1887
Volume 34, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

The classic fill‐and‐spill model is widely applied to interpret topographic controls on depositional architecture and facies distributions in slope successions with complicated topography. However, this model implies a constant topographic configuration over the lifespan of a turbidite system. In contrast, the impact on patterns of erosion and deposition above dynamic slopes whose topographic configuration varies spatially over time remains poorly investigated. Here, using high‐resolution 3D seismic reflection data and more than 100 wells from a 40 km long stepped slope system (Campos Basin, offshore Brazil), we document the evolution of a sand‐prone turbidite system active during the Oligocene–Miocene transition. This turbidite system was influenced by vertical and lateral deformation, and we propose a new stratigraphic model to explain the resultant depositional architecture. Two depocentres were identified as steps, with channels on the proximal step, and channel–lobe complexes on the distal step, bounded by sediment bypass‐dominated ramps. Lateral stepping of channels on the proximal step, and oblique stacking of the down‐dip lobe complexes, each cut by through‐going channels, indicate multiple fill‐and‐spill cycles. A persistent north‐east‐ward stepping and thickening on the steps are interpreted to reflect lateral tilting of the seafloor driven by salt tectonics. The dynamic substrate prevented the establishment of a single long‐lived conduit across the proximal step, as recorded in systems with fixed topographic configurations. The filling of through‐going channels with mud at the end of each cycle suggests waxing‐to‐waning sediment supply cycles and periods of sand starvation when the lateral tilting dominated and drove avulsion of the feeder channels towards topographic lows. This study demonstrates that subtle dynamic slope deformation punctuated by discrete sediment supply cycles results in complex stratigraphic patterns with multiple phases, and multiple entry and exit points. Repeated cycles of fill‐and‐spill, tilt‐and‐repeat are likely to be present in other stepped slope systems.

,

Amplitude map from the Oligocene–Miocene Marlim unit, which records the stratigraphic evolution of a turbidite system on a dynamic stepped submarine slope with multiple entry and exit points and fill‐and‐spill cycles.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12700
2022-11-18
2022-11-30
Loading full text...

Full text loading...

/deliver/fulltext/bre/34/6/bre12700.html?itemId=/content/journals/10.1111/bre.12700&mimeType=html&fmt=ahah

References

  1. Adeogba, A. A., Mchargue, T. R., & Graham, S. A. (2005). Transient fan architecture and depositional controls from near‐surface 3‐D seismic data, Niger Delta continental slope. AAPG Bulletin, 89, 627–643. https://doi.org/10.1306/11200404025
    [Google Scholar]
  2. Albertão, G. A., Mulder, T., & Eschard, R. (2011). Impact of salt‐related palaeotopography on the distribution of turbidite reservoirs: Evidence from well‐seismic analyses and structural restorations in the Brazilian offshore. Marine and Petroleum Geology, 28, 1023–1046. https://doi.org/10.1016/j.marpetgeo.2010.09.009
    [Google Scholar]
  3. Alexander, J., & Morris, S. (1994). Observations on experimental, nonchannelized, high‐concentration turbidity currents and variations in deposits around obstacles. Journal of Sedimentary Research, 64, 899–909.
    [Google Scholar]
  4. Allen, C., Gomis Cartesio, L. E., Hodgson, D. M., Peakall, J., & Milana, J.‐P. (2022). Channel incision into a submarine landslide on a carboniferous basin margin, San Juan, Argentina: Evidence for the role of knickpoints. The Depositional Record, 8, 628–655. https://doi.org/10.1002/dep2.178
    [Google Scholar]
  5. Barton, M. D. (2012). Evolution of an intra‐slope apron, offshore Niger Delta slope: Impact of step geometry on apron architecture. In B. E.Prather, M. E.Deptuck, D. C.Mohrig, B.van Hoorn, & R. B.Wynn (Eds.), Application of the principles of seismic geomorphology to continental‐slope and base‐of‐slope systems: Case studies from seafloor and near‐seafloor analogue (Vol. 99, pp. 181–197). SEPM Special Publication.
