1887
Volume 35, Issue 3
  • E-ISSN: 1365-2117

Abstract

[

Submaine channel deflections around growing structures reflect several types of channel bends and competing controls on lateral migration, i.e., tectonic push vs. depositional/autogenic forcing

, Abstract

Understanding the interactions of submarine channels with seafloor deformations is challenging as these channels more often involve a wide variety of responses relying on both autogenic and allogenic factors. The effect of active growing structures on channel pathways is well documented, but the evolution of lateral migration and the internal architectures along the deflected channel bends around ongoing active structures remain poorly constrained. Here, we use 3D seismic interpretation and quantitative geomorphologic methods to examine the channel bend morphology and the kinematics of lateral migration near gravity‐driven tectonic deformation. Using high‐resolution seismic reflection data acquired from the offshore Niger Delta, two‐channel levee systems (Amaku Major System and Amaku Channel Levee System) have been recognized in the seismic survey. Each system consists of three channel complexes, recording five types of deflected channel bends, defined here as: (i) avulsed bend, (ii) confined bend, (iii) chute cut‐off bend, (iv) blocked bend and (v) kinked bend. Geomorphologic parameters including bend sinuosity, bend amplitude, along‐bend length, straight‐bend length, channel depth and width, were considered within the deflected channels. Lateral migration estimators; channel lateral shift (SH), and channel lateral spacing (CS), were assessed throughout the distances of cross‐sectional channel patterns. The lateral migration estimators (SH and CS) were used to estimate the expression of internal architectures and the evolution of lateral migration around seabed deformation at the scale of the channel complex. The results show that the morphology and internal architecture of the deflected bends, although developing in the same structural context, display varied responses to structural deformation. Unlike previously published models of channel‐fold interactions asserting tectonics as the solitary driver, here we demonstrate that the channel deflections around structures are sensitive to the lateral confinement produced by sediment relief of the outer levees, and the autogenic forcing of channel mechanisms. This study provides new insights into the evolution of submarine channels in active tectonic settings, shows detailed mechanisms of channel bends at a small scale and offers a better understanding of the distribution of sediments in the deep sea.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12750
2023-05-19
2024-04-26
Loading full text...

Full text loading...

