1887
Volume 34, Issue 6
  • E-ISSN: 1365-2117

Abstract

[

Cicular and linear depressions on the bottom of Nahr Menashe, indicating extensive dissolution and erosion processes.

, Abstract

Over the last decade, there has been a resurgence of interest in the climatic and tectonic mechanisms that drove the Messinian salinity crisis (MSC) and the associated deposition of thick evaporites. The MSC represents an unprecedented palaeoceanographic change that led to a very short (ca. 640 kyr) ecological and environmental crisis. However, across the Levantine offshore basin, the sedimentological nature of the top evaporitic units and the mechanisms that controlled the transition from a hypersaline evaporitic unit to brackish deposits (final MSC stage 3) are still disputed. Here, we re‐evaluate the deposits associated with the terminal phase of the MSC, named in offshore Lebanon as the Nahr Menashe Unit (NMU). We describe the NMU seismic facies, characterize and map its internal seismic stratigraphy and provide a new interpretation of its depositional environment, which persisted during the late Messinian and then evolved through a regional reflooding event. The base of the NMU overlies semicircular depressions, randomly distributed linear marks and surface collapse features, which are indicative of a period of intense evaporite dissolution. The NMU seismic facies observed from the slope to the deep part of the basin support the interpretation of a layered salt‐evaporite‐sand depositional system subject to complex reworking, dissolution, deposition and final erosion. A drainage network of valleys and complex tributary channels incising into the top NMU shows marked erosional characteristics, which indicate a dominant southwards sediment transfer following deposition of the NMU. The drainage network was subsequently infilled by layered sediments interpreted here to represent the post‐MSC marine sediments. Our analysis adds important details regarding previous interpretations of the NMU as fluvial in origin. Specifically, the presence of subcircular, linear dissolution features coupled with mound‐like features indicates that the NMU is composed dominantly of evaporites that were subject to dissolution prior to erosion associated with the drainage network. The NMU is interpreted to represent the deposition/redeposition of a mixed evaporite‐siliciclastic succession in a shallow marine or lacustrine environment during the tilting of the offshore Lebanese basin.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12697
2022-11-18
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/bre/34/6/bre12697.html?itemId=/content/journals/10.1111/bre.12697&mimeType=html&fmt=ahah

References

  1. Amadori, C., Garcia‐Castellanos, D., Toscani, G., Sternai, P., Fantoni, R., Ghielmi, M., & Di Giulio, A. (2018). Restored topography of the Po Plain‐Northern Adriatic region during the Messinian base‐level drop—Implications for the physiography and compartmentalization of the palaeo‐Mediterranean basin. Basin Research, 30(6), 1247–1263.
    [Google Scholar]
  2. Andreetto, F., Aloisi, G., Raad, F., Heida, H., Flecker, R., Agiadi, K., Lofi, J., Blondel, S., Bulian, F., Camerlenghi, A., Caruso, A., Ebner, R., Garcia‐Cstellanos, D., Gullier, V., Guibourdenche, L., Gvirtzman, Z., Houyle, T. T., Meijer, P. T., Moneron, J., … Krijgsman, W. (2021). Freshening of the Meditteranean salt giant: Controversies and certainties around the terminal (Upper Gypsum and Lago Mare) phases of the Messinian salinity crisis. Earth Science Review, 216, 103577.
    [Google Scholar]
  3. Bache, F., Popescu, S. M., Rabineau, M., Gorini, C., Suc, J. P., Clauzon, G., Olivet, J. L., Rubino, J. L., Melinte‐Dobrinescu, M. C., Estrada, F., Londeix, L., Armijo, R., Meyer, B., Jolivet, L., Jouannic, G., Leroux, E., Aslanian, D., dos Reis, A. T., Mocochain, L., … Çakir, Z. (2012). A two‐step process for the reflooding of the Mediterranean after the Messinian salinity crisis. Basin Research, 24(2), 125–153. https://doi.org/10.1111/j.1365‐2117.2011.00521.x
    [Google Scholar]