    [Google Scholar]
  6. Beaubouef, R. T., & Friedmann, S. J. (2000). High resolution seismic/sequence stratigraphic framework for the evolution of Pleistocene intra slope basins, western Gulf of Mexico: Depositional models and reservoir analogs. In P.Weimer, R. M.Slatt, J.Coleman, N. C.Rosen, H.Nelson, A. H.Bouma, M. J.Styzen, & D. T.Lawrence (Eds.), Deep‐water reservoirs of the world: 20th annual gulf coast section (pp. 40–60). SEPM Foundation, Bob F. Perkins Research Conference.
    [Google Scholar]
  7. Beddow, H. M., Liebrand, D., Sluijs, A., Wade, B. S., & Lourens, L. J. (2016). Global change across the Oligocene‐Miocene transition: High‐resolution stable isotope records from IODP site U1334 (equatorial Pacific Ocean). Paleoceanography, 31, 81–97. https://doi.org/10.1002/2015PA002820
    [Google Scholar]
  8. Booth, J. R., Dean, M. C., DuVernay, A. E., III, & Styzen, M. J. (2003). Paleo‐bathymetric controls on the stratigraphic architecture and reservoir development of confined fans in the Auger Basin: Central Gulf of Mexico slope. Marine and Petroleum Geology, 20, 563–586. https://doi.org/10.1016/j.marpetgeo.2003.03.008
    [Google Scholar]
  9. Brooks, H. L., Hodgson, D. M., Brunt, R. L., Peakall, J., Poyatos‐Moré, M., & Flint, S. S. (2018). Disconnected submarine lobes as a record of stepped slope evolution over multiple sea‐level cycles. Geosphere, 14, 1753–1779. https://doi.org/10.1130/GES01618.1
    [Google Scholar]
  10. Bruhn, C. H. L. (1998). Deep‐water reservoirs from the eastern Brazilian rift and passive margin basins. AAPG International Conference and Exhibition, Rio de Janeiro, Brazil, AAPG Short Couse Notes, Part 2, p. 191.
    [Google Scholar]
  11. Bruhn, C. H. L., Gomes, J. A. T., Del Lucchese, C., Jr., & Johann, P. R. S. (2003). Campos Basin: Reservoir characterization and management ‐ historical overview and future challenges. In Offshore Technology Conference 15220‐MS, Houston, Texas. https://doi.org/10.4043/15220‐ms
    [Google Scholar]
  12. Bruhn, C. H. L., Pinto, A. C. C., Johann, P. R. S., Branco, C. C. M., Salomão, M. C., & Freire, E. B. (2017). Campos and Santos basins: 40 years of reservoir characterization and management of shallow‐ to ultra‐deep water, post‐ and pre‐salt reservoirs—Historical overview and future challenges. In Offshore Technology Conference 28159‐MS, Rio de Janeiro, Brazil. https://doi.org/10.4043/28159‐MS
    [Google Scholar]
  13. Cainelli, C., & Mohriak, W. U. (1999). Some remarks on the evolution of sedimentary basins along the eastern Brazilian continental margin. Episodes, 22, 206–216.
    [Google Scholar]
  14. Castro, R. D., & Picolini, J. P. (2015). Main features of the Campos Basin regional geology. In R. O.Kowsmann (Ed.), Geology and geomorphology (Vol. 1, pp. 1–12). Habitats.
    [Google Scholar]
  15. Chang, H. K., Kowsmann, R. O., Figueiredo, A. M. F., & Bender, A. (1992). Tectonics and stratigraphy of the East Brazil rift system: An overview. Tectonophysics, 213, 97–138.
