandstones: Insights from a multi‐proxy provenance study of the Mid‐Carboniferous, Clare Basin, western Ireland. Basin Research, 33(1), 342–363. https://doi.org/10.1111/bre.12469
    [Google Scholar]
  106. Nesbitt, H. W. (1992). Chapter 6—Diagenesis and metasomatism of weathering profiles, with emphasis on Precambrian paleosols. In I. P.Martini & W.Chesworth (Eds.), Developments in earth surface processes (Vol. 2, pp. 127–152). Elsevier.
    [Google Scholar]
  107. Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715–717. https://doi.org/10.1038/299715a0
    [Google Scholar]
  108. Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7), 1523–1534. https://doi.org/10.1016/0016‐7037(84)90408‐3
    [Google Scholar]
  109. Nettle, D., Halverson, G. P., Cox, G. M., Collins, A. S., Schmitz, M., Gehling, J., Johnson, P. R., & Kadi, K. (2014). A middle–late Ediacaran volcano‐sedimentary record from the eastern Arabian‐Nubian Shield. Terra Nova, 26(2), 120–129. https://doi.org/10.1111/ter.12077
    [Google Scholar]
  110. O'Sullivan, G., Chew, D., Kenny, G., Henrichs, I., & Mulligan, D. (2020). The trace element composition of apatite and its application to detrital provenance studies. Earth‐Science Reviews, 201, 103044. https://doi.org/10.1016/j.earscirev.2019.103044
    [Google Scholar]
  111. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508–2518. https://doi.org/10.1039/C1JA10172B
    [Google Scholar]
  112. Payne, J. L., Hand, M., Barovich, K. M., & Wade, B. P. (2008). Temporal constraints on the timing of high‐grade metamorphism in the northern Gawler Craton: Implications for assembly of the Australian Proterozoic. Australian Journal of Earth Sciences, 55(5), 623–640. https://doi.org/10.1080/08120090801982595
    [Google Scholar]
  113. Petrus, J. A., & Kamber, B. S. (2012). VizualAge: A novel approach to laser ablation ICP‐MS U–Pb geochronology data reduction. Geostandards and Geoanalytical Research, 36(3), 247–270. https://doi.org/10.1111/j.1751‐908X.2012.00158.x
    [Google Scholar]
  114. Pettijohn, F. J., Potter, P. E., & Siever, R. (1972). Texture. In F. J.Pettijohn, P. E.Potter, & R.Siever (Eds.), Sand and sandstone (pp. 68–101). Springer, US.
    [Google Scholar]
  115. Poursoltani, M. R. (2020). Architectural analysis of an Early Cambrian braided‐river system on the north Gondwana margin: The lower sandstone of the Lalun Formation in the Shirgesht area, central Iran. Journal of African Earth Sciences, 171, 103935. https://doi.org/10.1016/j.jafrearsci.2020.103935
    [Google Scholar]
  116. Rainbird, R., Cawood, P., & Gehrels, G. (2012). The great Grenvillian sedimentation episode: Record of supercontinent Rodinia's assembly. In C.Busby & A.Azor (Eds.), Tectonics of sedimentary basins (pp. 583–601). Blackwell.
