1887
Volume 34, Issue 3
  • E-ISSN: 1365-2117

Abstract

[Abstract

Upper Triassic to lowest Upper Jurassic strata in north‐eastern Mexico record surface processes during the early rifting that led to the opening of the Gulf of Mexico. Exposed near Ciudad Victoria, Tamaulipas and northwest to Galeana, Nuevo Leon, these continental deposits are called the Huizachal Group. Several key questions about these strata hamper their integration into a regional understanding of Late Triassic and Jurassic sediment routing and deposition. First, the depositional age of the stratigraphically lowest unit, the El Alamar Formation, is less well established than the depositional ages of the stratigraphically higher parts of the succession, leading to questions about the timinig of the onset of tectonic context, and regional correlation of these strata. Second, better knowledge of provenance and sediment routing, including fluvial transport distance, can help determine whether and when the depositional basin was split into subbasins versus connected by a throughgoing river system. This study uses sandstone detrital zircon U‐Pb isotopic ages and clast compositions to constrain depositional ages and reconstruct tectonic setting and provenance. Detrital zircon U‐Pb ages yielded a maximum depositional age of 210 Ma for the part of the El Alamar Formation exposed near Galeana, younger than previously determined. Although long‐distance (>100 km) sediment transport cannot be ruled out, the sources for Huizachal Group sandstone framework grains and detrital zircon could have been entirely local, within about 100 km. Alluvial deposits and pyroclastic and lava flows likewise indicate transport of no more than 100 km. We therefore infer deposition in partitioned rift basins receiving sediment from local sources. These data and interpretations contribute to understanding surface processes during the initial rifting that eventually led to opening of the Gulf of Mexico.

,

Interpretations of possible courses of the latest Triassic El Alamar River based on possible sediment sources to the El Alamar Formation. No data require headwaters of the El Alamar River east of the Coahuila Block.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12654
2022-05-22
2024-04-26
Loading full text...

Full text loading...

References

  1. Abdullin, F., Solari, L., Sole, J., & Ortega‐Obregon, C. (2021). Mesozoic exhumation history of the Grenvillian Oaxacan Complex, southern Mexico. Terra Nova, 33, 86–94. https://doi.org/10.1111/ter.12493
    [Google Scholar]
  2. Aleman‐Gallardo, E. A., Ramirez‐Fernandez, J. A., Rodriguez‐Diaz, A. A., Velasco‐Tapia, F., Jenchen, U., Cruz‐Gamez, E. M., De Leon‐Barragan, L., & Navarro‐De Leon, I. (2019). Evidence for an Ordovician continental arc in the pre‐Mesozoic basement of the Huizachal‐Peregrina Anticlinorium, Sierra Madre Oriental, Mexico: Peregrina Tonalite. Mineralogy and Petrology, 113, 505–525. https://doi.org/10.1007/s00710‐019‐00660‐4
    [Google Scholar]
  3. Aleman‐Gallardo, E. A., Ramirez‐Fernandez, J. A., Weber, B., Velasco‐Tapia, F., & Casas‐Pena, J. M. (2019). Novillo Metamorphic Complex, Huizachal‐Peregrina Anticlinorium, Tamaulipas, Mexico: Characterization and development based on whole‐rock geochemistry and Nd‐isotopic ratios. Journal of South American Earth Sciences, 96, 102382. https://doi.org/10.1016/j.jsames.2019.102382
    [Google Scholar]
  4. Anderson, T. H., & Schmidt, V. A. (1983). The evolution of Middle America and the Gulf of Mexico‐Caribbean Sea region during Mesozoic time. Geological Society of America Bulletin, 94, 941–966. https://doi.org/10.1130/0016‐7606(1983)94<941:TEOMAA>2.0.CO;2
    [Google Scholar]
  5. Barboza‐Gudino, J. R., Ocampo‐Diaz, Y. Z. E., Zavala‐Monsivais, A., & Lopez‐Doncel, R. A. (2014). Procedencia como herramienta para la subdivision estratigrafica del Mesozoic temprano en el noreste de Mexico. Revista Mexicana de Ciencias Geologicas, 31, 303–324.
    [Google Scholar]
  6. Barboza‐Gudino, J. R., Orozco‐Esquivel, M. T., Gomez‐Anguiano, M., & Zavala‐Monsivais, A. (2008). The early Mesozoic volcanic arc of western North America in northeastern Mexico. Journal of South American Earth Sciences, 25, 49–63. https://doi.org/10.1016/j.jsames.2007.08.003
    [Google Scholar]
  7. Barboza‐Gudino, J. R., Ramirez‐Fernandez, J. A., Torres‐Sanchez, S. A., & Valencia, V. A. (2011). Geocronologia de circones detriticos de diferentes localidades del Esquisto Granjeno en el noreste de Mexico. Boletin de la Sociedad Geologica Mexicana, 63, 201–216.