    [Google Scholar]
  16. Chima, K. I., Do Couto, D., Leroux, E., Gardin, S., Hoggmascall, N., Rabineau, M., Granjeon, D., & Gorini, C. (2019). Seismic stratigraphy and depositional architecture of neogene intraslope basins, offshore western Niger Delta. Marine and Petroleum Geology, 109, 449–468. https://doi.org/10.1016/j.marpetgeo.2019.06.030
    [Google Scholar]
  17. Christie, D. N., Peel, F. J., Apps, G. M., & Stanbrook, D. S. (2021). Forward modelling for structural stratigraphic analysis, offshore Sureste Basin, Mexico. Frontiers in Earth Science, 9, 767329. https://doi.org/10.3389/feart.2021.767329
    [Google Scholar]
  18. Cobbold, P. R., & Szatmari, P. (1991). Radial gravitational gliding on passive margins. Tectonophysics, 188, 249–289. https://doi.org/10.1016/0040‐1951(91)90459‐6
    [Google Scholar]
  19. Collier, R. E. L. (1991). The lower carboniferous Stainmore Basin, N. England: Extensional basin tectonics and sedimentation. Journal of the Geological Society of London, 148, 379–390.
    [Google Scholar]
  20. Cumberpatch, Z. A., Kane, I. A., Soutter, E. L., Hodgson, D. M., Jackson, C. A.‐L., Kilhams, B. A., & Poprawski, Y. (2021). Interactions of deep‐water gravity flows and active salt tectonics. Journal of Sedimentary Research, 91, 34–65. https://doi.org/10.2110/jsr.2020.047
    [Google Scholar]
  21. De Gasperi, A., & Catuneanu, O. (2014). Sequence stratigraphy of the Eocene turbidite reservoirs in Albacora field, Campos Basin, offshore Brazil. AAPG Bulletin, 98(2), 279–313.
    [Google Scholar]
  22. Demercian, S., Szatmari, P., & Cobbold, P. R. (1993). Style and pattern of salt diapirs due to thin‐skinned gravitational gliding, Campos and Santos basins, offshore Brazil. Tectonophysics, 228(3–4), 393–433. https://doi.org/10.1016/0040‐1951(93)90351‐J
    [Google Scholar]
  23. Deptuck, M. E., Sylvester, Z., & O'Byrne, C. (2012). Pleistocene seascape evolution above a “simple” stepped slope–Western Niger Delta. In B. E.Prather, M. E.Deptuck, D. C.Mohrig, B.van Hoorn, & R. B.Wynn (Eds.), Application of the principles of seismic geomorphology to continental‐slope and base‐of‐slope systems: Case studies from seafloor and near‐seafloor analogue (Vol. 99, pp. 199–222). SEPM Special Publication. https://doi.org/10.2110/pec.12.99
    [Google Scholar]
  24. Doughty‐Jones, G., Mayall, M., & Lonergan, L. (2017). Stratigraphy, facies, and evolution of deep‐water lobe complexes within a salt‐controlled intraslope minibasin. AAPG Bulletin, 101, 1879–1904. https://doi.org/10.1306/01111716046
    [Google Scholar]
  25. do Amarante, F. B., Jackson, C. A.‐L., Pichel, L. M., Scherer, C. M. S., & Kuchle, J. (2021). Pre‐salt rift morphology controls salt tectonics in the Campos Basin, offshore SE Brazil. Basin Research, 33, 2837–2861. https://doi.org/10.1111/bre.12588
    [Google Scholar]
  26. Duval, B., Cramez, C., & Jackson, M. P. A. (1992). Raft tectonics in the Kwanza Basin, Angola. Marine and Petroleum Geology, 9, 389–404. https://doi.org/10.1016/0264‐8172(92)90050‐O
    [Google Scholar]
  27. Fetter, M. (2009). The role of basement tectonic reactivation on the structural evolution of Campos Basin, offshore Brazil: Evidence from 3D seismic analysis and section restoration. Marine and Petroleum Geology, 26, 873–886. https://doi.org/10.1016/j.marpetgeo.2008.06.005
    [Google Scholar]
  28. Fetter, M., De Ros, L. F., & Bruhn, C. H. L. (2009). Petrographic and seismic evidence for the depositional setting of giant turbidite reservoirs and the palaeogeographic evolution of Campos Basin, offshore Brazil. Marine and Petroleum Geology, 26(6), 824–853.