  4. Barnes, A. E., editor. (2016). Handbook of poststack seismic attributes. Society of Exploration Geophysicists.
    [Google Scholar]
  5. Ben Moshe, L., Ben‐Avraham, Z., Enzel, Y., & Schattner, U. (2020). Estimating drawdown magnitudes of the Mediterranean Sea in the Levant basin during the Lago Mare stage of the Messinian salinity crisis. Marine Geology, 427, 106215. https://doi.org/10.1016/j.margeo.2020.106215
    [Google Scholar]
  6. Bertoni, C., & Cartwright, J. A. (2007). Major erosion at the end of the Messinian salinity crisis: Evidence from the Levant Basin, Eastern Mediterranean. Basin Research, 19(1), 1–18. https://doi.org/10.1111/j.1365‐2117.2006.00309.x
    [Google Scholar]
  7. Bertoni, C., & Cartwright, J. (2015). Messinian evaporites and fluid flow. Marine and Petroleum Geology, 66, 165–176.
    [Google Scholar]
  8. Beydoun, Z. R. (1999). Evolution and development of the Levant (dead sea rift) transform system: A historical‐chronological review of a structural controversy. http://sp.lyellcollection.org
  9. Bowman, S. A. (2011). Regional seismic interpretation of the hydrocarbon prospectivity of offshore Syria. GeoArabia, 16(3), 95–124.
    [Google Scholar]
  10. Brown, A. R. (2004). Interpretation of three‐dimensional seismic data. American Association of Petroleum Geologists and the Society of Exploration Geophysicists.
    [Google Scholar]
  11. Burberry, C. M., Jackson, C. A. L., & Chandler, S. R. (2016). Seismic reflection imaging of karst in the Persian Gulf: Implications for the characterization of carbonate reservoirs. AAPG Bulletin, 100(10), 1561–1584. https://doi.org/10.1306/04151615115
    [Google Scholar]
  12. Butler, R. W. H., Lickorish, W. H., Grasso, M., Pedley, H. M., & Ramberti, L. (1995). Tectonics and sequence stratigraphy in Messinian basins, Sicily: Constraints on the initiation and termination of the Mediterranean salinity crisis. GSA Bulletin, 107(4), 425–439.
    [Google Scholar]
  13. Camerlenghi, A., del Ben, A., Hübscher, C., Forlin, E., Geletti, R., Brancatelli, G., Micallef, A., Saule, M., & Facchin, L. (2019). Seismic markers of the Messinian salinity crisis in the deep Ionian Basin. Basin Research, 32(4), 716–738. https://doi.org/10.1111/bre.12392
    [Google Scholar]
  14. Cartwright, J. A., & Jackson, M. P. A. (2008). Initiation of gravitational collapse of an evaporite basin margin: The Messinian saline giant, Levant Basin, eastern Mediterranean. Bulletin of the Geological Society of America, 120(3–4), 399–413. https://doi.org/10.1130/B26081X.1
    [Google Scholar]
  15. Cartwright, J., Jackson, M., Dooley, T., & Higgins, S. (2012). Strain partitioning in gravity‐driven shortening of a thick, multilayered evaporite sequence. Geological Society Special Publication, 363(1), 449–470. https://doi.org/10.1144/SP363.21
    [Google Scholar]
  16. Cartwright, J., Stewart, S., & Clark, J. (2001). Salt dissolution and salt‐related deformation of the Forth Approaches Basin, UK North Sea. www.elsevier.com/locate/marpetgeo
    [Google Scholar]
  17. Chiesi, M., de Waele, J., & Forti, P. (2010). Origin and evolution of a salty gypsum/anhydrite karst spring: The case of Poiano (Northern Apennines, Italy). Hydrogeology Journal, 18(5), 1111–1124. https://doi.org/10.1007/s10040‐010‐0576‐2
    [Google Scholar]
  18. Chopra, S., & Marfurt, K. S. (2007). Seismic attributes for prospect identification and reservoir characterization. Society of Exploration Geophysicists and European Association of Geoscientists and Engineers.