    [Google Scholar]
  117. Ramezani, J., & Tucker, R. D. (2003). The Saghand Region, Central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana Tectonics. American Journal of Science, 303(7), 622–665. https://doi.org/10.2475/ajs.303.7.622
    [Google Scholar]
  118. Robinson, F. A., Foden, J. D., Collins, A. S., & Payne, J. L. (2014). Arabian Shield magmatic cycles and their relationship with Gondwana assembly: Insights from zircon U–Pb and Hf isotopes. Earth and Planetary Science Letters, 408, 207–225. https://doi.org/10.1016/j.epsl.2014.10.010
    [Google Scholar]
  119. Roduit, N. (2007). JMicroVision: Image analysis toolbox for measuring and quantifying components of high‐definition images. Version 1.3.3. https://jmicrovision.github.io/
    [Google Scholar]
  120. Ronov, A. B. (1982). The Earth's sedimentary shell (quantitative patterns of its structure, compositions, and evolution). International Geology Review, 24(11), 1313–1363. https://doi.org/10.1080/00206818209451075
    [Google Scholar]
  121. Russell, R. D. (1937). Mineral composition of Mississippi River sands. GSA Bulletin, 48(9), 1307–1348. https://doi.org/10.1130/GSAB‐48‐1307
    [Google Scholar]
  122. Russell, R. D. (1939). Effects of transportation on sedimentary particles. In P. D.Trask (Ed.), Recent marine sediments (pp. 32–47). American Association of Petroleum Geologists. https://doi.org/10.1306/SV10340C2
    [Google Scholar]
  123. Russell, R. D., & Taylor, R. E. (1937). Roundness and shape of Mississippi River sands. The Journal of Geology, 45(3), 225–267. https://doi.org/10.1086/624526
    [Google Scholar]
  124. Selley, R. C. (1972). Diagnosis of marine and non‐marine environments from the Cambro‐Ordovician sandstones of Jordan. Journal of the Geological Society, 128(2), 135–150. https://doi.org/10.1144/gsjgs.128.2.0135
    [Google Scholar]
  125. Sepidbar, F., Moghadam, H. S., Li, C., Stern, R. J., Jiantang, P., & Vesali, Y. (2020). Cadomian magmatic rocks from Zarand (SE Iran) formed in a retro‐arc basin. Lithos, 366–367, 105569. https://doi.org/10.1016/j.lithos.2020.105569
    [Google Scholar]
  126. Shaanan, U., & Rosenbaum, G. (2018). Detrital zircons as palaeodrainage indicators: Insights into southeastern Gondwana from Permian basins in eastern Australia. Basin Research, 30(S1), 36–47. https://doi.org/10.1111/bre.12204
    [Google Scholar]
  127. Shafaii Moghadam, H., Li, Q. L., Griffin, W. L., Stern, R. J., Ishizuka, O., Henry, H., Lucci, F., O'Reilly, S. Y., & Ghorbani, G. (2020). Repeated magmatic buildup and deep “hot zones” in continental evolution: The Cadomian crust of Iran. Earth and Planetary Science Letters, 531, 115989. https://doi.org/10.1016/j.epsl.2019.115989
    [Google Scholar]
  128. Sharland, P., Archer, R., Casey, M. D., Davies, R., Hall, S. H., Heward, A., Horbury, D. A., & Simmons, M. (2001). Arabian plate sequence stratigraphy. Gulf PetoLink, GeoArabia, Special Publication 2.
    [Google Scholar]
  129. Soffel, H. C., & Forster, H. G. (1980). Apparent Polar Wander Path of Central Iran and its Geotectonic Interpretation. Journal of Geomagnetism and Geoelectricity, 32(Supplement 3), SIII117–SIII135. https://doi.org/10.5636/jgg.32.Supplement3_SIII117
    [Google Scholar]
  130. Spencer, C. J., Cawood, P. A., Hawkesworth, C. J., Prave, A. R., Roberts, N. M. W., Horstwood, M. S. A., & Whitehouse, M. J. (2015). Generation and preservation of continental crust in the Grenville Orogeny. Geoscience Frontiers, 6(3), 357–372. https://doi.org/10.1016/j.gsf.2014.12.001
    [Google Scholar]
  131. Spina, A., Cirilli, S., Ghorbani, M., Rettori, R., Sorci, A., & Servais, T. (2020). Middle‐late Cambrian acritarchs of the Zagros Basin, southwestern Iran. Palynology, 45, 171–186. https://doi.org/10.1080/01916122.2020.1771624
    [Google Scholar]
  132. Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two‐stage model. Earth and Planetary Science Letters, 26(2), 207–221. https://doi.org/10.1016/0012‐821X(75)90088‐6
    [Google Scholar]
  133. Stöcklin, J. (1968). Structural history and tectonics of Iran: A review. AAPG Bulletin, 52(7), 1229–1258. https://doi.org/10.1306/5D25C4A5‐16C1‐11D7‐8645000102C1865D
    [Google Scholar]
  134. Stöcklin, J. (1974). Possible ancient continental margins in Iran. In C. A.Burk & C. L.Drake (Eds.), The geology of continental margins (pp. 873–887). Springer, Berlin Heidelberg.