    [Google Scholar]
  29. Garcia, M., & Parker, G. (1989). Experiments on hydraulic jumps in turbidity currents near a canyon‐fan transition. Science, 245, 393–396.
    [Google Scholar]
  30. Gee, M. J. R., & Gawthorpe, R. L. (2006). Submarine channels controlled by salt tectonics: Examples from 3D seismic data offshore Angola. Marine and Petroleum Geology, 23, 443–458.
    [Google Scholar]
  31. Guardado, L. R., Spadini, A. R., Brandão, J. S. L., & Mello, M. R. (2000). Petroleum system of the Campos Basin. In M. R.Mello & B. J.Katz (Eds.), Petroleum systems of South Atlantic margins (Vol. 73, pp. 317–324). AAPG Memoir.
    [Google Scholar]
  32. Guiastrennec‐Faugas, L., Gillet, H., Peakall, J., Silva Jacinto, R., & Dennielou, B. (2021). Initiation and evolution of knickpoints and their role in cut and fill processes in active submarine channels. Geology, 49, 314–319. https://doi.org/10.1130/G48369.1
    [Google Scholar]
  33. Haughton, P., Davis, C., McCaffrey, W., & Barker, S. (2009). Hybrid sediment gravity flow deposits—Classification, origin and significance. Marine and Petroleum Geology, 26, 1900–1918.
    [Google Scholar]
  34. Hay, D. C. (2012). Stratigraphic evolution of a tortuous corridor from the stepped slope of Angola. In E.Bradford, M. D.Prather, D.Mohrig, B.van Hoorn, & R. B.Wynn (Eds.), Application of the principles of seismic geomorphology to continental‐slope and base‐of‐slope systems: Case studies from seafloor and near‐seafloor analogues (Vol. 99, pp. 163–180). SEPM Special Publication.
    [Google Scholar]
  35. Heijnen, M. S., Clare, M. A., Cartigny, M. J. B., Talling, P. J., Hage, S., Lintern, D. G., Stacey, C., Parsons, D. R., Simmons, S. M., Chen, Y., Sumner, E. J., Dix, J. K., & Hughes Clarke, J. E. (2020). Rapidly‐migrating and internally‐generated knickpoints can control submarine channel evolution. Nature Communications, 11, 3129.
    [Google Scholar]
  36. Hodgson, D. M. (2009). Distribution and origin of hybrid beds in sand‐rich submarine fans of the Tanqua depocentre, Karoo Basin, South Africa. Marine and Petroleum Geology, 26, 1940–1956.
    [Google Scholar]
  37. Hodgson, D. M., Di Celma, C. N., Brunt, R. L., & Flint, S. S. (2011). Submarine slope degradation and aggradation and the stratigraphic evolution of channel‐levee systems. Journal of the Geological Society of London, 168, 625–628. https://doi.org/10.1144/0016‐76492010‐177
    [Google Scholar]
  38. Howlett, D. M., Gawthorpe, R. L., Ge, Z., Rotevatn, A., & Jackson, C. A.‐L. (2021). Turbidites, topography and tectonics: Evolution of submarine channel‐lobe systems in the salt‐influenced Kwanza Basin, offshore Angola. Basin Research, 33, 1076–1110. https://doi.org/10.1111/bre.12506
    [Google Scholar]
  39. Jackson, C. A.‐L., Barber, G. P., & Martinsen, O. J. (2008). Submarine slope morphology as a control on the development of sand‐rich turbidite depositional systems: 3D seismic analysis of the Kyrre Fm (upper cretaceous), Maloy slope, offshore Norway. Marine and Petroleum Geology, 25, 663–680. https://doi.org/10.1016/j.marpetgeo.2007.12.007
    [Google Scholar]
  40. Jackson, C. A. L., McAndrew, A. E., Hodgson, D. M., & Dreyer, T. (2021). Repeated degradation and progradation of a submarine slope over geological time scales. Journal of Sedimentary Research, 91, 116–145. https://doi.org/10.2110/jsr.2020.77
    [Google Scholar]
  41. Jackson, M. P. A., & Hudec, M. R. (2017). Salt tectonics: Principles and practice. Cambridge University Press. https://doi.org/10.1017/9781139003988
    [Google Scholar]
  42. Jobe, Z. R., Sylvester, Z., Howes, N., Pirmez, C., Parker, A., Cantelli, A., Smith, R., Wolinsky, M. A., O'Byrne, C., Slowey, N., & Prather, B. (2017). High‐resolution, millennial‐scale patterns of bed compensation on a sand‐rich intraslope submarine fan, western Niger Delta slope. Geological Society of America Bulletin, 129, 23–37.
