1887
Volume 34, Issue 3
  • E-ISSN: 1365-2117

Abstract

[

Evolution of syn‐ to early post‐rift facies in rift basins.

, Abstract

Evolution of rift basin fill and geometry depend on the complex interactions between fault growth, sediment supply, base level changes and pre‐existing basement fabric. This study integrates multiple datasets in the Great South Basin (GSB), southeast New Zealand, and provides key insights into the evolution of depositional environments in rift basins, including the interplay between normal faulting, sediment supply and sediment dispersal patterns. It also examines the control of pre‐existing basement fabric on rift geometry and sediment distribution in the syn‐ and post rift successions. The syn‐rift is up to ~5.5 km thick in the GSB, and is underlain by several different basement terranes. Three syn‐rift stages are recognised; c.105–101, 101–90 and 90–83 Ma. During the initial syn‐rift, isolated northeast‐trending graben developed, with resultant alluvial fan/fan delta, fluvial, coastal and lacustrine sediment fill. The balance between sediment supply and accommodation space exerted considerable control on facies, especially the presence of lacustrine facies. During the later stages of syn‐rift, marine transgression occurred and connectivity between the graben developed, with shelfal, shoreface and marginal‐marine facies deposited. With marine transgression across the hinterland, sediment supply was significantly reduced in the northeast of the basin, leading to underfilling of graben, and preservation of rift topography for up to ~20 Myr after the cessation of faulting. In the west, where sediment supply was higher, rift topography was quickly filled. The NW‐trending basement terrane boundaries controlled accommodation space development during the initial stages of graben formation. Later in the syn‐ and post rift stages, these terrane boundaries formed long‐lived sediment input points into the basin, and controlled the position of repeated large deltaic depositional units.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12652
2022-05-22
2024-04-26
Loading full text...

Full text loading...

References

  1. Adams, C. J., Campbell, H. J., Mortimer, N., & Griffin, W. L. (2017). Perspectives on Cretaceous Gondwana break‐up from detrital zircon provenance of southern Zealandia sandstones. Geological Magazine, 154, 661–682. https://doi.org/10.1017/S0016756816000285
    [Google Scholar]
  2. Arnot, M. J., Bland, K. J., Boyes, A. F., Bull, S., Funnell, R. H., Griffin, A. G., Hill, M. G., Kroeger, K. F., Lukovic, B., Scadden, P. G., Seebeck, H. C., Strogen, D. P., Town, C. C., & Viskovic, G. P. D. (compilers). (2016). Atlas of Petroleum Prospectivity, Northwest Province: ArcGIS geodatabase and technical report. GNS Science data series, 23b, 5 ArcGIS projects, 1 ArcGIS geodatabase, and technical report.
  3. Bache, F., Stagpoole, V. M., & Sutherland, R. (2013). Seismic stratigraphy of the Reinga Basin, NW New Zealand: tectonic and petroleum implications. In N. C.Rosen, P.Weimer, S. M. C.dos Anjos, S.Henrickson, E.Marques, M.Mayall, R.Fillon, T.D'Agostino, A.Saller, K.Campion, T.Huang, R.Sarg, & F.Schroeder (Eds.), New understanding of the petroleum systems of continental margins of the world: SEPM Foundation, Gulf Coast Section, 32nd annual research conference proceedings (pp. 221–252).
    [Google Scholar]
  4. Barrier, A., Browne, G. H., Nicol, A., & Bassett, K. N. (2021). Sedimentary architecture of a Late Cretaceous under‐filled rift basin. Basin Research. https://doi.org/10.1111/(ISSN)1365‐2117
    [Google Scholar]
  5. Beggs, J. M. (1993). Depositional and tectonic history of the Great South Basin. In P. F.Ballance (Ed.), South Pacific sedimentary basins. Sedimentary basins of the world, 2 (pp. 365–373). Elsevier Science Publishers.
    [Google Scholar]
  6. Bishop, D. G. (1986). Sheet B46–Puysegur. Geological Map of New Zealand 1:50 000. Department of Scientific and Industrial Research, 36p + 1 map.
  7. Bishop, D. G., & Laird, M. G. (1976). Stratigraphy and depositional environment of the Kyeburn Formation (Cretaceous), a wedge of coarse terrestrial sediments in central Otago. Journal of the Royal Society of New Zealand, 6, 55–71. https://doi.org/10.1080/03036758.1976.10421466
    [Google Scholar]
  8. Bjørgen, P., Kristensen, M., Toxopeus, G., & Olsen, C. (2016). Seismic interpretation report for PEP55781 and PEP57057. New Zealand Unpublished Openfile Petroleum Report, PR5340, 40p.
  9. Bland, K. J., Hill, M. G., Strogen, D. P., Bache, F., Barker, D. H. N., Bull, S., Davy, B. W., & Sahoo, T. R. (2014). New Zealand national seismic framework: Reinga‐Northland, Taranaki, Canterbury‐Great South, Bounty Trough, and Pegasus‐East Coast‐Raukumara basins. In New Zealand Petroleum & Minerals (Ed.), 2013 New Zealand petroleum exploration data pack. New Zealand Unpublished Openfile Petroleum Report, PR4700, 55 p. +51 Enclosures. This and other GNS studies are also available from https://data.gns.cri.nz/mapservice/apps/pbe/
    [Google Scholar]
  10. Bland, K. J., Sahoo, T. R., & Viskovic, G. P. D. (compilers). (2018). Atlas of Petroleum Prospectivity, Campbell frontier (Far Frontiers Province): ArcGIS geodatabase, illustrated seismic transects and technical report. GNS Science data series23g, 1 ArcGIS geodatabase, 1 ArcGIS project, 9 illustrated seismic transects, and technical report.