    [Google Scholar]
  19. Druckman, Y., Buchbinder, B., Martinotti, G. M., Siman Tov, R., & Aharon, B. P. (1995). The buried Afiq Canyon (eastern Mediterranean, Israel): A case study of a Tertiary submarine canyon exposed in Late Messinian times. Marine Geology, 123, 167–185.
    [Google Scholar]
  20. Evans, S., & Jackson, C. A. (2019). Intrasalt structure and strain partitioning in layered evaporites: Insights from the Messinian salt in the eastern Mediterranean. 81st EAGE Conference and Exhibition 2019. https://doi.org/10.3997/2214‐4609.201900911
  21. Feng, Y. E., Yankelzon, A., Steinberg, J., & Reshef, M. (2016). Lithology and characteristics of the Messinian evaporite sequence of the deep Levant Basin, Eastern Mediterranean. Marine Geology, 376, 118–131. https://doi.org/10.1016/j.margeo.2016.04.004
    [Google Scholar]
  22. Frey‐Martínez, J., Cartwright, J., & James, D. (2006). Frontally confined versus frontally emergent submarine landslides: A 3D seismic characterisation. Marine and Petroleum Geology, 23(5), 585–604.
    [Google Scholar]
  23. Gardosh, M. A., & Druckman, Y. (2005). Seismic stratigraphy, structure and tectonic evolution of the Levantine Basin, offshore Israel. http://sp.lyellcollection.org/
    [Google Scholar]
  24. Gardosh, M., Druckman, Y., Buchbinder, B., & Rybakov, M. (2008). The Levant Basin offshore Israel: Stratigraphy, structure, tectonic evolution and implications for structure, tectonic evolution and implications for hydrocarbon exploration. Israel Geological Survey Report.
    [Google Scholar]
  25. Gardosh, M. A., Garfunkel, Z., Druckman, Y., & Buchbinder, B. (2010). Tethyan rifting in the Levant region and its role in early Mesozoic crustal evolution. Geological Society Special Publication, 341, 9–36. https://doi.org/10.1144/SP341.2
    [Google Scholar]
  26. Gardosh, M. A., & Tannenbaum, E. (2014). The petroleum systems of Israel. In L.Marlow, C.Kendall, & L.Yose (Eds.), Petroleum systems of the Tethyanregion: AAPG Memoir (Vol. 106, pp. 179–216). AAPG Special.
    [Google Scholar]
  27. Garfunkel, Z. (1998). Constrains on the origin and history of the Eastern Mediterranean basin. Tectonophysics, 298, 5–35.
    [Google Scholar]
  28. Ghalayini, R., Daniel, J. M., Homberg, C., Nader, F. H., & Comstock, J. E. (2014). Impact of Cenozoic strike‐slip tectonics on the evolution of the northern Levant Basin (offshore Lebanon). Tectonics, 33(11), 2121–2142. https://doi.org/10.1002/2014TC0035742014
    [Google Scholar]
  29. Ghalayini, R., Nader, F. H., Bou Daher, S., Hawie, N., & Chbat, W. E. (2018). Petroleum systems of Lebanon: An update and review. Journal of Petroleum Geology, 41(2), 189–214. https://doi.org/10.1111/jpg.12700
    [Google Scholar]
  30. Gradmann, S., Hübscher, C., Ben‐Avraham, Z., Gajewski, D., & Netzeband, G. (2005). Salt tectonics off northern Israel. Marine and Petroleum Geology, 22(5), 597–611. https://doi.org/10.1016/j.marpetgeo.2005.02.001
    [Google Scholar]
  31. Güneş, P., Aksu, A. E., & Hall, J. (2018). Tectonic and sedimentary conditions necessary for the deposition of the Messinian evaporite successions in the eastern Mediterranean: A simple 2D model. Marine and Petroleum Geology, 96, 51–70. https://doi.org/10.1016/j.marpetgeo.2018.05.022
    [Google Scholar]
  32. Gutiérrez, F., & Lizaga, I. (2016). Sinkholes, collapse structures and large landslides in an active salt dome submerged by a reservoir: The unique case of the Ambal ridge in the Karun River, Zagros Mountains, Iran. Geomorphology, 254, 88–103.