    [Google Scholar]
  8. Barboza‐Gudino, J. R., Zavala‐Monsivais, A., Castellanos‐Rodríguez, V., Jaime‐Rodriguez, D., & Almaraz‐Martinez, C. (2021). Subduction‐related Jurassic volcanism in the Mesa Central province and contemporary Gulf of Mexico opening. Journal of South American Earth Sciences, 108, 102961. https://doi.org/10.1016/j.jsames.2020.102961
    [Google Scholar]
  9. Barboza‐Gudino, J. R., Zavala‐Monsivais, A., Venegas‐Rodriguez, G., & Barajas‐Nigoche, L. D. (2010). Late Triassic stratigraphy and facies from northeastern Mexico: Tectonic setting and provenance. Geosphere, 6, 621–640. https://doi.org/10.1130/GES00545.1
    [Google Scholar]
  10. Barton, K. E., Howell, D. G., & Vigil, J. F. (2003). The North America tapestry of time and terrain. U.S. Geological Survey Geologic Investigations Series I‐2781.
    [Google Scholar]
  11. Bowring, S. A., & Schmitz, M. D. (2003). High‐precision U‐Pb zircon geochronology and the stratigraphic record. In J. M.Hanchar & P. W. O.Hoskin (Eds.), Zircon. Reviews in mineralogy and geochemistry, (Vol. 53, pp. 305–326). Mineralogical Society of America. https://doi.org/10.2113/0530305
    [Google Scholar]
  12. Cameron, K. L., Lopez, R., Ortega‐Gutierrez, F., Solari, L. A., Keppie, J. D., & Schulze, C. (2004). U‐Pb geochronology and Pb isotopic compositions of leached feldspars: Constraints on the origin and evolution of Grenville rocks from eastern and southern Mexico. In R. P.Tollo, L.Corriveau, J.McLelland & M. J.Bartholomew (Eds.), Proterozoic tectonic evolution of the Grenville Orogen in North America (Vol. 197, pp. 755–769). Geological Society of America, Memoir. https://doi.org/10.1130/0‐8137‐1197‐5.755
    [Google Scholar]
  13. Carrillo‐Bravo, J. (1959). Notas sobre el Paleozoico de la region de Ciudad Victoria, Tamps. Boletin de la Asociacion Mexicana de Geologos Petroleros, 11, 671–680.
    [Google Scholar]
  14. Carrillo‐Bravo, J. (1961). Geologia del Anticlinorio Huizachal‐Peregrina al N‐W de Ciudad Victoria Tamps. Boletin de la Asociacion Mexicana de Geologos Petroleros, 13, 1–98.
    [Google Scholar]
  15. Casas‐Pena, J. M., Ramirez‐Fernandez, J. A., Velasco‐Tapia, F., Aleman‐Gallardo, E. A., Augustsson, C., Weber, B., Frei, D., & Jenchen, U. (2021). Provenance and tectonic setting of the Paleozoic Tamatan Group, NE Mexico: Implications for the closure of the Rheic Ocean. Gondwana Research, 91, 205–230. https://doi.org/10.1016/j.gr.2020.12.012
    [Google Scholar]
  16. Centeno‐García, E. (2005). Review of Upper Paleozoic and Lower Mesozoic stratigraphy and depositional environments of central and west Mexico: Constraints on terrane analysis and paleogeography. In T. H.Anderson, J. A.Nourse, J. W.McKee & M. B.Steiner (Eds.), The Mojave‐Sonora megashear hypothesis: Development, assessment, and alternatives (Vol. 393, pp. 233–258). Geological Society of America, Special Paper. https://doi.org/10.1130/0‐8137‐2393‐0.233
    [Google Scholar]
  17. Chayes, F. (1952). Notes on the staining of potash feldspar with sodium cobaltinitrite in thin section. American Mineralogist, 37, 337–340.
    [Google Scholar]
  18. Clark, J. M., Montellano, M., Hopson, J. A., Hernandez, R., & Fastovsky, D. E. (1994). An Early or Middle Jurassic tetrapod assemblage from the La Boca Formation, northeastern Mexico. In N. C.Fraser & H.‐D.Sues (Eds.), In the shadow of the dinosaurs: Early Mesozoic tetrapods (pp. 295–302). Cambridge University Press.
    [Google Scholar]
  19. Cochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagomez, D., Putlitz, B., & Chiaradia, M. (2014). Permo‐Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos, 190–191, 383–402. https://doi.org/10.1016/j.lithos.2013.12.020
    [Google Scholar]
  20. Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J.‐X. (2013, updated 2021). The ICS international chronostratigraphic chart. Episodes, 36, 199–204. https://doi.org/10.18814/epiiugs/2013/v36i3/002
    [Google Scholar]
  21. Coombs, H. E., Kerr, A. C., Pindell, J., Buchs, D., Weber, B., & Solari, L. (2020). Petrogenesis of the crystalline basement along the western Gulf of Mexico: Postcollisional magmatism during the formation of Pangea. In U.Martens & R. S.Molina‐Garza (Eds.), Southern and central Mexico: Basement framework, tectonic evolution, and provenance of Mesozoic–Cenozoic basins (Vol. 546). Geological Society of America, Special Paper. https://doi.org/10.1130/2020.2546(02)
    [Google Scholar]
  22. Copeland, P. (2020). On the use of geochronology of detrital grains in determining the time of deposition of clastic sedimentary strata. Basin Research, 32, 1532–1546. https://doi.org/10.1111/bre.12441
    [Google Scholar]
  23. Coutts, D. S., Matthews, W. A., & Hubbard, S. M. (2019). Assessment of widely used methods to derive depositional ages from detrital zircon populations. Geoscience Frontiers, 10, 1421–1435. https://doi.org/10.1016/j.gsf.2018.11.002
    [Google Scholar]
  24. Cross, G. E. (2012). Evaporite deformation in the Sierra Madre Oriental, northeastern Mexico: Decollement kinematics in an evaporite‐detached thin‐skinned fold belt (p. 547, PhD dissertation). University of Texas Austin.