  11. Bland, K. J., & Strogen, D. P. (2018). Atlas of Petroleum Prospectivity, Tasman frontier (Far Frontiers Province): ArcGIS geodatabase, illustrated seismic transects, and technical report. GNS Science data series 23f. 27 p.; database.
  12. Blanke, S. J. (2015). PEP 38264 Caravel‐1 well completion report. New Zealand Unpublished Openfile Petroleum Report, PR4896, 127p.
  13. Bohacs, K., & Suter, J. (1997). Sequence stratigraphic distribution of coaly rocks: Fundamental controls and paralic examples. American Association of Petroleum Geologists, 81(6), 1612–1639.
    [Google Scholar]
  14. Bradshaw, J. D. (1989). Cretaceous geotectonic patterns in the New Zealand Region. Tectonics, 8, 803–820. https://doi.org/10.1029/TC008i004p00803
    [Google Scholar]
  15. Browne, G. H., King, P. R., Arnot, M. J., & Slatt, R. M. (2007). Architecture of base‐of‐slope fans, Mount Messenger Formation, Pukearuhe Beach, New Zealand. In T. H.Nielsen, R. D.Shew, G. S.Steffens, & J. R. J.Studlick (Eds.), Atlas of deep water outcrops. AAPG Studies in Geology, 56, Chapter 61 (5p).
    [Google Scholar]
  16. Browne, G. H., King, P. R., Higgs, K. E., & Slatt, R. M. (2005). Grain size characteristics for distinguishing basin floor fan and slope fan depositional settings: outcrop and subsurface examples from the Late Miocene Mount Messenger Formation, New Zealand. New Zealand Journal of Geology and Geophysics, 48, 213–227. https://doi.org/10.1080/00288306.2005.9515111
    [Google Scholar]
  17. Bull, S., Nicol, A., Strogen, D. P., Kroeger, K. F., & Seebeck, H. S. (2019). Tectonic controls on Miocene sedimentation in the Southern Taranaki Basin and implications for New Zealand plate boundary deformation. Basin Research, 31(2), 253–273. https://doi.org/10.1111/bre.12319
    [Google Scholar]
  18. Cartwright, J. A., & Dewhurst, D. N. (1998). Layer‐bound compaction faults in fine‐grained sediments. Bulletin of the Geological Society of America, 110, 1242–1257. https://doi.org/10.1130/0016‐7606(1998)110<1242:LBCFIF>2.3.CO;2
    [Google Scholar]
  19. Cartwright, J. A., Trugdill, B. D., & Mansfield, C. S. (1995). Fault growth by segment linkage: An explanation for scatter in maximum displacement and trace length data from the Canyonlands grabens of SEUtah. Journal of Structural Geology, 17, 1319–1326.
    [Google Scholar]
  20. Catuneanu, O. (2006). Principles of sequence stratigraphy. Elsevier Science.
    [Google Scholar]
  21. CGGVeritas . (2009a). Reprocessing report from PEP50117. New Zealand Unpublished Openfile Petroleum Report, PR4053, 222 p.
    [Google Scholar]
  22. CGGVeritas (2009b). Processing report GSB 2D. New Zealand Unpublished Openfile Petroleum Report, PR4054, 355 p.
    [Google Scholar]
  23. CGGVeritas . (2009c). Processing report GSB 3D. New Zealand Unpublished Openfile Petroleum Report, PR4055, 501 p.
    [Google Scholar]
  24. Chattopadhyay, A., & Chakra, M. (2013). Influence of pre‐existing pervasive fabrics on fault patterns during orthogonal and oblique rifting: an experimental approach. Marine and Petroleum Geology, 39, 74–91. https://doi.org/10.1016/j.marpetgeo.2012.09.009
    [Google Scholar]
  25. Constable, R. M., & Crookbain, R. (2011). A sequence stratigraphic study of the Great South Basin. New Zealand Unpublished Openfile Petroleum Report, PR4348, 223 p.
    [Google Scholar]
  26. Cook, R. A., Sutherland, R., & Zhu, H. (1999). Cretaceous‐Cenozoic geology and petroleum systems of the Great South Basin, New Zealand. Institute of Geological & Nuclear Sciences Monograph, 20, 188 p, 2 enclosures.
    [Google Scholar]
  27. Craw, D., Mulliner, T., Haffert, L., Paulsen, H. K., Peake, B., & Pope, J. (2008). Stratigraphic controls on water quality at coal mines in southern New Zealand. New Zealand Journal of Geology and Geophysics, 51, 59–72. https://doi.org/10.1080/00288300809509850
    [Google Scholar]
  28. Dalrymple, R. W., Boyd, R., & Zaitlin, B. (1994). History of research, types and internal organization of incised‐valley systems: Introduction to the volume. In R. W.Dalrymple, R.Boyd, & B.Zaitlin (Eds.), Incised‐valley systems: origin and sedimentary sequences (Vol. 51, 3–10). SEPM Special Publication.
    [Google Scholar]
  29. Davison, I., & Underhill, J. R. (2012). Tectonics and sedimentation in extensional rifts: Implications for petroleum systems. In D.Gao (Ed.), Tectonics and sedimentation: implications for petroleum systems (Vol. 100, pp. 15‐42). AAPG Memoir.
    [Google Scholar]
  30. Davy, B. (1993). The Bounty Trough—Basement structure influences on sedimentary basin evolution. In P. F.Ballance (Ed.), South Pacific sedimentary basins, Sedimentary basins of the world (pp. 69–92). Elsevier science publishers.
