1887
  • E-ISSN: 1365-2117

Abstract

[

Seismic reflection data allows us to image three unconformities (IVU, TVU, and IHU) and intervening stratigraphic packages that record the Early Cretaceous breakup of NW Australia from Greater India.

, Abstract

Continental breakup involves a transition from rapid, fault‐controlled syn‐rift subsidence to relatively slow, post‐breakup subsidence induced by lithospheric cooling. Yet the stratigraphic record of many rifted margins contain syn‐breakup unconformities, indicating that episodes of uplift and erosion interrupt this transition. This uplift has been linked to mantle upwelling, depth‐dependent extension and/or isostatic rebound. Deciphering the breakup processes recorded by these unconformities and their related rock record is challenging because uplift‐associated erosion commonly removes the strata that help constrain the onset and duration of uplift. We examine three major breakup‐related unconformities and the intervening rock record in the Lower Cretaceous succession of the Gascoyne and Cuvier margins, offshore NW Australia, using seismic reflection and borehole data. These data show the breakup unconformities are disconformable (non‐erosive) in places and angular (erosive) in others. Our recalibration of palynomorph ages from rocks underlying and overlying the unconformities shows: (i) the lowermost unconformity developed between 134.98–133.74 Ma (Intra‐Valanginian), probably during the localisation of magma intrusion within continental crust and consequent formation of continent–ocean transition zones (COTZ); (ii) the middle unconformity formed between ca. 134 and 133 Ma (Top Valanginian), possibly coincident with breakup of continental crust and generation of new magmatic (but not oceanic) crust within the COTZs; and (iii) the uppermost unconformity likely developed between ca. 132.5 and 131 Ma (i.e. Intra‐Hauterivian), coincident with full continental lithospheric breakup and the onset of seafloor spreading. During unconformity development, uplift was focussed along the continental rift flanks, likely reflecting flexural bending of the crust and landward flow of lower crust and/or lithospheric mantle from beneath areas of localised extension towards the continent (i.e. depth‐dependent extension). Our work supports the growing consensus that the ‘breakup unconformity’ is not always a single stratigraphic surface marking the onset of seafloor spreading; multiple unconformities may form and reflect a complex history of uplift and subsidence during continent–ocean transition.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12656
2022-05-22
2022-06-27
Loading full text...

Full text loading...

/deliver/fulltext/bre/34/3/bre12656.html?itemId=/content/journals/10.1111/bre.12656&mimeType=html&fmt=ahah

References

  1. Alves, T. M., & Cunha, T. A. (2018). A phase of transient subsidence, sediment bypass and deposition of regressive–transgressive cycles during the breakup of Iberia and Newfoundland. Earth and Planetary Science Letters, 484, 168–183.
    [Google Scholar]
  2. Amante, C., & Eakins, B. W. (2009). ETOPO1 arc‐minute global relief model: Procedures, data sources and analysis. National Oceanic and Atmospheric Administration.
    [Google Scholar]
  3. Arditto, P. A. (1993). Depositional sequence model for the post‐Barrow Group Neocomian succession, Barrow and Exmouth sub‐basins, Western Australia. The APPEA Journal, 33, 151–160.
    [Google Scholar]
  4. Baillie, P., & Jacobson, E. (1995). Structural evolution of the Carnarvon Terrace, Western Australia. The APPEA Journal, 35, 321–332.
    [Google Scholar]
  5. Bastow, I. D., Booth, A. D., Corti, G., Keir, D., Magee, C., Jackson, C. A. L., Warren, J., Wilkinson, J., & Lascialfari, M. (2018). The development of late‐stage continental breakup: Seismic reflection and borehole evidence from the Danakil Depression, Ethiopia. Tectonics, 37, 2848–2862. https://doi.org/10.1029/2017TC004798
    [Google Scholar]
  6. Bastow, I. D., & Keir, D. (2011). The protracted development of the continent‐ocean transition in Afar. Nature Geoscience, 4, 248–250.
    [Google Scholar]
  7. Black, M., McCormack, K., Elders, C., & Robertson, D. (2017). Extensional fault evolution within the Exmouth Sub‐basin, North West Shelf, Australia. Marine and Petroleum Geology, 85, 301–315.