    [Google Scholar]
  25. Dewey, J. F., & Burke, K. (1974). Hot spots and continental break‐up: Implications for collisional orogeny. Geology, 2, 57–60. https://doi.org/10.1130/0091‐7613(1974)2<57:HSACBI>2.0.CO;2
    [Google Scholar]
  26. Dickinson, W. R. (1970). Interpreting detrital modes of graywacke and arkose. Journal of Sedimentary Research, 40, 695–707. https://doi.org/10.1306/74D72018‐2B21‐11D7‐8648000102C1865D
    [Google Scholar]
  27. Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., Knepp, R. A., Lindberg, F. A., & Ryberg, P. T. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94, 222–235. https://doi.org/10.1130/0016‐7606(1983)94<222:PONAPS>2.0.CO;2
    [Google Scholar]
  28. Dickinson, W. R., & Gehrels, G. E. (2009). Use of U‐Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288, 115–125. https://doi.org/10.1016/j.epsl.2009.09.013
    [Google Scholar]
  29. Dickinson, W. R., Gehrels, G. E., & Stern, R. J. (2010). Late Triassic Texas uplift preceding Jurassic opening of the Gulf of Mexico: Evidence from U‐Pb ages of detrital zircons. Geosphere, 6, 641–662. https://doi.org/10.1130/GES00532.1
    [Google Scholar]
  30. Dowe, D. S., Nance, R. D., Keppie, J. D., Cameron, K. L., Ortega‐Rivera, A., Ortega‐Gutierrez, F., & Lee, J. W. K. (2005). Deformational history of the Granjeno Schist, Ciudad Victoria, Mexico: Constraints on the closure of the Rheic Ocean?International Geology Review, 47, 920–937. https://doi.org/10.2747/0020‐6814.47.9.920
    [Google Scholar]
  31. Fastovsky, D. E., Hermes, O. D., Strater, N. H., Bowring, S. A., Clark, J. M., Montellano, M., & Hernandez‐Rivera, R. (2005). Pre‐Late Jurassic, fossil‐bearing volcanic and sedimentary red beds of Huizachal Canyon, Tamaulipas, Mexico. In T. H.Anderson, J. A.Nourse, J. W.McKee & M. B.Steiner (Eds.), The Mojave‐Sonora megashear hypothesis: Development, assessment, and alternatives (Vol. 393, pp. 401–426). Geological Society of America, Special Paper. https://doi.org/10.1130/0‐8137‐2393‐0.401
    [Google Scholar]
  32. Fitz‐Diaz, E., Lawton, T. F., Juarez‐Arriaga, E., & Chavez‐Cabello, G. (2018). The Cretaceous‐Paleogene Mexican orogen: Structure, basin development, magmatism and tectonics. Earth‐Science Reviews, 183, 56–84. https://doi.org/10.1016/j.earscirev.2017.03.002
    [Google Scholar]
  33. Frederick, B. C., Blum, M. D., Snedden, J. W., & Fillon, R. H. (2020). Early Mesozoic synrift Eagle Mills Formation and coeval siliciclastic sources, sinks, and sediment routing, northern Gulf of Mexico basin. GSA Bulletin, 132, 2631–2650. https://doi.org/10.1130/B35493.1
    [Google Scholar]
  34. Freeland, G. L., & Dietz, R. S. (1971). Plate tectonic evolution of Caribbean‐Gulf of Mexico region. Nature, 232, 20–23. https://doi.org/10.1038/232020a0
    [Google Scholar]
  35. Fries, C., & Rincon‐Orta, C. (1965). Nuevas aportaciones geocronologicas y tecnicas empleadas en el laboratorio de geocronometria. Boletin del Instituto de Geologia, UNAM, 73, 57–133.
    [Google Scholar]
  36. Garzanti, E. (2019). Petrographic classification of sand and sandstone. Earth‐Science Reviews, 192, 545–563. https://doi.org/10.1016/j.earscirev.2018.12.014
    [Google Scholar]
  37. Gazzi, P. (1966). Le arenarie del flysch sopracretaceo dell'Appennino modenese; correlazioni con il flysch di Monghidoro. Mineralogica et Petrographica Acta, 12, 69–97.