    [Google Scholar]
  33. Gvirtzman, Z., Manzi, V., Calvo, R., Gavrieli, I., Gennari, R., Lugli, S., Reghizzi, M., & Roveri, M. (2017). Intra‐Messinian truncation surface in the Levant Basin explained by subaqueous dissolution. Geology, 45(10), 915–918. https://doi.org/10.1130/G39113.1
    [Google Scholar]
  34. Gvirtzman, Z., Reshef, M., Buch‐Leviatan, O., & Ben‐Avraham, Z. (2013). Intense salt deformation in the Levant Basin in the middle of the Messinian salinity crisis. Earth and Planetary Science Letters, 379, 108–119. https://doi.org/10.1016/j.epsl.2013.07.018
    [Google Scholar]
  35. Gvirtzman, Z., Reshef, M., Buch‐Leviatan, O., Groves‐Gidney, G., Karcz, Z., Makovsky, Y., & Ben‐Avraham, Z. (2015). Bathymetry of the Levant basin: Interaction of salt‐tectonics and surficial mass movements. Marine Geology, 360, 25–39. https://doi.org/10.1016/j.margeo.2014.12.001
    [Google Scholar]
  36. Hall, J., Calon, T. J., Aksu, A. E., & Meade, S. R. (2005). Structural evolution of the Latakia Ridge and Cyprus Basin at the front of the Cyprus Arc, Eastern Mediterranean Sea. Marine Geology, 221(1–4), 261–297. https://doi.org/10.1016/j.margeo.2005.03.007
    [Google Scholar]
  37. Haq, B., Gorini, C., Baur, J., Moneron, J., & Rubino, J. L. (2020). Deep Mediterranean's Messinian evaporite giant: How much salt?Global and Planetary Change, 184, 103052. https://doi.org/10.1016/j.gloplacha.2019.103052
    [Google Scholar]
  38. Hardage, B. A., Carr, D. L., Lancaster, D. E., Simmons, J. L., Elphick, R. Y., Pendleton, V. M., & Johns, R. A. (1996). 3‐D seismic evidence of the effects of carbonate karst collapse on overlying clastic stratigraphy and reservoir compartmentalization. Geophysics, 61(5), 1336–1350. https://doi.org/10.1190/1.1444057
    [Google Scholar]
  39. Hardy, C., Homberg, C., Eyal, Y., Barrier, É., & Müller, C. (2010). Tectonic evolution of the southern Levant margin since Mesozoic. Tectonophysics, 494(3–4), 211–225. https://doi.org/10.1016/j.tecto.2010.09.007
    [Google Scholar]
  40. Hawie, N., Gorini, C., Deschamps, R., Nader, F. H., Montadert, L., Granjeon, D., & Baudin, F. (2013). Tectono‐stratigraphic evolution of the northern Levant Basin (offshore Lebanon). Marine and Petroleum Geology, 48, 392–410. https://doi.org/10.1016/j.marpetgeo.2013.08.004
    [Google Scholar]
  41. Henderson, J., Purves, S. J., Fisher, G., & Leppard, C. (2008). Delineation of geological elements from RGB color blending of seismic attribute volumes. The Leading Edge, 27(3), 342–350.
    [Google Scholar]
  42. Hilton, V. C. (2001). BG International offshore Israel, Med Yavne license: Or‐1 & Or South‐1, structural and sedimentological interpretation of STAR data, core sedimentology and petrography of core samples. Baker Atlas GEOScienceFinal Report ZSL‐00‐075.