    [Google Scholar]
  8. Bott, M. H. (1982). The mechanism of continental splitting. Tectonophysics, 81, 301–309.
    [Google Scholar]
  9. Boyd, R., Williamson, P., & Haq, B. (1993). Seismic stratigraphy and passive‐margin evolution of the southern Exmouth plateau. In H.Posamentier, C.Summerhayes, B.Haq, & G.Allen (Eds.), Sequence stratigraphy and facies associations (pp. 579–603). Blackwell Publishing Ltd.
    [Google Scholar]
  10. Braun, J., & Beaumont, C. (1989). A physical explanation of the relation between flank uplifts and the breakup unconformity at rifted continental margins. Geology, 17, 760–764.
    [Google Scholar]
  11. Bridges, D. L., Mickus, K., Gao, S. S., Abdelsalam, M. G., & Alemu, A. (2012). Magnetic stripes of a transitional continental rift in Afar. Geology, 40, 203–206.
    [Google Scholar]
  12. Buck, W. R. (2017). The role of magmatic loads and rift jumps in generating seaward dipping reflectors on volcanic rifted margins. Earth and Planetary Science Letters, 466, 62–69.
    [Google Scholar]
  13. Cande, S. C., & Mutter, J. C. (1982). A revised identification of the oldest sea‐floor spreading anomalies between Australia and Antarctica. Earth and Planetary Science Letters, 58, 151–160.
    [Google Scholar]
  14. Cochran, J. R. (1983). Effects of finite rifting times on the development of sedimentary basins. Earth and Planetary Science Letters, 66, 289–302.
    [Google Scholar]
  15. Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J.‐X. (2013, updated). The ICS international chronostratigraphic chart. Episodes, 36, 199–204.
    [Google Scholar]
  16. Collier, J. S., McDermott, C., Warner, G., Gyori, N., Schnabel, M., McDermott, K., & Horn, B. W. (2017). New constraints on the age and style of continental breakup in the South Atlantic from magnetic anomaly data. Earth and Planetary Science Letters, 477, 27–40.
    [Google Scholar]
  17. Colwell, J., Symonds, P., & Crawford, A. (1994). The nature of the Wallaby (Cuvier) Plateau and other igneous provinces of the west Australian margin. Journal of Australian Geology and Geophysics, 15, 137–156.
    [Google Scholar]
  18. Corti, G. (2009). Continental rift evolution: From rift initiation to incipient break‐up in the Main Ethiopian Rift, East Africa. Earth‐Science Reviews, 96, 1–53.
    [Google Scholar]
  19. Corti, G., Agostini, A., Keir, D., Van Wijk, J., Bastow, I. D., & Ranalli, G. (2015). Magma‐induced axial subsidence during final‐stage rifting: Implications for the development of seaward‐dipping reflectors. Geosphere, 11, 563–571. https://doi.org/10.1130/GES01076.1
    [Google Scholar]
  20. Dafoe, L. T., Keen, C. E., Dickie, K., & Williams, G. L. (2017). Regional stratigraphy and subsidence of Orphan Basin near the time of breakup and implications for rifting processes. Basin Research, 29, 233–254.
    [Google Scholar]
  21. Daniels, K. A., Bastow, I. D., Keir, D., Sparks, R. S. J., & Menand, T. (2014). Thermal models of dyke intrusion during development of continent–ocean transition. Earth and Planetary Science Letters, 385, 145–153. https://doi.org/10.1016/j.epsl.2013.09.018
    [Google Scholar]
  22. Direen, N. G., Stagg, H. M. J., Symonds, P. A., & Colwell, J. B. (2008). Architecture of volcanic rifted margins: New insights from the Exmouth—Gascoyne margin, Western Australia. Australian Journal of Earth Sciences, 55, 341–363. https://doi.org/10.1080/08120090701769472
    [Google Scholar]
  23. Driscoll, N. W., Hogg, J. R., Christie‐Blick, N., & Karner, G. D. (1995). Extensional tectonics in the Jeanne d'Arc Basin, offshore Newfoundland: Implications for the timing of break‐up between Grand Banks and Iberia. Geological Society, London, Special Publications, 90, 1–28.
    [Google Scholar]
  24. Driscoll, N. W., & Karner, G. D. (1998). Lower crustal extension across the Northern Carnarvon basin, Australia: Evidence for an eastward dipping detachment. Journal of Geophysical Research: Solid Earth (1978–2012), 103, 4975–4991.
    [Google Scholar]
  25. Ebinger, C. J., & Casey, M. (2001). Continental breakup in magmatic provinces: An Ethiopian example. Geology, 29, 527–530. https://doi.org/10.1130/0091‐7613(2001)029<0527:cbimpa>2.0.co;2
    [Google Scholar]
  26. Embry, A. F., & Dixon, J. (1990). The breakup unconformity of the Amerasia Basin, Arctic Ocean: Evidence from arctic Canada. Geological Society of America Bulletin, 102, 1526–1534.