    [Google Scholar]
  38. Girty, G. H. (1926). A new area of Carboniferous rocks in Mexico. Science, 63, 286–287. https://doi.org/10.1126/science.63.1628.286
    [Google Scholar]
  39. Gomez, C., Kammer, A., Bernet, M., Piraquive, A., & von Quadt, A. (2021). Late Triassic rift tectonics at the northernmost Andean margin (Sierra Nevada de Santa Marta). Journal of South American Earth Sciences, 105, 102953. https://doi.org/10.1016/j.jsames.2020.102953
    [Google Scholar]
  40. Hedges, S. B., Parker, P. H., Sibley, C. G., & Kumar, S. (1996). Continental breakup and the ordinal diversification of birds and mammals. Nature, 381, 226–229. https://doi.org/10.1038/381226a0
    [Google Scholar]
  41. Heim, A. (1940). The front ranges of Sierra Madre Oriental, Mexico, from Ciudad Victoria to Tamazunchale. Eclogae Geologicae Helvetiae, 33, 313–352. https://doi.org/10.5169/SEALS‐160029
    [Google Scholar]
  42. Humphrey, W. E., & Diaz, T., edited by J. L. Wilson, and C. Jordan (2003). Jurassic and Lower Cretaceous stratigraphy and tectonics of northeast Mexico (pp. 152), University of Texas at Austin, Bureau of Economic Geology Report of Investigations 267. https://doi.org/10.23867/RI0267D
    [Google Scholar]
  43. Imlay, R. W., Cepeda, E., Alvarez, M., & Diaz, T. (1948). Stratigraphic relations of certain Jurassic formations in eastern Mexico. American Association of Petroleum Geologists Bulletin, 32, 1750–1761. https://doi.org/10.1306/3D933C1D‐16B1‐11D7‐8645000102C1865D
    [Google Scholar]
  44. Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi‐Dickinson point‐counting method. Journal of Sedimentary Research, 54, 103–116. https://doi.org/10.1306/212F83B9‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  45. Ireland, T. R., & Williams, I. S. (2003). Considerations in zircon geochronology by SIMS. In J. M.Hanchar & P. W. O.Hoskin (Eds.), Zircon. Reviews in mineralogy and geochemistry, (Vol. 53, pp. 215–241). Mineralogical Society of America. https://doi.org/10.2113/0530215
    [Google Scholar]
  46. Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation‐inductively coupled plasma‐mass spectrometry to in situ U‐Pb zircon geochronology. Chemical Geology, 211, 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017
    [Google Scholar]
  47. Jones, N. W., Lopez, R., & Cameron, K. L. (1995). Linda Vista pluton and latest Permian‐Late Triassic orogeny, Las Delicias area, Coahuila, Mexico. Abstracts with Programs, Geological Society of America, 27, 388.
    [Google Scholar]
  48. Jones, N. W., McKee, J. W., Marquez, D. B., Tovar, J., Long, L. E., & Laudon, T. S. (1984). The Mesozoic La Mula island, Coahuila, Mexico. Geological Society of America Bulletin, 95, 1226. https://doi.org/10.1130/0016‐7606(1984)95<1226:TMLMIC>2.0.CO;2
    [Google Scholar]
  49. Keppie, J. D., Dostal, J., Nance, R. D., Miller, B. V., Ortega‐Rivera, A., & Lee, J. K. W. (2006). Circa 546 Ma plume‐related dykes in the ∼1 Ga Novillo Gneiss (east‐central Mexico): Evidence for the initial separation of Avalonia. Precambrian Research, 147, 342–353. https://doi.org/10.1016/j.precamres.2006.01.020
    [Google Scholar]
  50. Keppie, J. D., & Ortega‐Gutierrez, F. (2010). 1.3–0.9 Ga Oaxaquia (Mexico): Remnant of an arc/backarc on the northern margin of Amazonia. Journal of South American Earth Sciences, 29, 21–27. https://doi.org/10.1016/j.jsames.2009.07.001
    [Google Scholar]
  51. Kirsch, M., Keppie, J. D., Murphy, J. B., & Solari, L. A. (2012). Permian‐Carboniferous arc magmatism and basin evolution along the western margin of Pangea: Geochemical and geochronological evidence from the eastern Acatlan Complex, southern Mexico. Geological Society of America Bulletin, 124, 1607–1628. https://doi.org/10.1130/B30649.1
    [Google Scholar]
  52. Kroeger, K. F., & Stinnesbeck, W. (2003). The Minas Viejas Formation (Oxfordian) in the area of Galeana, northeastern Mexico: Significance of syndepositional volcanism and related barite genesis in the Sierra Madre Oriental. In C.Bartolini, R. T.Buffler, & J. F.Blickwede (Eds.), The Circum‐Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics (Vol. 79, pp. 515–528). American Association of Petroleum Geologists, Memoir.
    [Google Scholar]
  53. Lawton, T. F., & Molina‐Garza, R. S. (2014). U‐Pb geochronology of the type Nazas Formation and superjacent strata, northeastern Durango, Mexico: Implications of a Jurassic age for continental‐arc magmatism in north‐central Mexico. Geological Society of America Bulletin, 126, 1181–1199. https://doi.org/10.1130/B30827.1
    [Google Scholar]
  54. Ludwig, K. R. (2008). User's manual for Isoplot 3.70 (p. 76). Berkeley Geochronology Center Special Publication 4.
    [Google Scholar]
  55. Maldonado, R., Ortega‐Gutierrez, F., & Ortiz‐Joya, G. A. (2018). Subduction of Proterozoic to Late Triassic continental basement in the Guatemala suture zone: A petrological and geochronological study of high‐pressure metagranitoids from the Chuacus complex. Lithos, 308–309, 83–103. https://doi.org/10.1016/j.lithos.2018.02.030
    [Google Scholar]
  56. Maldonado‐Koerdell, M. (1954). Nomenclatura, bibliografia y correlacion de las formaciones Arqueozoicas y Paleozoicas de Mexico. Boletin de la Asociacion Mexicana de Geologos Petroleros, 6, 113–138.