    [Google Scholar]
  135. Stoeser, D. B., Stacey, J. S., Greenwood, W. R., & Fisher, L. B. (1985). U/Pb zircon geochronology of the southern part of the Nabitah mobile belt and Pan‐African continental collision in the Saudi Arabian Shield (pp. 85–239). http://pubs.er.usgs.gov/publication/ofr85239
    [Google Scholar]
  136. Sun, X., Kuiper, K. F., Tian, Y., Li, C., Gemignani, L., Zhang, Z., & Wijbrans, J. R. (2020). Impact of hydraulic sorting and weathering on mica provenance studies: An example from the Yangtze River. Chemical Geology, 532, 119359. https://doi.org/10.1016/j.chemgeo.2019.119359
    [Google Scholar]
  137. Sun, X., Kuiper, K. F., Tian, Y., Li, C. A., Zhang, Z., Gemignani, L., Guo, R., de Breij, V. H. L., & Wijbrans, J. R. (2020). 40Ar/39Ar mica dating of late Cenozoic sediments in SE Tibet: Implications for sediment recycling and drainage evolution. Journal of the Geological Society, 177(4), 843–854. https://doi.org/10.1144/jgs2019‐099
    [Google Scholar]
  138. Thiel, G. A. (1940). The relative resistance to abrasion of mineral grains of sand size. Journal of Sedimentary Research, 10(3), 103–124. https://doi.org/10.1306/d42690a3‐2b26‐11d7‐8648000102c1865d
    [Google Scholar]
  139. Thiel, G. A. (1945). Mechanical effects of stream transportation in mineral grains of sand size. GSA Bulletin, 56, 1207.
    [Google Scholar]
  140. Thompson, J., Meffre, S., Maas, R., Kamenetsky, V., Kamenetsky, M., Goemann, K., Ehrig, K., & Danyushevsky, L. (2016). Matrix effects in Pb/U measurements during LA‐ICP‐MS analysis of the mineral apatite. Journal of Analytical Atomic Spectrometry, 31(6), 1206–1215. https://doi.org/10.1039/C6JA00048G
    [Google Scholar]
  141. Thomson, S. N., Gehrels, G. E., Ruiz, J., & Buchwaldt, R. (2012). Routine low‐damage apatite U–Pb dating using laser ablation‐multicollector‐ICPMS. Geochemistry, Geophysics, Geosystems, 13(2), 1–23. https://doi.org/10.1029/2011GC003928
    [Google Scholar]
  142. Tyrrell, S., Haughton, P. D. W., Daly, J. S., Kokfelt, T. F., & Gagnevin, D. (2006). The use of the common Pb isotope composition of detrital K‐feldspar grains as a provenance tool and its application to Upper Carboniferous paleodrainage, Northern England. Journal of Sedimentary Research, 76(2), 324–345. https://doi.org/10.2110/jsr.2006.023
    [Google Scholar]
  143. Tyrrell, S., Haughton, P. D. W., Stephen Daly, J., & Shannon, P. (2012). The Pb isotopic composition of detrital K‐feldspar: A tool for constraining provenance, sedimentary processes and paleodrainage. In P.Sylvester (Ed.), Quantitative mineralogy and microanalysis of sediments and sedimentary rocks (Vol. 42, pp. 203–217). Mineralogical Association of Canada.
    [Google Scholar]
  144. Tyrrell, S., Leleu, S., Souders, A. K., Haughton, P. D. W., & Daly, J. S. (2009). K‐feldspar sand‐grain provenance in the Triassic, west of Shetland: Distinguishing first‐cycle and recycled sediment sources?Geological Journal, 44(6), 692–710. https://doi.org/10.1002/gj.1185
    [Google Scholar]
  145. Valley, J. W. (2003). Oxygen isotopes in zircon. Reviews in Mineralogy and Geochemistry, 53(1), 343–385. https://doi.org/10.2113/0530343
    [Google Scholar]
  146. Valley, J. W., Chiarenzelli, J. R., & McLelland, J. M. (1994). Oxygen isotope geochemistry of zircon. Earth and Planetary Science Letters, 126(4), 187–206. https://doi.org/10.1016/0012‐821X(94)90106‐6
    [Google Scholar]
  147. Vaziri, S. H., Majidifard, M. R., Darroch, S. A. F., & Laflamme, M. (2020). Ediacaran diversity and paleoecology from central Iran. Journal of Paleontology, 95(2), 236–251. https://doi.org/10.1017/jpa.2020.88
    [Google Scholar]
  148. Vaziri, S. H., Majidifard, M. R., & Laflamme, M. (2018). Diverse assemblage of Ediacaran fossils from Central Iran. Scientific Reports, 8(1), 5060. https://doi.org/10.1038/s41598‐018‐23442‐y
    [Google Scholar]