    [Google Scholar]
  27. Falvey, D. A. (1974). The development of continental margins in plate tectonic theory. The APPEA Journal, 14, 95–106.
    [Google Scholar]
  28. Falvey, D., & Veevers, J. (1974). Physiography of the Exmouth and Scott plateaus, western Australia, and adjacent northeast Wharton Basin. Marine Geology, 17, 21–59.
    [Google Scholar]
  29. Franke, D. (2013). Rifting, lithosphere breakup and volcanism: Comparison of magma‐poor and volcanic rifted margins. Marine and Petroleum Geology, 43, 63–87.
    [Google Scholar]
  30. Frey, Ø., Planke, S., Symonds, P. A., & Heeremans, M. (1998). Deep crustal structure and rheology of the Gascoyne volcanic margin, western Australia. Marine Geophysical Researches, 20, 293–311.
    [Google Scholar]
  31. Gard, G., Backhouse, J., & Crux, J. (2016). Calibration of Early Cretaceous dinoflagellate zones from the NWS of Australia to the global time scale through calcareous nannofossils. Cretaceous Research, 61, 180–187. https://doi.org/10.1016/j.cretres.2016.01.001
    [Google Scholar]
  32. Geoffroy, L. (2005). Volcanic passive margins. Comptes Rendus Geoscience, 337, 1395–1408. https://doi.org/10.1016/j.crte.2005.10.006
    [Google Scholar]
  33. Gillard, M., Autin, J., Manatschal, G., Sauter, D., Munschy, M., & Schaming, M. (2015). Tectonomagmatic evolution of the final stages of rifting along the deep conjugate Australian‐Antarctic magma‐poor rifted margins: Constraints from seismic observations. Tectonics, 34, 753–783. https://doi.org/10.1002/2015TC003850
    [Google Scholar]
  34. Gong, Y., Lin, C., Zhang, Z., Zhang, B. O., Shu, L., Feng, X., Hong, F., Xing, Z., Liu, H., & Su, E. (2019). Breakup unconformities at the end of the early Oligocene in the Pearl River Mouth Basin, South China Sea: Significance for the evolution of basin dynamics and tectonic geography during rift–drift transition. Marine Geophysical Research, 40, 371–384. https://doi.org/10.1007/s11001‐018‐9375‐2
    [Google Scholar]
  35. Goodall, J. (1999). Palynological review of East Spar and Spar‐1.
    [Google Scholar]
  36. Gradstein, F. M., Ogg, J. G., Schmitz, M. B., & Ogg, G. M. (2012). The geologic time scale 2012. Elsevier.
    [Google Scholar]
  37. Heine, C., & Müller, R. (2005). Late Jurassic rifting along the Australian North West Shelf: Margin geometry and spreading ridge configuration. Australian Journal of Earth Sciences, 52, 27–39.
    [Google Scholar]
  38. Helby, R., Morgan, R., & Partridge, A. (1987). A palynological zonation of the Australian Mesozoic. Memoir of the Association of Australasian Palaeontologists, 4, 1–94.
    [Google Scholar]
  39. Hocking, R. (1992). Jurassic deposition in the southern and central North West Shelf (Vol. 199217). Geological Survey Western Australia Record.
    [Google Scholar]
  40. Hocking, R. M., Moors, H. T., & Van de Graaff, W. E. (1987). Geology of the Carnarvon Basin, Western Australia. State Print. Division.
    [Google Scholar]
  41. Hopper, J. R., Mutter, J. C., Larson, R. L., & Mutter, C. Z. (1992). Magmatism and rift margin evolution: Evidence from northwest Australia. Geology, 20, 853–857. https://doi.org/10.1130/0091‐7613(1992)020<0853:MARMEE>2.3.CO;2
    [Google Scholar]
  42. Huang, C.‐Y., Shea, K.‐H., & Li, Q. (2017). A foraminiferal study on Middle Eocene‐Oligocene break‐up unconformity in northern Taiwan and its correlation with IODP Site U1435 to constrain the onset event of South China Sea opening. Journal of Asian Earth Sciences, 138, 439–465. https://doi.org/10.1016/j.jseaes.2016.09.014
    [Google Scholar]
  43. Huismans, R., & Beaumont, C. (2011). Depth‐dependent extension, two‐stage breakup and cratonic underplating at rifted margins. Nature, 473, 74–78.