    [Google Scholar]
  57. Marsh, A. D., Parker, W. G., Stockli, D. F., & Martz, J. W. (2019). Regional correlation of the Sonsela Member (Upper Triassic Chinle Formation) and detrital U‐Pb zircon data from the Sonsela Sandstone bed near the Sonsela Buttes, northeastern Arizona, USA, support the presence of a distributive fluvial system. Geosphere, 15, 1128–1139. https://doi.org/10.1130/GES02004.1
    [Google Scholar]
  58. Marsh, J. H., & Stockli, D. F. (2015). Zircon U‐Pb and trace element zoning characteristics in an anatectic granulite domain: Insights from LASS‐ICP‐MS depth profiling. Lithos, 239, 170–185. https://doi.org/10.1016/j.lithos.2015.10.017
    [Google Scholar]
  59. Martin, A. J., Guerrero‐Juarez, E. L., & Rocha‐Estopier, C. L. (2021). Experiments on two techniques for the removal of barite from detrital zircon. American Mineralogist, 106, 930–943. https://doi.org/10.2138/am‐2021‐7436
    [Google Scholar]
  60. Martini, M., & Ortega‐Gutierrez, F. (2018). Tectono‐stratigraphic evolution of eastern Mexico during the break‐up of Pangea: A review. Earth‐Science Reviews, 183, 38–55. https://doi.org/10.1016/j.earscirev.2016.06.013
    [Google Scholar]
  61. Marton, G., & Buffler, R. T. (1994). Jurassic reconstruction of the Gulf of Mexico Basin. International Geology Review, 36, 545–586. https://doi.org/10.1080/00206819409465475
    [Google Scholar]
  62. Marzoli, A., Callegaro, S., Dal Corso, J., Davies, J. H. F. L., Chiaradia, M., Youbi, N., Bertrand, H., Reisberg, L., Merle, R., & Jourdan, F. (2018). The Central Atlantic Magmatic Province (CAMP): A review. In L. H.Tanner (Ed.), The Late Triassic world. Topics in geobiology. (Vol. 46, pp. 91–125). Springer International Publishing. https://doi.org/10.1007/978‐3‐319‐68009‐5_4
    [Google Scholar]
  63. Michalzik, D. (1991). Facies sequence of Triassic‐Jurassic red beds in the Sierra Madre Oriental (NE Mexico) and its relation to the early opening of the Gulf of Mexico. Sedimentary Geology, 71, 243–259. https://doi.org/10.1016/0037‐0738(91)90105‐M
    [Google Scholar]
  64. Mixon, R. B., Murray, G. E., & Diaz, T. (1959). Age and correlation of Huizachal Group (Mesozoic), state of Tamaulipas, Mexico. AAPG Bulletin, 43, 757–771. https://doi.org/10.1306/0BDA5CE1‐16BD‐11D7‐8645000102C1865D
    [Google Scholar]
  65. Molina‐Garza, R. S. (2005). Paleomagnetic reconstruction of Coahuila, Mexico: The Late Triassic Acatita intrusives. Geofísica Internacional, 44, 197–210. https://doi.org/10.22201/igeof.00167169p.2005.44.2.254
    [Google Scholar]
  66. Mondy, L. S., Rey, P. F., Duclaux, G., & Moresi, L. (2018). The role of asthenospheric flow during rift propagation and breakup. Geology, 46, 103–106. https://doi.org/10.1130/G39674.1
    [Google Scholar]