    [Google Scholar]
  43. Hsü, K. J., Ryan, W. B. F., & Cita, M. B. (1973). Late miocene desiccation of the Mediterranean. Nature, 242(5395), 240–244. https://doi.org/10.1038/242240a0
    [Google Scholar]
  44. Jackson, M. P. A., Vendeville, B. C., & Schultz‐Ela, D. D. (1994). Structural dynamics of salt systems. www.annualreviews.org
    [Google Scholar]
  45. Jackson, M. P., & Hudec, M. R. (2017). Salt tectonics: Principles and practice. Cambridge University Press.
    [Google Scholar]
  46. Jaworska, J., & Nowak, M. (2013). Anhydrites from gypsum cap‐rock of Zechstein salt diapirs. Geology, Geophysics & Environment, 39(3), 233. https://doi.org/10.7494/geol.2013.39.3.233
    [Google Scholar]
  47. Jilinski, P., & Wooltorton, T. (2016). Comparison of spectral enhancement techniques and application to improved well‐to‐seismic ties. GeoConvention, 2016, 1–4.
    [Google Scholar]
  48. Kartveit, K. H., Omosanya, K. O., Johansen, S. E., Eruteya, O. E., Reshef, M., & Waldmann, N. D. (2018). Multiphase structural evolution and geodynamic implications of Messinian salt‐related structures, Levant Basin, offshore Israel. Tectonics, 37(5), 1210–1230. https://doi.org/10.1029/2017TC004794
    [Google Scholar]
  49. Kartveit, K. H., Ulsund, H. B., & Johansen, S. E. (2019). Evidence of sea level drawdown at the end of the Messinian salinity crisis and seismic investigation of the Nahr Menashe unit in the northern Levant Basin, offshore Lebanon. Basin Research, 31(5), 827–840. https://doi.org/10.1111/bre.12347
    [Google Scholar]
  50. Kirkham, C., Bertoni, C., Cartwright, J., Lensky, N. G., Sirota, I., Rodriguez, K., & Hodgson, N. (2020). The demise of a ‘salt giant’ driven by uplift and thermal dissolution. Earth and Planetary Science Letters, 531, 115933. https://doi.org/10.1016/j.epsl.2019.115933
    [Google Scholar]
  51. Kirkham, C., Cartwright, J., Hermanrud, C., & Jebsen, C. (2017). The spatial, temporal and volumetric analysis of a large mud volcano province within the Eastern Mediterranean. Marine and Petroleum Geology, 81, 1–16. https://doi.org/10.1016/j.marpetgeo.2016.12.026
    [Google Scholar]
  52. Kyle, J. R., & Posey, H. H. (1991). Halokinesis, cap rock development, and salt dome mineral resources. Elsevier.
    [Google Scholar]
  53. Lazar, M., Lang, G., & Schattner, U. (2016). Coincidence or not? Interconnected gas/fluid migration and ocean–atmosphere oscillations in the Levant Basin. Geo‐Marine Letters, 36(4), 293–306. https://doi.org/10.1007/s00367‐016‐0447‐5
    [Google Scholar]
  54. Lebedeva‐Ivanova, N., Polteau, S., Bellwald, B., Planke, S., Berndt, C., & Stokke, H. H. (2018). Toward one‐meter resolution in 3D seismic. The Leading Edge, 37(11), 818–828.
    [Google Scholar]
  55. Lofi, J., Sage, F., Déverchère, J., Loncke, L., Maillard, A., Gaullier, V., Thinon, I., Gillet, H., Guennoc, P., & Gorini, C. (2011). Refining our knowledge of the Messinian salinity crisis records in the offshore domain through multi‐site seismic analysis. Bulletin de la Société géologique de France, 182(2), 163–180.
    [Google Scholar]
  56. Madof, A. S., Bertoni, C., & Lofi, J. (2019). Discovery of vast fluvial deposits provides evidence for drawdown during the late Miocene Messinian salinity crisis. Geology, 47(2), 171–174. https://doi.org/10.1130/G45873.1
    [Google Scholar]
  57. Maillard, A., Hübscher, C., Benkhelil, J., & Tahchi, E. (2011). Deformed Messinian markers in the Cyprus Arc: Tectonic and/or Messinian salinity crisis indicators?Basin Research, 23(2), 146–170. https://doi.org/10.1111/j.1365‐2117.2010.00464.x
    [Google Scholar]
  58. Manzi, V., Gennari, R., Hilgen, F., Krijgsman, W., Lugli, S., Roveri, M., & Sierro, F. J. (2013). Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova, 25(4), 315–322.