    [Google Scholar]
  44. Issler, D., McQueen, H., & Beaumont, C. (1989). Thermal and isostatic consequences of simple shear extension of the continental lithosphere. Earth and Planetary Science Letters, 91, 341–358.
    [Google Scholar]
  45. Jablonski, D. (1997). Recent advances in the sequence stratigraphy of the Triassic to Lower Cretaceous succession in the Northern Carnarvon Basin, Australia. The APPEA Journal, 37, 429–454. https://doi.org/10.1071/AJ96026
    [Google Scholar]
  46. Jitmahantakul, S., & McClay, K. (2013). Late Triassic ‐ Mid‐Jurassic to Neogene extensional fault systems in the Exmouth Sub‐basin, Northern Carnarvon Basin, North West Shelf, Western Australia. In M.Keep & S. J.Moss (Eds.), The sedimentary basins of Western Australia IV: Proceedings of the Petroleum Exploration Society of Australia Symposium, Perth, WA, 2013.
    [Google Scholar]
  47. Labutis, V. (1994). Sequence stratigraphy and the North West Shelf of Australia. In P.Purcell & R.Purcell (Eds.), The sedimentary basins of Western Australia: Proceedings of the Petroleum Exploration Society of Australia Symposium (pp. 159–180).
    [Google Scholar]
  48. Larsen, H., & Saunders, A. (1998). 41. Tectonism and volcanism at the Southeast Greenland rifted margin: A record of plume impact and later continental rupture. Proceedings of the Ocean Drilling Program, Scientific Results (pp. 503–533).
    [Google Scholar]
  49. Larson, R. L., Mutter, J. C., Diebold, J. B., Carpenter, G. B., & Symonds, P. (1979). Cuvier Basin: A product of ocean crust formation by Early Cretaceous rifting off Western Australia. Earth and Planetary Science Letters, 45, 105–114.
    [Google Scholar]
  50. Lavin, C. (1997). The Maastrichtian breakup of the Otway Basin Margin–A model developed by integrating seismic interpretation, sequence statigraphy and thermochronological studies. Exploration Geophysics, 28, 252–259. https://doi.org/10.1071/EG997252
    [Google Scholar]
  51. Le Pichon, X., & Sibuet, J. C. (1981). Passive margins: A model of formation. Journal of Geophysical Research: Solid Earth, 86, 3708–3720.
    [Google Scholar]
  52. Longley, I., Buessenschuett, C., Clydsdale, L., Cubitt, C., Davis, R., Johnson, M., Marshall, N., Murray, A., Somerville, R., Spry, T. B., & Thompson, N. B. (2002). The North West Shelf of Australia–A Woodside perspective. In M.Keep & S. J.Moss (Eds.), The sedimentary basins of Western Australia (Vol. 3, pp. 27–88). Proceedings West Australian Basins Symposium.
    [Google Scholar]
  53. Marshall, N., & Lang, S. (2013). A new sequence stratigraphic framework for the North West Shelf, Australia. The sedimentary basins of Western Australia 4: Proceedings PESA Symposium, Perth (pp. 1–32).
    [Google Scholar]
  54. McClay, K., Scarselli, N., & Jitmahantakul, S. (2013). Igneous intrusions in the Carnarvon Basin, NW Shelf, Australia. In M.Keep & S. J.Moss (Eds.), The sedimentary basins of Western Australia IV. Proceedings of the Petroleum Exploration Society of Australia Symposium, Perth, WA.
    [Google Scholar]
  55. McDermott, C., Lonergan, L., Collier, J. S., McDermott, K. G., & Bellingham, P. (2018). Characterization of seaward‐dipping reflectors along the South American Atlantic margin and implications for continental breakup. Tectonics, 37, 3303–3327.
    [Google Scholar]
  56. McKenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40, 25–32.
    [Google Scholar]
  57. Menzies, M., Klemperer, S., Ebinger, C., & Baker, J. (2002). Characteristics of volcanic rifted margins. In M.Menzies, S.Klemperer, C.Ebinger, & J.Baker (Eds.), Volcanic rifted margins, Special Publications (Vol. 362, pp. 1–14). Geological Society of America.
    [Google Scholar]
  58. Miall, A. D. (2016). The valuation of unconformities. Earth‐Science Reviews, 163, 22–71.
    [Google Scholar]
  59. Mihut, D., & Müller, R. D. (1998). Volcanic margin formation and Mesozoic rift propagators in the Cuvier Abyssal Plain off Western Australia. Journal of Geophysical Research, 103, 27135–27149.