    [Google Scholar]
  43. Kane, I. A., Catterall, V., McCaffrey, W. D., & Martinsen, O. J. (2010). Submarine channel response to intra‐basinal tectonics. AAPG Bulletin, 94, 189–219.
    [Google Scholar]
  44. Kane, I. A., McGee, D. T., & Jobe, Z. R. (2012). Halokinetic effects on submarine channel equilibrium profiles and implications for facies architecture: Conceptual model illustrated with a case study from Magnolia field, Gulf of Mexico. In G. I.Alsop, S. G.Archer, A. J.Hartley, N. T.Grant, & R.Hodgkinson (Eds.), Salt tectonics, sediments and prospectivity (Vol. 363, pp. 289–302). Geological Society of London Special Publication.
    [Google Scholar]
  45. Kane, I. A., Ponten, A. S. M., Vangdal, B., Eggenhuisen, J. T., Hodgson, D. M., & Spychala, Y. T. (2017). The stratigraphic record and processes of turbidity current transformation across deep‐marine lobes. Sedimentology, 64, 1236–1273.
    [Google Scholar]
  46. Kneller, B. C., & McCaffrey, W. D. (1999). Depositional effects of flow non‐ uniformity and stratification within turbidity currents approaching a bounding slope: Deflection, reflection and facies variation. Journal of Sedimentary Research, 69, 980–991. https://doi.org/10.2110/jsr.69.980
    [Google Scholar]
  47. Kubo, Y. S. (2004). Experimental and numerical study of topographic effects on deposition from two‐dimensional, particle‐driven density currents. Sedimentary Geology, 164, 311–326.
    [Google Scholar]
  48. Li, P., Kneller, B., & Hansen, L. (2021). Anatomy of a gas‐bearing submarine channel‐lobe system on a topographically complex slope (offshore Nile Delta, Egypt). Marine Geology, 437, 106496.
    [Google Scholar]
  49. Mayall, M., Lonergan, L., Bowman, A., James, S., Mills, K., Primmer, T., Pope, D., Rogers, L., & Skeene, R. (2010). The response of turbidite slope channels to growth‐induced seabed topography. AAPG Bulletin, 94, 1011–1030. https://doi.org/10.1306/01051009117
    [Google Scholar]
  50. Meckel, L. D., III, Ugueto, G. A., Lynch, H. D., Cummings, E. W., Hewett, B. M., Bogage, E. J., Winker, C. D., & O'Neil, B. J. (2002). Genetic stratigraphy, stratigraphic architecture, and reservoir stacking patterns of the upper Miocene‐lower Pliocene greater Mars‐Ursa intraslope basin, Mississippi canyon, Gulf of Mexico. In J. M.Armentrout & N. C.Rosen (Eds.), Sequence stratigraphic models for exploration and production: Evolving methodology, emerging models, and application histories: 22nd annual gulf coast section (pp. 113–147). SEPM Foundation, Bob F. Perkins Research Conference.
    [Google Scholar]
  51. Mignard, S., Mulder, T., Martinez, P., & Garlan, T. (2019). The Ogooue fan (offshore Gabon): A modern example of deep‐sea fan on a complex slope profile. Solid Earth, 10(3), 851–869.