    [Google Scholar]
  31. Davy, B. (2014). Rotation and offset of the Gondwana convergent margin in the New Zealand region following Cretaceous jamming of Hikurangi Plateau large igneous province subduction. Tectonics, 33, 1577–1595. https://doi.org/10.1002/2014TC003629
    [Google Scholar]
  32. Emery, D., & Myers, K. J. (1996). Sequence stratigraphy. Blackwell Science, 297 p.
    [Google Scholar]
  33. ExxonMobil Exploration Company (2010). Great South Basin open acreage 2D seismic interpretation report. New Zealand Unpublished Openfile Petroleum Report, PR4234, 18p.
  34. Field, B. D., & Browne, G. H. (1989). Cretaceous and Cenozoic sedimentary basins and geological evolution of the Canterbury region, South Island, New Zealand. New Zealand Geological Survey Basin Studies 2. Institute of Geological & Nuclear Sciences.
    [Google Scholar]
  35. Field, B. D., Uruski, C. I., Beu, A. G., Browne, G. H., Crampton, J. S., Funnell, R. H., Killops, S. D., Laird, M., Mazengarb, C., Morgans, H. E. G., Rait, G. J., Smale, D., & Strong, C. P. (1997). Cretaceous‐Cenozoic geology and petroleum systems of the East Coast region, New Zealand. Institute of Geological & Nuclear Sciences Monograph, 19, 301p & 7 enclosures.
    [Google Scholar]
  36. Fugro Seismic Imaging Pty Ltd . (2010). Seismic data processing report for OMV New Zealand Ltd. New Zealand Unpublished Openfile Petroleum Report, PR2982, 61 p.
    [Google Scholar]
  37. Gaina, C., Müller, D. R., Royer, J.‐Y., Stock, J., Hardebeck, J., & Symonds, P. (1998). The tectonic history of the Tasman Sea: A puzzle with 13 pieces. Journal of Geophysical Research, 103, 12413–12433. https://doi.org/10.1029/98jb00386
    [Google Scholar]
  38. Gawthorpe, R. L., Fraser, A. J., & Collier, R. E. L. (1994). Sequence stratigraphy in active extensional basins: implications for the interpretation of ancient basin‐fills. Marine and Petroleum Geology, 11, 642–658. https://doi.org/10.1016/0264‐8172(94)90021‐3
    [Google Scholar]
  39. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12, 195–218. https://doi.org/10.1111/j.1365‐2117.2000.00121.x
    [Google Scholar]
  40. Gawthorpe, R. L., Leeder, M. R., Kranis, H., Skourtsos, E., Andrews, J. E., Henstra, G. A., Mack, G. H., Muravchik, M., Turner, J. A., & Stamatakis, M. (2018). Tectono‐sedimentary evolution of the Plio‐Pleistocene Corinth rift, Greece. Basin Research, 30, 448–479. https://doi.org/10.1111/bre.12260
    [Google Scholar]
  41. Grobys, J. W. G., Gohl, K., Davy, B., Uenzelmann‐Neben, G., Deen, T., & Barker, D. (2007). Is the Bounty Trough off eastern New Zealand an aborted rift?Journal of Geophysical Research: Solid Earth, 112. https://doi.org/10.1029/2005JB004229
    [Google Scholar]
  42. Grobys, J. W. G., Gohl, K., & Eagles, G. (2008). Quantitative tectonic reconstructions of Zealandia based on crustal thickness estimates. Geochemistry, Geophysics, Geosystems, 9. https://doi.org/10.1029/2007GC001691
    [Google Scholar]
  43. Grobys, J. W. G., Gohl, K., Uenzelmann‐Neben, G., Davy, B., & Barker, D. (2009). Extensional and magmatic nature of the Campbell Plateau and Great South Basin from deep crustal studies. Tectonophysics, 472, 213–225. https://doi.org/10.1016/j.tecto.2008.05.003
    [Google Scholar]
  44. Gupta, S., Underhill, J. R., Sharp, I. R., & Gawthorpe, R. L. (1999). A mechanism to explain rift‐basin subsidence and stratigraphic patterns through fault‐array evolution. Geology, 26, 595–598. https://doi.org/10.1130/0091‐7613(1998)026<0595:AMTERB>2.3.CO;2
    [Google Scholar]
  45. Henstra, G. A., Gawthorpe, R. L., Helland‐Hansen, W., Ravnås, R., & Rotevatn, A. (2017). Depositional systems in multiphase rifts: seismic case study from the Lofoten margin, Norway. Basin Research, 2017(29), 447–469. https://doi.org/10.1111/bre.12183
    [Google Scholar]
  46. Higgs, K. E., Browne, G. H., & Sahoo, T. R. (2019). Reservoir characterisation of syn‐rift and post‐rift sandstones in frontier basins: An example from the Cretaceous of Canterbury and Great South basins, New Zealand. Marine and Petroleum Geology, 101, 1–29. https://doi.org/10.1016/j.marpetgeo.2018.11.030
    [Google Scholar]
  47. Higgs, K. E., Funnell, R. H., & Browne, G. H. (2021). A multidisciplinary study of diagenesis and pore fluid evolution in frontier basins; an example from Canterbury and Great South basins, New Zealand. Marine and Petroleum Geology, 124, 1–24. https://doi.org/10.1016/j.marpetgeo.2020.104817
    [Google Scholar]
  48. Higgs, K. E., King, P. R., Raine, J. I., Sykes, R., Browne, G. H., Crouch, E. M., & Baur, J. R. (2012). Sequence stratigraphy and controls on reservoir sandstone distribution in an Eocene marginal marine‐coastal plain fairway, Taranaki Basin, New Zealand. Marine and Petroleum Geology, 32, 110–137. https://doi.org/10.1016/j.marpetgeo.2011.12.001
    [Google Scholar]
  49. Holdsworth, R. E., Handa, M., Miller, J. A., & Buick, I. S. (2001). Continental reactivation and reworking: an introduction. Special Publication of the Geological Society of London, 184(1), 1–12. https://doi.org/10.1144/GSL.SP.2001.184.01.01
    [Google Scholar]
  50. Huerta, A., & Harry, D. L. (2012). Wilson cycles, tectonic inheritance, and rifting of the North American Gulf of Mexico continental margin. Geosphere, 8(2), 374.