  149. Vecoli, M., & Le Hérissé, A. (2004). Biostratigraphy, taxonomic diversity and patterns of morphological evolution of Ordovician acritarchs (organic‐walled microphytoplankton) from the northern Gondwana margin in relation to palaeoclimatic and palaeogeographic changes. Earth‐Science Reviews, 67(3), 267–311. https://doi.org/10.1016/j.earscirev.2004.03.002
    [Google Scholar]
  150. Vickers‐Rich, P., Soleimani, S., Farjandi, F., Zand, M., Linnemann, U., Hofmann, M., Wilson, S. A., Cas, R., & Rich, T. H. (2018). A preliminary report on new Ediacaran fossils from Iran. Alcheringa: An Australasian Journal of Palaeontology, 42(2), 230–243. https://doi.org/10.1080/03115518.2017.1384061
    [Google Scholar]
  151. Vry, J. K., & Baker, J. A. (2006). LA‐MC‐ICPMS Pb–Pb dating of rutile from slowly cooled granulites: Confirmation of the high closure temperature for Pb diffusion in rutile. Geochimica et Cosmochimica Acta, 70(7), 1807–1820. https://doi.org/10.1016/j.gca.2005.12.006
    [Google Scholar]
  152. Wadell, H. (1935). Volume, shape, and roundness of quartz particles. The Journal of Geology, 43(3), 250–280. https://doi.org/10.1086/624298
    [Google Scholar]
  153. Weissbrod, T., & Perath, I. (1990). Criteria for the recognition and correlation of sandstone units in the Precambrian and Paleozoic‐Mesozoic clastic sequence in the near east. Journal of African Earth Sciences (and the Middle East), 10(1), 253–270. https://doi.org/10.1016/0899‐5362(90)90059‐N
    [Google Scholar]
  154. Wensink, H. (1983). Paleomagnetism of red beds of Early Devonian age from Central Iran. Earth and Planetary Science Letters, 63(2), 325–334. https://doi.org/10.1016/0012‐821X(83)90045‐6
    [Google Scholar]
  155. Whitehouse, M. J., Windley, B. F., Ba‐Bttat, M. A. O., Fanning, C. M., & Rex, D. C. (1998). Crustal evolution and terrane correlation in the eastern Arabian Shield, Yemen: Geochronological constraints. Journal of the Geological Society, 155(2), 281–295. https://doi.org/10.1144/gsjgs.155.2.0281
    [Google Scholar]
  156. Whitehouse, M. J., Windley, B. F., Stoeser, D. B., Al‐Khirbash, S., Ba‐Bttat, M. A. O., & Haider, A. (2001). Precambrian basement character of Yemen and correlations with Saudi Arabia and Somalia. Precambrian Research, 105(2), 357–369. https://doi.org/10.1016/S0301‐9268(00)00120‐0
    [Google Scholar]
  157. Wilkinson, B. H., McElroy, B. J., Kesler, S. E., Peters, S. E., & Rothman, E. D. (2009). Global geologic maps are tectonic speedometers—Rates of rock cycling from area‐age frequencies. GSA Bulletin, 121(5–6), 760–779. https://doi.org/10.1130/B26457.1
    [Google Scholar]
  158. Windley, B. F., Whitehouse, M. J., & Ba‐Bttat, M. A. O. (1996). Early Precambrian gneiss terranes and Pan‐African island arcs in Yemen: Crustal accretion of the eastern Arabian Shield. Geology, 24(2), 131–134. https://doi.org/10.1130/0091‐7613(1996)024<0131:EPGTAP>2.3.CO;2
    [Google Scholar]
  159. Zieger, J., Rothe, J., Hofmann, M., Gärtner, A., & Linnemann, U. (2019). The Permo‐Carboniferous Dwyka Group of the Aranos Basin (Namibia)—How detrital zircons help understanding sedimentary recycling during a major glaciation. Journal of African Earth Sciences, 158, 103555. https://doi.org/10.1016/j.jafrearsci.2019.103555
    [Google Scholar]
  160. Zoleikhaei, Y., Frei, D., Morton, A., & Zamanzadeh, S. M. (2016). Roundness of heavy minerals (zircon and apatite) as a provenance tool for unraveling recycling: A case study from the Sefidrud and Sarbaz rivers in N and SE Iran. Sedimentary Geology, 342, 106–117. https://doi.org/10.1016/j.sedgeo.2016.06.016
    [Google Scholar]
  161. Zoleikhaei, Y., Mulder, J. A., & Cawood, P. A. (2021). Integrated detrital rutile and zircon provenance reveals multiple sources for Cambrian sandstones in North Gondwana. Earth‐Science Reviews, 213, 103462. https://doi.org/10.1016/j.earscirev.2020.103462
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12650
Loading
/content/journals/10.1111/bre.12650
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error