    [Google Scholar]
  52. Mohriak, W. U., Basseto, M., & Vieira, I. S. (1998). Crustal architecture and tectonic evolution of the Sergipe‐Alagoas and Jacuıpe basins, offshore northeastern Brazil. Tectonophysics, 288, 199–220.
    [Google Scholar]
  53. Mohriak, W., Nemčok, M., & Enciso, G. (2008). South Atlantic divergent margin evolution: Rift‐border uplift and salt tectonics in the basins of SE Brazil. Geological Society, London, Special Publications, 294, 365–398. https://doi.org/10.1144/sp294.19
    [Google Scholar]
  54. Mohriak, W. U., Szatmari, P., & Anjos, S. (2012). Salt: Geology and tectonics of selected Brazilian basins in their global context. Geological Society, London, Special Publications, 363, 131–158. https://doi.org/10.1144/sp363.7
    [Google Scholar]
  55. Moraes, M. A. S., Maciel, W. B., Braga, M. S. S., & Viana, A. R. (2007). Bottom‐current reworked Palaeocene‐Eocene deep‐water reservoirs of the Campos Basin, Brazil. In A. R.Viana & M.Rebesco (Eds.), Economic and palaeoceanographic significance of contourite deposits (Vol. 276, pp. 81–94). Geological Society, Special Publications.
    [Google Scholar]
  56. Morris, S. A., & Alexander, J. (2003). Changes in flow direction at a point caused by obstacles during passage of a density current. Journal of Sedimentary Research, 73, 621–629.
    [Google Scholar]
  57. Mulder, T., & Alexander, J. (2001). Abrupt change in slope causes variation in the deposit thickness of concentrated particle‐driven density currents. Marine Geology, 175, 221–235.
    [Google Scholar]
  58. Oluboyo, A. P., Gawthorpe, R. L., Bakke, K., & Hadler‐Jacobsen, F. (2014). Salt tectonic controls on deep‐water turbidite depositional systems: Miocene, southwestern lower Congo basin, offshore Angola. Basin Research, 26, 597–620. https://doi.org/10.1111/bre.12051
    [Google Scholar]
  59. Peakall, J., McCaffrey, B., Kneller, B., Stelting, C. E., McHargue, T. R., & Schweller, W. J. (2000). A process model for the evolution of submarine fan channels: Implications for sedimentary architecture. In A. H.Bouma & C. G.Stone (Eds.), Fine‐grained turbidite systems (Vol. 72, pp. 73–89). AAPG Memoir.
    [Google Scholar]
  60. Peakall, J., McCaffrey, W. D., & Kneller, B. C. (2000). A process model for the evolution, morphology and architecture of sinuous submarine channels. Journal of Sedimentary Research, 70, 434–448.
    [Google Scholar]
  61. Peakall, J., Leeder, M. R., Best, J. L., & Ashworth, P. J. (2000). River response to lateral ground tilting: A synthesis and some implications for the modelling of alluvial architecture in extensional basins. Basin Research, 12, 413–424.
    [Google Scholar]
  62. Pirmez, C., Beaubouef, R. T., Friedmann, S. J., & Mohrig, D. C. (2000). Equilibrium profile and base level in submarine channels: Examples from Late Pleistocene systems and implications for the architecture of deep‐water reservoirs. In P.Weimer, R. M.Slatt, J.Coleman, N. C.Rosen, H.Nelson, A. H.Bouma, M. J.Styzen, & D. T.Lawrence (Eds.), Deep‐water reservoirs of the world: 20th annual gulf coast section (pp. 782–805). SEPM Foundation, Bob F. Perkins Research Conference.
    [Google Scholar]
  63. Prather, B. E., Booth, J. R., Steffens, G. S., & Craig, P. A. (1998). Classification, lithologic calibration and stratigraphic succession of seismic facies from intraslope basins, deep water Gulf of Mexico, USA. AAPG Bulletin, 82, 701–728.