    [Google Scholar]
  51. Hunt International Petroleum (1977a). Final report Kawau‐1A. New Zealand Unpublished Openfile Petroleum Report, PR716, 412p.
    [Google Scholar]
  52. Hunt International Petroleum . (1977b). Pakahā‐1 Well Completion Report. New Zealand Unpublished Openfile Petroleum Report, PR703, 290 p.
    [Google Scholar]
  53. Hunt International Petroleum . (1977c). Toroa‐1 Well Completion report. New Zealand Unpublished Openfile Petroleum Report, PR691, 301 p.
    [Google Scholar]
  54. Hunt International Petroleum . (1978a). Hoiho‐1C well completion report. New Zealand Unpublished Openfile Petroleum Report, PR691, 249 p.
    [Google Scholar]
  55. Hunt International Petroleum . (1978b). Tākapu‐1 & Tākapu‐1A well completion report. New Zealand Unpublished Openfile Petroleum Report, PR733, 213 p.
    [Google Scholar]
  56. Hunt International Petroleum . (1978c). Tara‐1 well completion report. PPL740. New Zealand Unpublished Openfile Petroleum Report, PR732, 269 p.
    [Google Scholar]
  57. King, P. R., Browne, G. H., Arnot, M. J., Slatt, R. M., Helle, K., & Stromsoyen, I. (2007). An overview of the Miocene Mount Messenger‐Urenui Formations, New Zealand: a 2‐D, oblique‐dip outcrop transect through an entire third‐order, progradational, deep‐water clastic succession (chapter 60). In T. H.Nilsen, R. D.Shew, G. S.Steffens, & J. R. J.Studlick (Eds.), Atlas of deep‐water outcrops (pp. 238–240). American Association of Petroleum Geologists. AAPG Studies in Geology 56.
    [Google Scholar]
  58. Klages, J. P., Salzmann, U., Bickert, T., Hillenbrand, C.‐D., Gohl, K., Kuhn, G., Bohaty, S. M., Titschack, J., Müller, J., Frederichs, T., Bauersachs, T., Ehrmann, W., van de Flierdt, T., Pereira, P. S., Larter, R. D., Lohmann, G., Niezgodzki, I., Uenzelmann‐Neben, G., Zundel, M., … The Science Team of Expedition, P.S. (2020). Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature, 580, 81–86. https://doi.org/10.1038/s41586‐020‐2148‐5
    [Google Scholar]
  59. Korme, T., Acocella, V., & Abebe, B. (2004). The role of pre‐existing structures in the origin, propagation and architecture of faults in the main Ethiopian rift. Gondwana Research, 7(2), 467–479. https://doi.org/10.1016/S1342‐937X(05)70798‐X
    [Google Scholar]
  60. Kusznir, N. J., & Ziegler, P. A. (1992). The mechanics of continental extension and sedimentary basin formation: A simple‐shear/pure‐shear flexural cantilever model. Tectonophysics, 215, 117–131.
    [Google Scholar]
  61. Laird, M. G. (1993). Cretaceous continental rifts: New Zealand region. In P. F.Ballance (Ed.), South Pacific sedimentary basins, Sedimentary basins of the world (Vol. 2, pp. 37–49). Elsevier Science.
    [Google Scholar]
  62. Laird, M. G. (1994). Geological aspects of the opening of the Tasman Sea. In G. J.Van der Lingen, K. M.Swanson, & R. J.Muir (Eds.), Evolution of the Tasman Sea Basin: Proceedings of the Tasman Sea Conference Christchurch, New Zealand (pp. 1–17). 27‐30 November 1992. A.A. Balkema.
    [Google Scholar]
  63. Laird, M. G. (1995). Coarse‐grained lacustrine fan‐delta deposits (Pororari Group) of the northwestern South Island, New Zealand: evidence for mid‐Cretaceous rifting. In: A. G.Plint (Ed.), Sedimentary facies analysis: A tribute to the research and teaching of Harold G. Reading (pp. 197–217). IAS Special Publication, 22, Blackwell Science.
    [Google Scholar]
  64. Laird, M. G., & Bradshaw, J. D. (2004). The break‐up of a long‐term relationship: The Cretaceous separation of New Zealand from Gondwana. Gondwana Research, 7, 273–286. https://doi.org/10.1016/S1342‐937X(05)70325‐7
    [Google Scholar]
  65. Lambiase, J. J., & Bosworth, W. (1995). Structural controls on sedimentation in continental rifts. In J. J.Lambiase (Ed.), Hydrocarbon habitat in rift basins (Vol. 80, pp. 117–144. ). Geological Society, Special Publication. https://doi.org/10.1144/GSL.SP.1995.080.01.06
    [Google Scholar]
  66. Landis, C. A., Campbell, H. J., Begg, J. G., Mildenhall, D. C., Paterson, A. M., & Trewick, S. A. (2008). The Waipounamu erosion surface: Questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora. Geological Magazine, 145, 173–197. https://doi.org/10.1017/S0016756807004268
    [Google Scholar]
  67. Lee, D., Lindqvist, J. K., Douglas, B., Bannister, J. M., & Cieraad, E. (2003). Paleobotany and sedimentology of Late Cretaceous‐Miocene non‐marine sequences in Otago and Southland. Field trip guide. Dunedin Conference. Geological Society of New Zealand Miscellaneous Publication, 116B, 49p.