  67. Muir, J. M. (1936). Geology of the Tampico region Mexico (p. 247). American Association of Petroleum Geologists.
    [Google Scholar]
  68. Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., Tetley, M. G., Heine, C., Le Breton, E., Liu, S., Russell, S. H. J., Yang, T., Leonard, J., & Gurnis, M. (2019). A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics, 38, 1884–1907. https://doi.org/10.1029/2018TC005462
    [Google Scholar]
  69. Nance, R. D., Fernandez‐Suarez, J., Keppie, J. D., Storey, C., & Jeffries, T. E. (2007). Provenance of the Granjeno Schist, Ciudad Victoria, Mexico: Detrital zircon U‐Pb age constraints and implications for the Paleozoic paleogeography of the Rheic Ocean. In U.Linnemann, R. D.Nance, P.Kraft & G.Zulauf (Eds.), The evolution of the Rheic Ocean: From Avalonian‐Cadomian active margin to Alleghenian‐Variscan collision (Vol. 423, pp. 453–464). Geological Society of America, Special Paper. https://doi.org/10.1130/2007.2423(22)
    [Google Scholar]
  70. Nason, F. L. (1909). Some phenomena of the folding of rock strata. Economic Geology, 4, 421–437. https://doi.org/10.2113/gsecongeo.4.5.421
    [Google Scholar]
  71. Nyberg, B., Helland‐Hansen, W., Gawthorpe, R. L., Sandbakken, P., Eide, C. H., Somme, T., Hadler‐Jacobsen, F., & Leiknes, S. (2018). Revisiting morphological relationships of modern source‐to‐sink segments as a first‐order approach to scale ancient sedimentary systems. Sedimentary Geology, 373, 111–133. https://doi.org/10.1016/j.sedgeo.2018.06.007
    [Google Scholar]
  72. Ortega‐Flores, B., Solari, L., Lawton, T. F., & Ortega‐Obregon, C. (2014). Detrital‐zircon record of major Middle Triassic‐Early Cretaceous provenance shift, central Mexico: Demise of Gondwanan continental fluvial systems and onset of back‐arc volcanism and sedimentation. International Geology Review, 56, 237–261. https://doi.org/10.1080/00206814.2013.844313
    [Google Scholar]
  73. Ortega‐Flores, B., Solari, L. A., & Martini, M. (2021). Multidimensional Scaling (MDS): A quantitative approximation of zircon ages to sedimentary provenance with some examples from Mexico. Journal of South American Earth Sciences, 110, 103347. https://doi.org/10.1016/j.jsames.2021.103347
    [Google Scholar]
  74. Ortega‐Gutierrez, F. (1978). El Gneis Novillo y rocas metamorficas asociadas en los Canones del Novillo y de la Peregrina, area de Ciudad Victoria, Tamaulipas. Revista Mexicana de Ciencias Geologicas, 2, 19–30.
    [Google Scholar]
  75. Ortega‐Obregon, C., Solari, L., Gomez‐Tuena, A., Elias‐Herrera, M., Ortega‐Gutierrez, F., & Macias‐Romo, C. (2014). Permian‐Carboniferous arc magmatism in southern Mexico: U‐Pb dating, trace element and Hf isotopic evidence on zircons of earliest subduction beneath the western margin of Gondwana. International Journal of Earth Sciences, 103, 1287–1300. https://doi.org/10.1007/s00531‐013‐0933‐1
    [Google Scholar]
  76. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 2508–2518. https://doi.org/10.1039/c1ja10172b
    [Google Scholar]
  77. Petrus, J. A., & Kamber, B. S. (2012). VizualAge: A novel approach to laser ablation ICP‐MS U‐Pb geochronology data reduction. Geostandards and Geoanalytical Research, 36, 247–270. https://doi.org/10.1111/j.1751‐908X.2012.00158.x
    [Google Scholar]
  78. Pindell, J. L. (1985). Alleghenian reconstruction and subsequent evolution of the Gulf of Mexico, Bahamas, and Proto‐Caribbean. Tectonics, 4, 1–39. https://doi.org/10.1029/TC004i001p00001
    [Google Scholar]
  79. Pindell, J., Villagomez, D., Molina‐Garza, R., Graham, R., & Weber, B. (2021). A revised synthesis of the rift and drift history of the Gulf of Mexico and surrounding regions in the light of improved age dating of the Middle Jurassic salt. In I.Davison, J. N. F.Hull, & J.Pindell (Eds.), The basins, orogens and evolution of the southern Gulf of Mexico and northern Caribbean (Vol. 504, pp. 29–76). Geological Society, London, Special Publication. https://doi.org/10.1144/SP504‐2020‐43
    [Google Scholar]
  80. Ramirez‐Calderon, M., Bedoya, A., Abdullin, F., Martini, M., Solari, L., & Ortega‐Obregon, C. (2021). Triassic breakup of Pangea in southern Mexico: Thermochronological evidence from the Tianguistengo formation. Geochemistry, 81, 125776. https://doi.org/10.1016/j.chemer.2021.125776
    [Google Scholar]
  81. Ramirez‐Fernandez, J. A., Aleman‐Gallardo, E. A., Cruz‐Castillo, D., Velasco‐Tapia, F., Jenchen, U., Becchio, R., De Leon‐Barragan, L., & Casas‐Pena, J. M. (2021). Early Mississippian precollisional, peri‐Gondwanan volcanic arc in NE‐Mexico: Aserradero Rhyolite from Ciudad Victoria, Tamaulipas. International Journal of Earth Sciences, 110, 2435–2463. https://doi.org/10.1007/s00531‐021‐01992‐3
    [Google Scholar]
  82. Rosales‐Lagarde, L., Centeno‐Garcia, E., Dostal, J., Sour‐Tovar, F., Ochoa‐Camarillo, H., & Quiroz‐Barroso, S. (2005). The Tuzancoa formation: Evidence of an Early Permian submarine continental arc in east‐central Mexico. International Geology Review, 47, 901–919. https://doi.org/10.2747/0020‐6814.47.9.901
    [Google Scholar]
  83. Rubio‐Cisneros, I. I., & Holbrook, J. (2021). Fluvial interpretations of stratigraphic surfaces across Upper Triassic to Lower‐Middle Jurassic continental red beds northeastern Mexico. Journal of South American Earth Sciences, 110, 103366. https://doi.org/10.1016/j.jsames.2021.103366
    [Google Scholar]
  84. Rubio‐Cisneros, I. I., & Lawton, T. F. (2011). Detrital zircon U‐Pb ages of sandstones in continental red beds at Valle de Huizachal, Tamaulipas, NE Mexico: Record of Early‐Middle Jurassic arc volcanism and transition to crustal extension. Geosphere, 7, 159–170. https://doi.org/10.1130/GES00567.1
    [Google Scholar]
  85. Rubio‐Cisneros, I. I., Ramirez‐Fernandez, J. A., & Garcia‐Obregon, R. (2011). Analisis preliminar de procedencia de rocas clasticas Jurasicas del Valle de Huizachal, Sierra Madre Oriental: Influencia del vulcanismo sinsedimentario y el basamento cristalino. Boletin de la Sociedad Geologica Mexicana, 63, 137–156.