    [Google Scholar]
  64. Prather, B. E. (2000). Calibration and visualization of depositional process models for above‐grade slopes: A case study from the Gulf of Mexico. Marine and Petroleum Geology, 17(5), 619–638.
    [Google Scholar]
  65. Prather, B. E. (2003). Controls on reservoir distribution, architecture and stratigraphic trapping in slope settings. Marine and Petroleum Geology, 20, 529–545. https://doi.org/10.1016/j.marpetgeo.2003.03.009
    [Google Scholar]
  66. Prather, B. E., O'Byrne, C. J., Pirmez, C., & Sylvester, Z. (2009). Sediment partitioning across Tertiary continental slopes AAPG search and discovery article #90090. AAPG annual convention and exhibition, Denver, Colorado, June 7‐10 2009. In: Abstracts, CD American Association of Petroleum Geologists.
  67. Prather, B. E., Pirmez, C., Sylvester, Z., & Prather, D. S. (2012). Stratigraphic response to evolving geomorphology in a submarine apron perched on the upper Niger delta slope. In B. E.Prather, M. E.Deptuck, D. C.Mohrig, B.van Hoorn, & R. B.Wynn (Eds.), Application of the principles of seismic geomorphology to continental‐slope and base‐of‐slope systems: Case studies from seafloor and near‐seafloor analogue (Vol. 99, pp. 145–161). SEPM Special Publication.
    [Google Scholar]
  68. Prather, B. E., Pirmez, C., & Winker, C. D. (2012). Stratigraphy of linked Intraslope basins: Brazos–trinity system Western Gulf of Mexico. In B. E.Prather, M. E.Deptuck, D. C.Mohrig, B.van Hoorn, & R. B.Wynn (Eds.), Application of the principles of seismic geomorphology to continental‐slope and base‐of‐slope systems: Case studies from seafloor and near‐seafloor analogue (Vol. 99, pp. 83–109). SEPM Special Publication.
    [Google Scholar]
  69. Privat, A. M.‐L., Hodgson, D. M., Jackson, C. A.‐L., Schwarz, E., & Peakall, J. (2021). Evolution from syn‐rift carbonates to early post‐rift deep‐marine intraslope lobes: The role of rift basin physiography on sedimentation patterns. Sedimentology, 68, 2563–2605. https://doi.org/10.1111/sed.12864
    [Google Scholar]
  70. Quirk, D. G., Schødt, N., Lassen, B., Ings, S. J., Hsu, D., Hirsch, K. K., & Von Nicolai, C. (2012). Salt tectonics on passive margins: Examples from Santos, Campos and kwanza basins. Geological Society, London, Special Publications, 363, 207–244. https://doi.org/10.1144/sp363.10
    [Google Scholar]
  71. Rangel, H. D., & Martins, C. C. (1998). Principais compartimentos exploratórios, Bacia de Campos. In M.Taha (Ed.), Cenário Geológico nas Bacias Sedimentares no brasil. The search‐searching for oil and gas in the land of giants (Vol. 2, pp. 32–40). Special Publication.
    [Google Scholar]
  72. Sinclair, H. D., & Tomasso, M. (2002). Depositional evolution of confined turbidite basins. Journal of Sedimentary Research, 72, 451–456. https://doi.org/10.1306/111501720451
    [Google Scholar]
  73. Smith, R. (2004). Silled sub‐basins to connected tortuous corridors: Sediment distribution system on topographically complex sub‐aqueous slopes. In S.A.Lomas and P.Joseph, (Eds.), Confined turbidite systems (Vol. 222, pp. 23–43). Geological Society of London, Special Publication.
    [Google Scholar]
  74. Southern, S. J., Kane, I. A., Warchoł, M. J., Porten, K. W., & McCaffrey, W. D. (2017). Hybrid event beds dominated by transitional‐flow facies: Character, distribution and significance in the Maastrichtian Springar formation, north‐west Vøring Basin, Norwegian Sea. Sedimentology, 64, 747–776.