    [Google Scholar]
  68. Leeder, M. R. (1995). Continental rifts and proto‐oceanic rift troughs. In C. J.Busby & R. V.Ingersoll (Eds.), Tectonics of sedimentary basins (pp. 119–148). Blackwell Science.
    [Google Scholar]
  69. Leeder, M. R., & Gawthorpe, R. L. (1987). Sedimentary models for extensional tilt‐block/half‐graben basins. In M. P.Coward, J. F.Dewey, & P. L.Hancock (Eds.), Continental extensional tectonics (Vol. 28, pp. 139‐152). Geological Society Special Publication.
    [Google Scholar]
  70. Leppard, C. W., & Gawthorpe, R. L. (2006). Sedimentology of rift climax deep water systems; lower rudeis formation, hammam faraun fault block, Suez Rift, Egypt. Sedimentary Geology, 191, 67–87. https://doi.org/10.1016/j.sedgeo.2006.01.006
    [Google Scholar]
  71. Lindqvist, J. K. (1986). Teredinid‐bored Araucariaceae logs preserved in shoreface sediments, Wangaloa Formation (Paleocene), Otago, New Zealand. New Zealand Journal of Geology and Geophysics, 29, 253–261. https://doi.org/10.1080/00288306.1986.10427536
    [Google Scholar]
  72. Lindqvist, J. K. (1987). Late Cretaceous‐Paleocene fluvial and shallow marine deposits, Kaitangata coalfield, Taratu and Wangaloa formations. Geological Society of New Zealand Annual Conference, 1–4 December 1987, Dunedin (Vol. 37B, pp. 29–51). Geological Society of New Zealand Miscellaneous Publication.
    [Google Scholar]
  73. Lindqvist, J. K. (1991). Alluvial and turbidite fan deposition in a mid Cretaceous rift lake: Puysegur Group, Southwest Fiordland. New Zealand Petroleum Conference Proceedings 1991. 110.
    [Google Scholar]
  74. Luyendyk, B. P., Wilson, D. S., & Siddoway, C. S. (2003). Eastern margin of the Ross Sea Rift in western Marie Byrd Land, Antarctica: Crustal structure and tectonic development. Geochemistry, Geophysics, Geosystems, 4, 1090. https://doi.org/10.1029/2002gc000462
    [Google Scholar]
  75. Maitra, M., & Bassett, K. (2017). Detailed facies analysis and sequence stratigraphy of potential lacustrine source rocks, GeoConvention. 15‐19 May 2017, poster.
    [Google Scholar]
  76. McKenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40, 25–32. https://doi.org/10.1016/0012‐821X(78)90071‐7
    [Google Scholar]
  77. Mildenhall, D. C., Mortimer, N., Bassett, K. N., & Kennedy, E. M. (2014). Oligocene paleogeography of New Zealand: Maximum marine transgression. New Zealand Journal of Geology and Geophysics, 57(2), 107–109. https://doi.org/10.1080/00288306.2014.904387
    [Google Scholar]
  78. Mitchell, M., Craw, D., Landis, C. A., & Frew, R. (2009). Stratigraphy, provenance, and diagenesis of the Cretaceous Horse Range Formation, east Otago, New Zealand. New Zealand Journal of Geology and Geophysics, 52, 171–183. https://doi.org/10.1080/00288300909509884
    [Google Scholar]
  79. Mitchum, R. M., & Vail, P. R. (1977). Seismic stratigraphy and global changes of sea level, Part 7: Seismic Stratigraphic Interpretation Procedure. In C. E.Payton (Ed.), Seismic stratigraphy‐applications to hydrocarbon exploration (Vol. 26, pp. 135–143). AAPG Memoir.
    [Google Scholar]
  80. Mitchum, R. M., Vail, P. R., & Sangree, J. B. (1977). Seismic stratigraphy and global changes of sea level, Part 6: stratigraphic interpretation of seismic reflection patterns in depositional sequences. In C. E.Payton (Ed.), Seismic stratigraphy‐applications to hydrocarbon exploration (Vol. 26, 117–133). AAPG Memoir.
    [Google Scholar]
  81. Moissette, P., Koskeridou, E., Jean‐JacquesCornée, J., & Jean‐PierreAndré, J. (2013). Fossil assemblages associated with submerged beachrock beds as indicators of environmental changes in terrigenous sediments: Examples from the Gelasian (Early Pleistocene) of Rhodes, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 14–17. https://doi.org/10.1016/j.palaeo.2012.09.007
    [Google Scholar]
  82. Morley, C. K. (1989). Extension, detachments, and sedimentation in continental rifts (with particular reference to East Africa). Tectonics, 8, 1175–1192. https://doi.org/10.1029/TC008i006p01175
    [Google Scholar]
  83. Morley, C. K. (1999). Patterns of displacement along large normal faults: Implications for basin evolution and fault propagation, based on examples from east Africa. AAPG Bulletin (American Association of Petroleum Geologists), 83, 613–634.