    [Google Scholar]
  86. Rueda‐Gaxiola, J. (2010). Application of glauconite and fossil palynomorphs in reconstructing the Liassic paleogeography just before the opening of the Gulf of Mexico (Part I). Iranian Journal of Earth Sciences, 2, 107–124.
    [Google Scholar]
  87. Rueda‐Gaxiola, J., Duenas, M. A., Rodriguez, J. L., Minero, M., & Uribe, G. (1993). Los Anticlinorios de Huizachal‐Peregrina y de Huayacocotla: Dos partes de la Fosa de Huayacocotla‐El Alamar. Boletin de la Asociacion Mexicana de Geologos Petroleros, 43, 1–29.
    [Google Scholar]
  88. Sarmiento‐Villagrana, A., Vega‐Granillo, R., Talavera‐Mendoza, O., & Vidal‐Solano, J. R. (2016). New age constraints on magmatism and metamorphism of the Western Sonobari Complex and their implications for an earliest Late Cretaceous orogeny on northwestern Mexico. Revista Mexicana de Ciencias Geologicas, 33, 170–182.
    [Google Scholar]
  89. Schoene, B., Crowley, J. L., Condon, D. J., Schmitz, M. D., & Bowring, S. A. (2006). Reassessing the uranium decay constants for geochronology using ID‐TIMS U‐Pb data. Geochimica et Cosmochimica Acta, 70, 426–445. https://doi.org/10.1016/j.gca.2005.09.007
    [Google Scholar]
  90. Slama, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S., Morris, G. A., Nasdala, L., Norberg, N. S., Schaltegger, U., Schoene, B., Tubrett, M., & Whitehouse, M. J. (2008). Plesovice zircon—A new natural reference material for U‐Pb and Hf isotopic microanalysis. Chemical Geology, 249, 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
    [Google Scholar]
  91. Snedden, J. W., & Galloway, W. E. (2019). The Gulf of Mexico sedimentary basin: Depositional evolution and petroleum applications (p. 344). Cambridge University Press.
    [Google Scholar]
  92. Sommerfeld, A., Prommel, K., & Cubasch, U. (2016). The East African Rift System and the impact of orographic changes on regional climate and the resulting aridification. International Journal of Earth Sciences, 105, 1779–1794. https://doi.org/10.1007/s00531‐014‐1102‐x
    [Google Scholar]
  93. Spencer, C. J., Kirkland, C. L., & Taylor, R. J. M. (2016). Strategies towards statistically robust interpretations of in situ U‐Pb zircon geochronology. Geoscience Frontiers, 7, 581–589. https://doi.org/10.1016/j.gsf.2015.11.006
    [Google Scholar]
  94. Stewart, J. H., Blodgett, R. B., Boucot, A. J., Carter, J. L., & Lopez, R. (1999). Exotic Paleozoic strata of Gondwanan provenance near Ciudad Victoria, Tamaulipas, Mexico. In V. A.Ramos & J. D.Keppie (Eds.), Laurentia‐Gondwana connections before Pangea (Vol. 336, pp. 227–252). Geological Society of America, Special Paper. https://doi.org/10.1130/0‐8137‐2336‐1.227
    [Google Scholar]
  95. Torres, R., Ruiz, J., Patchett, P. J., & Grajales, J. M. (1999). Permo‐Triassic continental arc in eastern Mexico: Tectonic implications for reconstructions of southern North America. In C.Bartolini, J. L.Wilson, & T. F.Lawton (Eds.), Mesozoic sedimentary and tectonic history of north‐central Mexico (Vol. 340, pp. 191–196). Geological Society of America, Special Paper. https://doi.org/10.1130/0‐8137‐2340‐X.191
    [Google Scholar]
  96. Torres‐Sanchez, S. A., Augustsson, C., Barboza‐Gudino, J. R., Jenchen, U., Ramirez‐Fernandez, J. A., Abratis, M., & Schersten, A. (2016). Magmatic source and metamorphic grade of metavolcanic rocks from the Granjeno Schist: Was northeastern Mexico a part of Pangaea?Geological Journal, 51, 845–863. https://doi.org/10.1002/gj.2702
    [Google Scholar]
  97. Torres‐Sanchez, S. A., Augustsson, C., Jenchen, U., Barboza‐Gudino, J. R., Aleman‐Gallardo, E. A., Ramirez‐Fernandez, J. A., Torres‐Sanchez, D., & Abratis, M. (2017). Petrology and geochemistry of meta‐ultramafic rocks in the Paleozoic Granjeno Schist, northeastern Mexico: Remnants of Pangaea ocean floor. Open Geosciences, 9, 361–384. https://doi.org/10.1515/geo‐2017‐0029
    [Google Scholar]
  98. van der Plas, L., & Tobi, A. C. (1965). A chart for judging the reliability of point counting results. American Journal of Science, 263, 87–90. https://doi.org/10.2475/ajs.263.1.87