    [Google Scholar]
  59. Matmon, A., Enzel, Y., Zilberman, E., & Heimann, A. (1999). Late Pliocene and Pleistocene reversal of drainage systems in northern Israel: Tectonic implications. Geomorphology, 28, 43–59.
    [Google Scholar]
  60. Meilijson, A., Hilgen, F., Sepúlveda, J., Steinberg, J., Fairbank, V., Flecker, R., Waldmann, N. D., Spaulding, S. A., Bialik, O. M., Boudinot, F. G., Illner, P., & Makovsky, Y. (2019). Chronology with a pinch of salt: Integrated stratigraphy of Messinian evaporites in the deep Eastern Mediterranean reveals long‐lasting halite deposition during Atlantic connectivity. Earth‐Science Reviews, 194, 374–398. https://doi.org/10.1016/j.earscirev.2019.05.011
    [Google Scholar]
  61. Micallef, A., Camerlenghi, A., Georgiopoulou, A., Garcia‐Castellanos, D., Gutscher, M. A., Lo Iacono, C., Huvenne, V. A. I., Mountjoy, J. J., Paull, C. K., le Bas, T., Spatola, D., Facchin, L., & Accettella, D. (2019). Geomorphic evolution of the Malta Escarpment and implications for the Messinian evaporative drawdown in the eastern Mediterranean Sea. Geomorphology, 327, 264–283. https://doi.org/10.1016/j.geomorph.2018.11.012
    [Google Scholar]
  62. Nader, F. H. (2011). The petroleum prospectivity of Lebanon: An overview. Journal of Petroleum Geology, 34(2), 135–156. https://doi.org/10.1111/j.1747‐5457.2011.00498.x
    [Google Scholar]
  63. Netzeband, G. L., Hübscher, C. P., & Gajewski, D. (2006). The structural evolution of the Messinian evaporites in the Levantine Basin. Marine Geology, 230(3–4), 249–273. https://doi.org/10.1016/j.margeo.2006.05.004
    [Google Scholar]
  64. Niyazi, Y., Eruteya, O. E., Omosanya, K. O., Harishidayat, D., Johansen, S. E., & Waldmann, N. (2018). Seismic geomorphology of submarine channel‐belt complexes in the Pliocene of the Levant Basin, offshore central Israel. Marine Geology, 403, 123–138. https://doi.org/10.1016/j.margeo.2018.05.007
    [Google Scholar]
  65. Oppo, D., Evans, S., Iacopini, D., Mainul Kabir, S. M., Maselli, V., & Jackson, C. A.‐L. (2021). Leaky salt: Pipe trails record the history of cross‐evaporite fluid escape in the northern Levant Basin, Eastern Mediterranean. Basin Research, 33(3), 1798–1819.
    [Google Scholar]
  66. Petrolink, G., Brew, G., Barazangi, M., Al‐Maleh, A. K., & Sawaf, T. (2001). Tectonic and geologic evolution of Syria. GeoArabia, 6(4), 573–616. http://pubs.geoscienceworld.org/geoarabia/article‐pdf/6/4/573/4560629/brew.pdf
    [Google Scholar]
  67. Popescu, S. M., Cavazza, W., Suc, J. P., Melinte‐Dobrinescu, M. C., Barhoun, N., & Gorini, C. (2021). Pre‐Zanclean end of the Messinian salinity crisis: New evidence from central Mediterranean reference sections. Journal of the Geological Society, 178(3), jgs2183.
    [Google Scholar]
  68. Robertson, A. H. (1998). Mesozoic‐tertiary tectonic evolution of the easternmost Mediterranean area: Integration of marine and land evidence. Proceedings of the Ocean drilling program, Scientific Results (Vol. 160). Chapter 54.