    [Google Scholar]
  84. Morley, C. K., Haranya, C., Phoosongsee, W., Pongwapee, S., Kornsawan, A., & Wonganan, N. (2004). Activation of rift oblique and rift parallel pre‐existing fabrics during extension and their effect on deformation style: examples from the rifts of Thailand. Journal of Structural Geology, 26(10), 1803–1829. https://doi.org/10.1016/j.jsg.2004.02.014
    [Google Scholar]
  85. Mortimer, N. (2004). New Zealand's geological foundations. Gondwana Research, 7, 261–272. https://doi.org/10.1016/S1342‐937X(05)70324‐5
    [Google Scholar]
  86. Mortimer, N., Campbell, H. J., Tulloch, A. J., King, P. R., Stagpoole, V. M., Wood, R. A., Rattenbury, M. S., Sutherland, R., Adams, C. J., Collot, J., & Seton, M. (2017). Zealandia: Earth’s hidden continent. GSA Today, 27, 8. https://doi.org/10.1130/GSATG321A.1
    [Google Scholar]
  87. Mortimer, N., Davey, F. J., Melhuish, A., Yu, J., & Godfrey, N. J. (2002). Geological interpretation of a deep seismic reflection profile across the Eastern Province and Median Batholith, New Zealand: Crustal architecture of an extended Phanerozoic convergent orogen. New Zealand Journal of Geology and Geophysics, 45, 349–363. https://doi.org/10.1080/00288306.2002.9514978
    [Google Scholar]
  88. Mortimer, N., McLaren, S., & Dunlap, W. J. (2012). Ar‐Ar dating of K‐feldspar in low grade metamorphic rocks: Example of an exhumed Mesozoic accretionary wedge and forearc, South Island. New Zealand. Tectonics, 31. https://doi.org/10.1029/2011TC003057
    [Google Scholar]
  89. Mortimer, N., & Strong, D. T. (2014). New Zealand limestone purity. New Zealand Journal of Geology and Geophysics, 57(2), 209–218. https://doi.org/10.1080/00288306.2014.901230
    [Google Scholar]
  90. Mortimer, N., Tulloch, A. J., Spark, R. N., Walker, N. W., Ladley, E., Allibone, A. H., & Kimbrough, D. L. (1999). Overview of the Median Batholith, New Zealand: a new interpretation of the geology of the Median Tectonic Zone and adjacent rocks. Journal of African Earth Sciences, 29, 257–268. https://doi.org/10.1016/S0899‐5362(99)00095‐0
    [Google Scholar]
  91. Mortimer, N., van den Bogaard, P., Hoernle, K., Timm, C., Gans, P. B., Werner, R., & Riefstahl, F. (2019). Late Cretaceous oceanic plate reorganization and the breakup of Zealandia and Gondwana. Gondwana Research, 65, 31–42. https://doi.org/10.1016/j.gr.2018.07.010
    [Google Scholar]
  92. Muir, R. J., Ireland, T. R., Weaver, S. D., & Bradshaw, J. D. (1994). Ion microprobe U/Pb zircon geochronology of granitic magmatism in the Western Province of the South Island, New Zealand. Chemical Geology, 113, 171–189. https://doi.org/10.1016/0009‐2541(94)90011‐6
    [Google Scholar]
  93. Muir, R. J., Weaver, S. D., Bradshaw, J. D., Eby, G. N., & Evans, J. A. (1995). The Cretaceous Separation Point batholith, New Zealand: Granitoid magmas formed by melting of mafic lithosphere. Journal of the Geological Society, London, 152, 689–701. https://doi.org/10.1144/gsjgs.152.4.0689
    [Google Scholar]
  94. Nathan, S., Anderson, H. J., Cook, R. A., Herzer, R. H., Hoskins, R. H., Raine, J. I., & Smale, D. (1986). Cretaceous and Cenozoic sedimentary basins of the West Coast region, South Island, New Zealand. New Zealand Geological Survey Basin Studies, 1, 89.
    [Google Scholar]
  95. Nathan, S., Rattenbury, M. S., & Suggate, R. P. (2002). Geology of the Greymouth area. Institute of Geological & Nuclear Sciences 1:250,000 geological map, 12. Institute of Geological & Nuclear Sciences. 58p + 1 map.
    [Google Scholar]
  96. Peace, A., McCaffrey, K., Imber, J., Hunen, J. V., Hobbs, R., & Wilson, R. (2018). The role of pre‐existing structures during rifting, continental breakup and transform system development, offshore West Greenland. Basin Research, 30, 373–394. https://doi.org/10.1111/bre.12257
    [Google Scholar]
  97. Phillips, T. B., & McCaffrey, K. J. W. (2019). Terrane boundary reactivation, barriers to lateral fault propagation and reactivated fabrics: Rifting across the median batholith zone, great South Basin, New Zealand. Tectonics, 38, 4027–4053. https://doi.org/10.1029/2019TC005772
    [Google Scholar]
  98. Placid Oil . (1984a). Final geological well report Pukaki‐1 Great South Basin NZ PPL 38081. New Zealand Unpublished Openfile Petroleum Report, PR1005, 154 p, 2 enclosures.
    [Google Scholar]
  99. Placid Oil . (1984b). Final geological well report, Rakiura‐1. Great South Basin, New Zealand. New Zealand Unpublished Openfile Petroleum Report, PR994, 291p.
    [Google Scholar]
  100. Pocknall, D. T., & Lindqvist, J. K. (1988). Palynology of Puysegur Group (mid Cretaceous) at Gulches Peninsula, south Fiordland. New Zealand Geological Survey Record, 35, 86–93.
    [Google Scholar]
  101. Posamentier, H. W., & Allen, G. P. (1999). Siliciclastic sequence stratigraphy: concepts and applications, 7, 210. SEPM Concepts in Sedimentology and Paleontology.