    [Google Scholar]
  75. Spychala, Y. T., Hodgson, D. M., Flint, S. S., & Mountney, N. P. (2015). Constraining the sedimentology and stratigraphy of submarine intraslope lobe deposits using exhumed examples from the Karoo Basin, South Africa. Sedimentary Geology, 322, 67–81. https://doi.org/10.1016/j.sedgeo.2015.03.013
    [Google Scholar]
  76. Spychala, Y. T., Eggenhuisen, J. T., Tilston, M., & Pohl, F. (2020). The influence of basin setting and turbidity current properties on the dimensions of submarine lobe elements. Sedimentology, 67, 3471–3491.
    [Google Scholar]
  77. Stevenson, C. J., Talling, P. J., Wynn, R. B., Masson, D. G., Hunt, J. E., Frenz, M., Akhmetzhanhov, A., & Cronin, B. T. (2013). The flows that left no trace: Very large volume turbidity currents that bypassed sediment through submarine channels without eroding the sea floor. Marine and Petroleum Geology, 41, 186–205.
    [Google Scholar]
  78. Stevenson, C. J., Jackson, C. A.‐L., Hodgson, D. M., Hubbard, S. M., & Eggenhuisen, J. (2015). Deep‐water sediment bypass. Journal of Sedimentary Research, 85, 1058–1081.
    [Google Scholar]
  79. Steventon, M. J., Jackson, C. A. L., Johnson, H. D., Hodgson, D. M., Kelly, S., Omma, J., Gopon, C., Stevenson, C., & Fitch, P. (2021). Evolution of a sand‐rich submarine channel–lobe system, and the impact of mass‐transport and transitional‐flow deposits on reservoir heterogeneity: Magnus field, northern North Sea. Petroleum Geoscience, 27, 2020–2095. https://doi.org/10.1016/j.marpetgeo.2006.01.002
    [Google Scholar]
  80. Straub, K. M., Paola, C., Mohrig, D., Wolinsky, M. A., & George, T. (2009). Compensational stacking of channelized sedimentary deposits. Journal of Sedimentary Research, 79(9), 673–688.
    [Google Scholar]
  81. Sylvester, Z., Cantelli, A., & Pirmez, C. (2015). Stratigraphic evolution of intraslope minibasins: Insights from surface‐based model. AAPG Bulletin, 99, 1099–1129.
    [Google Scholar]
  82. Tek, D. E., McArthur, A. D., Poyatos‐Moré, M., Colombera, L., Patacci, M., Craven, B., & McCaffrey, W. D. (2021). Relating seafloor geomorphology to subsurface architecture: How mass‐transport deposits and knickpoint‐zones build the stratigraphy of the deep‐water Hikurangi Channel. Sedimentology, 68, 3141–3190.
    [Google Scholar]
  83. Wang, X., Luthi, S. M., Hodgson, D. M., Sokoutis, D., Willingshofer, E., & Groenenberg, R. M. (2017). Turbidite stacking patterns in salt‐controlled minibasins: Insights from integrated analogue models and numerical fluid flow simulations. Sedimentology, 64, 530–552.
    [Google Scholar]
  84. Winker, C. D. (1996). High resolution seismic stratigraphy of a late Pleistocene submarine fan ponded by salt‐withdrawal mini‐basins on the Gulf of Mexico continental slope. In Offshore Technology Conference 8024 (pp. 619–628).
    [Google Scholar]
  85. Winter, W. R., Jahnert, R. J., & França, A. B. (2007). Bacia de Campos. Boletim de Geociências da Petrobras, 15(2), 511–529.
    [Google Scholar]
  86. Wu, N., Jackson, C. A. L., Johnson, H. D., Hodgson, D. M., & Nugraha, H. D. (2020). Mass‐transport complexes (MTCs) document subsidence patterns in a northern Gulf of Mexico salt minibasin. Basin Research, 32, 1300–1327. https://doi.org/10.1111/bre.12429
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12700
Loading
/content/journals/10.1111/bre.12700
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error