    [Google Scholar]
  99. Vermeesch, P. (2021). Maximum depositional age estimation revisited. Geoscience Frontiers, 12, 843–850. https://doi.org/10.1016/j.gsf.2020.08.008
    [Google Scholar]
  100. Villagomez, D., Pindell, J., & Spikings, R. (2020). Thermal history of the crystalline basement from the western and southern Gulf of Mexico: Implications for rifting and later events. In U.Martens & R. S.Molina‐Garza (Eds.), Southern and central Mexico: Basement framework, tectonic evolution, and provenance of Mesozoic–Cenozoic basins (Vol. 546). Geological Society of America, Special Paper. https://doi.org/10.1130/2019.2546(16)
    [Google Scholar]
  101. Villarreal‐Fuentes, J., Levresse, G., Nieto‐Samaniego, A. F., & Corona‐Esquivel, R. (2014). New geological and geochronological data of the Placer de Guadalupe uplift, Mexico: A new piece of the Late Triassic‐Jurassic Nazas Arc?International Geology Review, 56, 2000–2014. https://doi.org/10.1080/00206814.2014.984353
    [Google Scholar]
  102. Weber, B., Schmitt, A. K., Cisneros de Leon, A., & Gonzalez‐Guzman, R. (2019). Coeval early Ediacaran breakup of Amazonia, Baltica, and Laurentia: Evidence from micro‐baddeleyite dating of dykes from the Novillo Canyon, Mexico. Geophysical Research Letters, 46, 2003–2011. https://doi.org/10.1029/2018GL079976
    [Google Scholar]
  103. Weber, R. (1997). How old is the Triassic flora of Sonora and Tamaulipas and news on Leonardian floras in Puebla and Hidalgo, Mexico. Revista Mexicana de Ciencias Geologicas, 14, 225–243.
    [Google Scholar]
  104. Wengler, M., Barboza‐Gudino, J. R., Thomsen, T. B., & Meinhold, G. (2019). Sediment provenance of Triassic and Jurassic sandstones in central Mexico during activity of the Nazas volcanic arc. Journal of South American Earth Sciences, 92, 329–349. https://doi.org/10.1016/j.jsames.2019.03.009
    [Google Scholar]
  105. Widmann, P., Davies, J. H. F. L., & Schaltegger, U. (2019). Calibrating chemical abrasion: Its effects on zircon crystal structure, chemical composition and U‐Pb age. Chemical Geology, 511, 1–10. https://doi.org/10.1016/j.chemgeo.2019.02.026
    [Google Scholar]
  106. Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J. C., & Spiegel, W. (1995). Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element, and REE analyses. Geostandards Newsletter, 19, 1–23. https://doi.org/10.1111/j.1751‐908X.1995.tb00147.x
    [Google Scholar]
  107. Williams, S. A., Singleton, J. S., Prior, M. G., Mavor, S. P., Cross, G. E., & Stockli, D. F. (2021). The early Palaeogene transition from thin‐skinned to thick‐skinned shortening in the Potosi uplift, Sierra Madre Oriental, northeastern Mexico. International Geology Review, 63, 233–263. https://doi.org/10.1080/00206814.2020.1805802
    [Google Scholar]
  108. Zell, P., Beckmann, S., Stinnesbeck, W., & Gotte, M. (2015). Mollusks of the Upper Jurassic (upper Oxfordian‐lower Kimmeridgian) shallow marine Minas Viejas Formation, northeastern Mexico. Journal of South American Earth Sciences, 62, 92–108. https://doi.org/10.1016/j.jsames.2015.05.006
    [Google Scholar]
  109. Zepeda‐Martinez, M., Martini, M., & Solari, L. (2018). A major provenance change in sandstones from the Tezoatlan basin, southern Mexico, controlled by Jurassic, sinistral normal motion along the Salado River fault: Implications for the reconstruction of Pangea. Journal of South American Earth Sciences, 86, 447–460. https://doi.org/10.1016/j.jsames.2018.07.008
    [Google Scholar]
  110. Zuffa, G. G. (1985). Optical analyses of arenites: Influence of methodology on compositional results. In G. G.Zuffa (Ed.), Provenance of arenites. NATO ASI Series (Series C: Mathematical and Physical Sciences) (Vol. 148, pp. 165–189). Springer. https://doi.org/10.1007/978‐94‐017‐2809‐6_8
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12654
Loading
/content/journals/10.1111/bre.12654
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): detrital modes; extension; Gulf of Mexico; sediment routing; zircon

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error