    [Google Scholar]
  102. Raine, J. I., Kennedy, E. M., Griffin, A. G., Sykes, R., & Clowes, C. D. (2018). Materials for improved assessment of the petroleum source potential of New Zealand coaly rocks, 1: mid‐Cretaceous stratigraphy coal abundance, flora and climate. GNS Science Report, 2018/07. GNS Science, 99 p. https://doi.org/10.21420/GD20D20
  103. Ravnås, R., & Steel, R. J. (1998). Architecture of Marine Rift‐Basin Successions1. AAPG Bulletin, 82, 110–146. https://doi.org/10.1306/1D9BC3A9‐172D‐11D7‐8645000102C1865D
    [Google Scholar]
  104. Riefstahl, F., Gohl, K., Davy, B., Hoernle, K., Mortimer, N., Timm, C., Werner, R., & Hochmuth, K. (2020). Cretaceous intracontinental rifting at the southern Chatham Rise margin and initialisation of seafloor spreading between Zealandia and Antarctica. Tectonophysics, 776, 228298. https://doi.org/10.1016/j.tecto.2019.228298
    [Google Scholar]
  105. Roberts, A. M., & Yielding, G. (1991). Deformation around basin‐margin faults in the North Sea/mid‐Norway rift. In A. M.Roberts, G.Yielding, & B.Freeman (Eds.), The geometry of normal faults (Vol. 56, 61–78). Geological Society, London, Special Publication. https://doi.org/10.1144/GSL.SP.1991.056.01.05
    [Google Scholar]
  106. Sahoo, T. R., & Bland, K. J. (compilers). (2017). Atlas of Petroleum Prospectivity, Southeast Province: ArcGIS geodatabase and technical report. GNS Science data series (Vol. 23c, pp. 1–53). Retrieved from https://data.gns.cri.nz/pbe/index.html?menu=APP
    [Google Scholar]
  107. Sahoo, T. R., King, P. R., Bland, K. J., Strogen, D. P., Sykes, R., & Bache, F. (2014). Tectono‐sedimentary evolution and source rock distribution of the mid to Late Cretaceous succession in the Great South Basin, New Zealand. APPEA Journal, 54, 259–274. https://doi.org/10.1071/AJ13026
    [Google Scholar]
  108. Sahoo, T. R., Nicol, A., Browne, G. H., & Strogen, D. P. (2020). Evolution of a normal fault system along Eastern Gondwana, New Zealand. Tectonics, 39, e2020TC006181. https://doi.org/10.1029/2020TC006181
    [Google Scholar]
  109. Schiøler, P., Browne, G. H., Cameron, H., King, P. R., Strogen, D. P., Sahoo, T., & Funnell, R. H. (2017). Great South Basin: National wells audit pilot project play analysis report. New Zealand Unpublished Openfile Petroleum Report. , PR5428‐2, 99 p.
    [Google Scholar]
  110. Schiøler, P., & Raine, J. I. (2009). Palynology of lower Hoiho Group in the Great South Basin and Clipper and Horse Range Formations in the Canterbury Basin, GNS Science Consultancy Report, 2009/361. In New Zealand Unpublished Openfile Petroleum Report, PR4348, 1–67.
    [Google Scholar]
  111. Schiøler, P., Raine, J. I., Crundwell, M. P., Fohrmann, M., Griffin, A., Hollis, C. J., Kulhanek, D. K., Morgans, H. E. G., Roncaglia, L., & Strong, C. P. (2012). Revised biostratigraphy and well correlation, Canterbury Basin, New Zealand; updated with results from Cutter‐1 well. New Zealand Unpublished Openfile Petroleum Report, PR4621, 174 p.
    [Google Scholar]
  112. Schiøler, P., Raine, J. I., Crundwell, M. P., Griffin, A. G., Hollis, C. J., Kulhanek, D. K., Morgans, H. E. G., Roncaglia, L. R., Strong, C. P., & Uruski, C. I. (2011). Revised biostratigraphy and well correlation, Canterbury Basin, New Zealand. New Zealand Unpublished Openfile Petroleum Report, PR4365, 152 p.
    [Google Scholar]
  113. Schiøler, P., Rogers, K., Sykes, R., Hollis, C. J., Ilg, B., Meadows, D., Roncaglia, L., & Uruski, C. (2010). Palynofacies, organic geochemistry and depositional environment of the Tartan Formation (Late Paleocene), a potential source rock in the Great South Basin, New Zealand. Marine and Petroleum Geology, 27, 351–369. https://doi.org/10.1016/j.marpetgeo.2009.09.006
    [Google Scholar]
  114. Seebeck, H., Strogen, D., King, P., Nicol, A., Hines, B., & O'Brien, G. (2018). Cretaceous to present‐day tectonic reconstructions of Zealandia. The APPEA Journal, 58, 852–857. https://doi.org/10.1071/AJ17117
    [Google Scholar]
  115. Seebeck, H., Tenthorey, E., Consoli, C., & Nicol, A. (2015). Polygonal faulting and seal integrity in the Bonaparte Basin, Australia. Marine and Petroleum Geology, 60, 120–135. https://doi.org/10.1016/j.marpetgeo.2014.10.012
    [Google Scholar]
  116. Selley, R. C. (1998). Elements of petroleum geology (2nd ed., pp. 37–145). Department of Geology, Imperial College. Academic Press.
    [Google Scholar]
  117. Shell BP Todd . (1984). Drilling completion report, Clipper‐1. Offshore Canterbury, South Island, New Zealand, PPL38202. New Zealand Unpublished Openfile Petroleum Report, PR1036, 909 p.
    [Google Scholar]
  118. Shell GSB Ltd . (2013). Prospectivity Summary of PEP 50119. New Zealand Unpublished Openfile Petroleum Report, PR4780, 22 p.
    [Google Scholar]
  119. Siddoway, C. S., Baldwin, S. L., Fitzgerald, P. G., Fanning, C. M., & Luyendyk, B. P. (2004). Ross Sea mylonites and the timing of intracontinental extension within the West Antarctic rift system. Geology, 32, 57–60. https://doi.org/10.1130/g20005.1
    [Google Scholar]
  120. Strogen, D. P., Bland, K. J., Nicol, A., & King, P. R. (2014). Paleogeography of the Taranaki Basin region during the latest Eocene‐Early Miocene and implications for the ‘total drowning’ of Zealandia. New Zealand Journal of Geology and Geophysics, 57(2), 110–127. https://doi.org/10.1080/00288306.2014.901231
    [Google Scholar]
  121. Strogen, D. P., Seebeck, H. C., Bland, K. J., & Hines, B. R. (2019). Zealandia‐wide palinspastic paleogeography from the mid‐Cretaceous to Pliocene. In P. J. J.Kamp & A.Pittari (Eds.), Abstract volume: Geosciences 2019, Hamilton (Vol. 155A, p. 190). Geoscience Society of New Zealand Miscellaneous Publication.