    [Google Scholar]
  60. Mohriak, W. U., & Leroy, S. (2013). Architecture of rifted continental margins and break‐up evolution: Insights from the South Atlantic, North Atlantic and Red Sea‐Gulf of Aden conjugate margins. Geological Society, London, Special Publications, 369, 497–535.
    [Google Scholar]
  61. Monteleone, V., Minshull, T. A., & Marin‐Moreno, H. (2019). Spatial and temporal evolution of rifting and continental breakup in the Eastern Black Sea Basin revealed by long‐offset seismic reflection data. Tectonics, 38, 2646–2667. https://doi.org/10.1029/2019TC005523
    [Google Scholar]
  62. Morley, C. (2016). Major unconformities/termination of extension events and associated surfaces in the South China Seas: Review and implications for tectonic development. Journal of Asian Earth Sciences, 120, 62–86.
    [Google Scholar]
  63. Müller, R., Mihut, D., Heine, C., O'Neill, C., & Russell, I. (2002). Tectonic and volcanic history of the Carnarvon Terrace: Constraints from seismic interpretation and geodynamic modelling. In M.Keep & S. J.Moss (Eds.), The sedimentary basins of Western Australia (Vol. 3, pp. 719–740). Proceedings West Australian Basins Symposium.
    [Google Scholar]
  64. Mutterlose, J. (1992). Biostratigraphy and palaeobiogeography of Early Cretaceous calcareous nannofossils. Cretaceous Research, 13, 167–189.
    [Google Scholar]
  65. Partington, M., Aurisch, K., Clark, W., Newlands, I., Phelps, S., Senycia, P., Siffleet, P., & Walker, T. (2003). The hydrocarbon potential of exploration permits WA‐299‐P and WA‐300‐P, Carnarvon Basin: A case study. The APPEA Journal, 43, 339–361. https://doi.org/10.1071/AJ02018
    [Google Scholar]
  66. Paton, D., Pindell, J., McDermott, K., Bellingham, P., & Horn, B. (2017). Evolution of seaward‐dipping reflectors at the onset of oceanic crust formation at volcanic passive margins: Insights from the South Atlantic. Geology, 45, 439–442. https://doi.org/10.1130/G38706.1
    [Google Scholar]
  67. Paumard, V., Bourget, J., Payenberg, T., Ainsworth, R. B., George, A. D., Lang, S., Posamentier, H. W., & Peyrot, D. (2018). Controls on shelf‐margin architecture and sediment partitioning during a syn‐rift to post‐rift transition: Insights from the Barrow Group (Northern Carnarvon Basin, North West Shelf, Australia). Earth‐Science Reviews, 177, 643–677. https://doi.org/10.1016/j.earscirev.2017.11.026
    [Google Scholar]
  68. Pérez‐Gussinyé, M., Andrés‐Martínez, M., Araújo, M., Xin, Y., Armitage, J., & Morgan, J. (2020). Lithospheric strength and rift migration controls on synrift stratigraphy and breakup unconformities at rifted margins: Examples from numerical models, the Atlantic and South China Sea margins. Tectonics, 39, e2020TC006255. https://doi.org/10.1029/2020TC006255
    [Google Scholar]
  69. Peron‐Pinvidic, G., Manatschal, G., & The “IMAGinING RIFTING” Workshop Participants . (2019). Rifted margins: State of the art and future challenges. Frontiers in Earth Science, 7, 218.
    [Google Scholar]
  70. Pryer, L., Romine, K., Loutit, T., & Barnes, R. (2002). Carnarvon basin architecture and structure defined by the integration of mineral and petroleum exploration tools and techniques. The APPEA Journal, 42, 287–309.
    [Google Scholar]
  71. Reeve, M. T. (2017). The structural and stratigraphic expression of continental breakup. Imperial College London.
    [Google Scholar]
  72. Reeve, M. T., Jackson, C. A. L., Bell, R. E., Magee, C., & Bastow, I. D. (2016). The stratigraphic record of prebreakup geodynamics: Evidence from the Barrow Delta, offshore Northwest Australia. Tectonics, 35, 1935–1968. https://doi.org/10.1002/2016TC004172
    [Google Scholar]
  73. Reeve, M. T., Magee, C., Bastow, I. D., McDermott, C., Jackson, C. A. L., Bell, R. E., & Prytulak, J. (2021). Nature of the Cuvier Abyssal Plain crust, offshore NW Australia. Journal of the Geological Society, 178, jgs2020‐172.