  69. Robertson, A. H. F., Parlak, O., & Ustaömer, T. (2012). overview of the Palaeozoic—Neogene evolution of neotethys in the Eastern Mediterranean region (southern Turkey, Cyprus, Syria). Petroleum Geoscience, 18(2004), 381–404. https://doi.org/10.1144/petgeo2011‐091.1354‐0793/12/
    [Google Scholar]
  70. Rodriguez, C. R., Jackson, C. A.‐L., Bell, R. E., Rotevatn, A., & Francis, M. (2018). Submarine salt dissolution in the Santos Basin, offshore. EarthArXiv. https://doi.org/10.31223/osf.io/en4x7
    [Google Scholar]
  71. Roveri, M., Gennari, R., Lugli, S., Manzi, V., Minelli, N., Reghizzi, M., Riva, A., Rossi, M. E., & Schreiber, B. C. (2016). The Messinian salinity crisis: Open problems and possible implications for Mediterranean petroleum systems. Petroleum Geoscience, 22(4), 283–290. https://doi.org/10.1144/petgeo2015‐089
    [Google Scholar]
  72. Roveri, M., Lugli, S., Manzi, V., Gennari, R., & Schreiber, B. C. (2014). High‐resolution strontium isotope stratigraphy of the Messinian deep Mediterranean basins: Implications for marginal to central basins correlation. Marine Geology, 349, 113–125.
    [Google Scholar]
  73. Ryan, W. B. (2011). Geodynamic responses to a two‐step model of the Messinian salinity crisis. Bulletin de la Société Géologique de France, 182(2), 73–78.
    [Google Scholar]
  74. Ryan, W. B. F. (1978). Messinian badlands on the southeastern margin of the Mediterranean sea. Marine Geology, 27, 349–363.
    [Google Scholar]
  75. Ryan, W. B. F., & Cita, M. B. (1978). The nature and distribution of Messinian erosional surfaces—Indicators of a several‐kilometer‐deep Mediterranean in the miocene. Marine Geology, 27, 193–230.
    [Google Scholar]
  76. Ryan, W. B. F., Hsu, K. J., Cita, M. B., Dumitrica, P., Lort, J., Maync, W., Nesterhoff, W. D., Pautot, G., Stradner, H., & Wezel, L. F. C. (1973). Western Alboran basin‐site 121. Initial Reports of the Deep Sea Drilling Project, 13, 43–49.
    [Google Scholar]
  77. Stafford, K. W., Nance, R., Rosales‐Lagarde, L., Boston, P. J., Stafford, K. W., Nance, R., Rosales‐Lagarde, L., & Epigene and Hypogene Gypsum Karst . (2008). Repository citation repository citation epigene and hypogene gypsum karst manifestations of the castile formation: Eddy county, New Mexico and Culberson County, Texas, USA. https://scholarworks.sfasu.edu/geology/12
    [Google Scholar]
  78. Vidal, N., Alvarez‐MarröNAy, J., & Klaeschen, D. (2000). Internal configuration of the Levantine Basin from seismic reflection data (eastern Mediterranean). www.elsevier.com/locate/epsl
    [Google Scholar]
  79. Walley, C. D. (1997). The lithostratigraphy of Lebanoni a reriew. Lebonese Science Bulletin, 10, 81–108.
    [Google Scholar]
  80. Zeng, H., Wang, G., Janson, X., Loucks, R., Xia, Y., Xu, L., & Yuan, B. (2011). Characterizing seismic bright spots in deeply buried, Ordovician Paleokarst strata, Central Tabei uplift, Tarim Basin, Western China. Geophysics, 76(4), B127–B137. https://doi.org/10.1190/1.3581199
    [Google Scholar]
  81. Zucker, E., Gvirtzman, Z., Granjeon, D., Garcia‐Castellanos, D., & Enzel, Y. (2021). The accretion of the Levant continental shelf alongside the Nile Delta by immense margin ‐parallel sediment transport. Marine and Petroleum Geology, 126, 2021.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12697
Loading
/content/journals/10.1111/bre.12697
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): dissolution; incise; Levant; Messinian; passive infill; seismic facies

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error