    [Google Scholar]
  122. Strogen, D. P., Seebeck, H., Nicol, A., & King, P. R. (2017). Two‐phase Cretaceous‐Paleocene rifting in the Taranaki Basin region, New Zealand; implications for Gondwana break‐up. Journal of the Geological Society, 174, 929–946. https://doi.org/10.1144/jgs2016‐160
    [Google Scholar]
  123. Surlyk, F., & Clemmensen, L. B. (1983). Rift propagation and eustasy as controlling factors during Jurassic inshore and shelf sedimentation in northern East Greenland. Sedimentary Geology, 34, 119–143.
    [Google Scholar]
  124. Sutherland, R., King, P. R., & Wood, R. A. (2001). Tectonic evolution of Cretaceous rift basins in south‐eastern Australia and New Zealand: implications for exploration risk assessment. In K. C.Hill & T.Bernecker (Eds.), Eastern Australasian basins symposium 2001 (pp. 3–13). PESA.
    [Google Scholar]
  125. Tulloch, A. (2010). Apatite fission track thermochronology and HeFTy inverse modelling of 25 samples from six Great South Basin wells. New Zealand Unpublished Openfile Petroleum Report, PR4220, 233p.
  126. Tulloch, A. J., Mortimer, N., Ireland, T. R., Waight, T. E., Maas, R., Palin, J. M., Sahoo, T., Seebeck, H., Sagar, M. W., Barrier, A., & Turnbull, R. E. (2019). Reconnaissance basement geology and tectonics of South Zealandia. Tectonics, 38(2), 516–551. https://doi.org/10.1029/2018TC005116
    [Google Scholar]
  127. Tulloch, A. J., Ramezani, J., Kimbrough, D. L., Faure, K., & Allibone, A. H. (2009). U‐Pb geochronology of mid‐Paleozoic plutonism in western New Zealand: Implications for S‐type granite generation and growth of the east Gondwana margin. Geological Society of America Bulletin, 121, 1236–1261. https://doi.org/10.1130/b26272.1
    [Google Scholar]
  128. Turnbull, I. M., Allibone, A. H., & Jongens, R. (2010). Geology of the Fiordland area. Institute of Geological and Nuclear Sciences geological map 17. GNS Science. 1 sheet +19 p.
    [Google Scholar]
  129. Turnbull, I. M., Uruski, C. I., Anderson, H. J., Lindqvist, J. K., Scott, G. H., Morgans, H. E. G., Hoskins, R. H., Raine, J. I., Mildenhall, D. C., Pocknall, D. T., Beu, A. G., Maxwell, P. A., Smale, D., Watters, W. A., & Field, B. D. (1993). Cretaceous and Cenozoic sedimentary basins of western Southland, South Island, New Zealand. Institute of Geological & Nuclear Sciences Monograph, 1. Institute of Geological & Nuclear Sciences, New Zealand Geological Survey basin studies 4, 86 p.
    [Google Scholar]
  130. Uruski, C. I. (2017). Stacked deltas in the Great South Basin. Advantage NZ Conference 2017. http://www.petroleumconference.nz/wp‐content/uploads/2017/03/10‐NZPC_2017_Uruski‐COMBINED.pdf
    [Google Scholar]
  131. Uruski, C. I., Kennedy, C., Harrison, T., Maslen, G., Cook, R. A., Stagpoole, V. M., Sutherland, R., & Zhu, H. (2007). Petroleum potential of the Great South Basin, New Zealand ‐ new seismic data improves imaging. The APPEA Journal, 47, 143–160. https://doi.org/10.1071/AJ06008
    [Google Scholar]
  132. Walker, R. G., & Plint, A. G. (1992). Wave‐ and storm‐dominated shallow marine systems. In R. G.Walker & N. P.James (Eds.), Facies models‐response to sea level change (pp. 219–238). Geological Association of Canada.
    [Google Scholar]
  133. Wernicke, B. (1985). Uniform sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences, 22, 108–125. https://doi.org/10.1139/e85‐009
    [Google Scholar]
  134. Wilson, G. J., & McMillan, S. G. (1996). Late Cretaceous‐Tertiary stratigraphic sections of coastal Otago: A summary of biostratigraphic and lithostratigraphic data. Institute of Geological & Nuclear Sciences Science Report, 96(39), 195.
    [Google Scholar]
  135. Withjack, M. O., Schlische, R. W., & Olsen, P. E. (2002). Rift‐basin structure and its influence on sedimentary systems. In R. W.Renaut & G. M.Ashley (Eds.), Sedimentation in continental rifts (pp. 57–81). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.02.73.0057
    [Google Scholar]
  136. Woodcock, N. H. (2004). Life span and fate of basins. Geology, 32, 685–688. https://doi.org/10.1130/G20598.1
    [Google Scholar]
  137. Yoshida, S., Johnson, H. D., Pye, K., & Dixon, R. J. (2004). Transgressive changes from tidal estuarine to marine embayment depositional systems: The Lower Cretaceous Woburn Sands of southern England and comparison with Holocene analogues. AAPG Bulletin, 88, 1433e1460.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12652
Loading
/content/journals/10.1111/bre.12652
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error