    [Google Scholar]
  74. Robb, M. S., Taylor, B., & Goodliffe, A. M. (2005). Re‐examination of the magnetic lineations of the Gascoyne and Cuvier Abyssal Plains, off NW Australia. Geophysical Journal International, 163, 42–55.
    [Google Scholar]
  75. Rohrman, M. (2015). Delineating the Exmouth mantle plume (NW Australia) from denudation and magmatic addition estimates. Lithosphere, L445, 441.
    [Google Scholar]
  76. Romine, K., & Durrant, J. (1996). Carnarvon Cretaceous‐Tertiary Tie report. Australian Geological Society Organisation.
    [Google Scholar]
  77. Skogseid, J., Pedersen, T., Eldholm, O., & Larsen, B. T. (1992). Tectonism and magmatism during NE Atlantic continental break‐up: The Voring Margin. Geological Society, London, Special Publications, 68, 305–320. https://doi.org/10.1144/gsl.sp.1992.068.01.19
    [Google Scholar]
  78. Smith, T., Ogg, J., Kelman, A., Abbott, S., & Bernecker, T. (2015). Towards common stratigraphic frameworks for Australia's offshore hydrocarbon provinces. The APPEA Journal, 2015, 105–112.
    [Google Scholar]
  79. Soares, D. M., Alves, T. M., & Terrinha, P. (2012). The breakup sequence and associated lithospheric breakup surface: Their significance in the context of rifted continental margins (West Iberia and Newfoundland margins, North Atlantic). Earth and Planetary Science Letters, 355, 311–326.
    [Google Scholar]
  80. Stagg, H., Alcock, M., Bernardel, G., Moore, A., Symonds, P., & Exon, N. (2004). Geological framework of the outer Exmouth Plateau and adjacent ocean basins. Geoscience Australia.
    [Google Scholar]
  81. Stagg, H., & Colwell, J. (1994). The structural foundations of the Northern Carnarvon Basin. The sedimentary basins of Western Australia: Proceedings of Petroleum Exploration Society of Australia Symposium, Perth (pp. 349–365).
    [Google Scholar]
  82. Symonds, P. A., Planke, S., Frey, O., & Skogseid, J. (1998). Volcanic evolution of the Western Australian Continental Margin and its implications for basin development. The sedimentary basins of Western Australia 2: Proc. of Petroleum Society Australia Symposium, Perth, WA.
    [Google Scholar]
  83. Thompson, N., Hocking, R., Collins, M., Voon, J., & Middleton, M. (1990). Lower Cretaceous deposition in the southern Northwest Shelf. Minerals and Energy Research Institute of Western Australia.
    [Google Scholar]
  84. Tindale, K., Newell, N., Keall, J., & Smith, N. (1998). Structural evolution and charge history of the Exmouth Sub‐basin, northern Carnarvon Basin, Western Australia. The sedimentary basins of Western Australia 2: Proc. of Petroleum Society Australia Symposium, Perth, WA (pp. 473–490).
    [Google Scholar]
  85. Tucholke, B., Sawyer, D., & Sibuet, J.‐C. (2007). Breakup of the Newfoundland‐Iberia rift. Geological Society, London, Special Publications, 282, 9–46.
    [Google Scholar]
  86. Veevers, J. (1986). Breakup of Australia and Antarctica estimated as mid‐Cretaceous (95±5 Ma) from magnetic and seismic data at the continental margin. Earth and Planetary Science Letters, 77, 91–99.
    [Google Scholar]
  87. White, N., & McKenzie, D. (1988). Formation of the "steer's head" geometry of sedimentary basins by differential stretching of the crust and mantle. Geology, 16, 250–253.
    [Google Scholar]
  88. Willcox, J. B. & Exon, N. F. (1976). The regional geology of the Exmouth Plateau. The APPEA Journal, 16(1), 1–11.
    [Google Scholar]
  89. Xie, X., Ren, J., Pang, X., Lei, C., & Chen, H. (2019). Stratigraphic architectures and associated unconformities of Pearl River Mouth basin during rifting and lithospheric breakup of the South China Sea. Marine Geophysical Research, 40, 129–144.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12656
Loading
/content/journals/10.1111/bre.12656
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): basin; breakup; palynology; rift; seismic reflection; unconformity; uplift
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error