References

  1. Abreu, V., Sullivan, M., Pirmez, C., & Mohrig, D. (2003). Lateral accretion packages (LAPs): An important reservoir element in deep water sinuous channels. Marine and Petroleum Geology, 20, 631–648.
    [Google Scholar]
  2. Armitage, D. A., McHargue, T., Fildani, A., & Graham, S. A. (2012). Postavulsion channel evolution: Niger Delta continental slope. AAPG Bulletin, 96, 823–843.
    [Google Scholar]
  3. Ashiru, O. R., Qin, Y., & Wu, S. (2020). Structural controls on submarine channel morphology, evolution, and architecture, offshore Western Niger delta. Marine and Petroleum Geology, 118, 104413. https://doi.org/10.1016/j.marpetgeo.2020.104413
    [Google Scholar]
  4. Babonneau, N., Cattaneo, A., Savoye, B., et al. (2012). The Kramis deep‐sea fan off western Algeria: Role of sediment waves in turbiditic levee growth. In B. E.Prather, M. E.Deptuck, D.Mohrig, B.Van Hoorn, & R. B.Wynn (Eds.), Application of the principles of seismic geomorphology to continental slope and base‐of‐slope systems: Case studies from seafloor and near‐seafloor analogues (pp. 293–308). SEPM Special Publication 99.
    [Google Scholar]
  5. Babonneau, N., Savoye, B., Cremer, M., & Bez, M. (2010). Sedimentary architecture in meanders of a submarine channel: Detailed study of the present Congo Turbidite Channel (Zaiango project). Journal of Sedimentary Research, 80(9–10), 852–866.
    [Google Scholar]
  6. Biscara, L., Mulder, T., Hanquiez, V., Marieu, V., Crespin, J. P., & Braccini, E. (2013). Morphological evolution pf cap Lopez canyon (Gabon): Illustration of lateral migration processes of a submarine canyon. Marine Geology, 340, 49–56.
    [Google Scholar]
  7. Bouchakour, M., Zhao, X., Ge, J., Miclăus, C., & Yang, B. (2022). Evolution of submarine channel morphology in intra‐slope mini‐basins: 3D‐seismic interpretation from offshore Niger Delta. Marine and Petroleum Geology, 146, 105912. https://doi.org/10.1016/j.marpetgeo.2022.105912
    [Google Scholar]
  8. Briggs, S. E., Davies, R. J., Cartwright, J. A., & Morgan, R. (2006). Multiple detachment levels and their control on fold styles in the compressional domain of the deepwater west Niger Delta. Basin Research, 18, 435–450.
    [Google Scholar]
  9. Chen, Q., & Sidney, S. (1997). Seismic attribute technology for reservoir forecasting and monitoring. The Leading Edge, 16, 445–450.
    [Google Scholar]
  10. Chima, K. I., Do, C. D., Leroux, E., Gardin, S., Hoggmasacall, N., Rabineau, M., Granjean, D., & Gorini, C. (2019). Seismic stratigraphy and depositional architecture of Neogene intraslope basins, offshore western Niger Delta. Marine and Petroleum Geology, 109, 449–468. https://doi.org/10.1016/j.marpetgeo.2019.06.030
    [Google Scholar]
  11. Clark, I. R., & Cartwright, J. A. (2009). Interactions between submarine channel systems and deformation in deep‐water fold belts: Examples from the Levant Basin, eastern Mediterranean Sea. Marine and Petroleum Geology, 26, 1465–1482.
    [Google Scholar]
  12. Clark, I. R., & Cartwright, J. A. (2011). Key controls on submarine channel development in structurally active settings. Marine and Petroleum Geology, 28, 1333–1349.
    [Google Scholar]
  13. Clark, J. D., Kenyon, N. H., & Pickering, K. T. (1992). Quantitative analysis the geometry of submarine channels: Implications for the classification of submarine fans. Geology, 20, 633–636.
    [Google Scholar]
  14. Corredor, F., Shaw, J. H., & Bilotti, F. (2005). Structural styles in the deep‐water fold and thrust belts of the Niger Delta. AAPG Bulletin, 89(6), 753–780.
    [Google Scholar]
  15. Covault, J. A., Sylvester, Z., Hudec, M. R., Ceyhan, C., & Dunlap, D. (2019). Submarine channels ‘swept’ downstream after bend cutoff in salt basins. The Depositional Record, 6, 259–272.
    [Google Scholar]
  16. Damuth, J. E. (1994). Neogene gravity tectonics and depositional processes on the deep Niger Delta continental margin. Marine and Petroleum Geology, 11, 320–346.
    [Google Scholar]
  17. Das, H. S., Imran, J., Pirmez, C., & Mohrig, D. (2004). Numerical modeling of flow and bed evolution in meandering submarine channels. Journal of Geophysical Research, 109, C10009. https://doi.org/10.1029/2002JC001518
    [Google Scholar]
  18. Deptuck, M., Steffens, G. S., Barton, M., & Pirmez, C. (2003). Architecture and evolution of upper fan channel‐belts on the Niger Delta slope and in the Arabian Sea. Marine Petroleum Geology, 20, 649–676.
    [Google Scholar]
  19. Deptuck, M. E., Sylvester, Z., Pirmez, C., & O'Byrne, C. (2007). Migration–aggradation history and 3‐D seismic geomorphology of submarine channels in the Pleistocene Benin major canyon, western Niger Delta slope. Marine and Petroleum Geology, 24, 406–433.
    [Google Scholar]
  20. Doughty‐Jones, G., Lonergan, L., Mayall, M., & Dee, S. (2019). The role of structural growth in controlling the facies and distribution of mass transport deposits in a deep‐water salt minibasin. Marine and Petroleum Geology, 104, 106–124.
    [Google Scholar]
  21. Doust, H., & Omatsola, E. (1990). Niger delta. In J. D.Edwards & P. A.Santogrossi (Eds.), Divergent/passive margin basins (pp. 201–238). American Association of Petroleum Geologists.
    [Google Scholar]
  22. Fadiya, L.S., & Salami, B.M. (2015). A Neogene calcareous nannofossil biozonation scheme for the deep offshore Niger Delta. Journal of African Earth Sciences, 112, 251–275.
    [Google Scholar]
  23. Ferry, J. N., Mulder, T., Parize, O., & Raillard, S. (2005). Concept of equilibrium profile in deep‐water turbidite system: Effects of local physiographic changes on the nature of sedimentary process and the geometries of deposits. In D. M.Hodgson & S. S.Flint (Eds.), (pp. 181–193). Geological Society, London, Special Publications.
  24. Funk, J. E., Slatt, R. M., & Pyles, D. R. (2012). Quantification of static connectivity between deep‐water channels and stratigraphically adjacent architectural elements using outcrop analogs. AAPG, 96, 277–300.
    [Google Scholar]
  25. Furbish, D. J. (1988). River‐bend curvature and migration: How are they related?Geology, 16(8), 752–755.
    [Google Scholar]
  26. Gee, M. J. R., & Gawthorpe, R. L. (2006). Submarine channels controlled by salt tectonics: Examples from 3D seismic data offshore Angola. Marine and Petroleum Geology, 23, 443–458.
    [Google Scholar]
  27. Hansen, L., Callow, R. H. T., Kane, I., Gamberi, F., Rovere, M., Cronin, B. T., & Kneller, B. (2015). Genesis and character of thin‐bedded turbidites associated with submarine channels. Marine and Petroleum Geology, 67, 852–879.
    [Google Scholar]
  28. Hansen, L., Janocko, M., Kane, I., & Kneller, B. (2017). Submarine channel evolution, terrace development, and preservation of intra‐channel thin‐bedded turbidites: Mahin and Avon channels, offshore Nigeria. Marine Geology, 383, 146–167.
    [Google Scholar]
  29. Henderson, J., Purves, S. J., & Leppard, C. (2007). Automated delineation of geological elements from 3D seismic data through analysis of multi‐channel, volumetric spectral decomposition data. First Break, 25, 87–93.
    [Google Scholar]
  30. Hooke, J. M. (1995). River channel adjustment to meander cutoffs on the River Bollin and River Dane, Northwest England. Geomorphology, 14, 235–253. https://doi.org/10.1016/0169‐555X(95)00110‐Q
    [Google Scholar]
  31. Howlett, D. M., Gawthorpe, R. L., Ge, Z., Rotevatn, A., & Jackson, C. (2020). Turbidites, topography and tectonics: Evolution of submarine. Basin Reaserch, 33, 1076–1110.
    [Google Scholar]
  32. Howlett, D. M., Gawthorpe, R. L., Ge, Z., Rotevatn, A., & Jackson, C. A. ‐L. (2021). Turbidites, topography and tectonics: Evolution of submarine channel‐lobe systems in the salt‐influenced Kwanza Basin, offshore Angola. Basin Research, 33, 1076–1110. https://doi.org/10.1111/bre.12506
    [Google Scholar]
  33. Janocko, M., Nemec, W., Henriksen, S., & Warchoł, M. (2013). The diversity of deep‐water sinuous channel belts and slope valley‐fill complexes. Marine and Petroleum Geology, 41, 7–34.
    [Google Scholar]
  34. Jobe, Z. R., Howes, N. C., & Auchter, N. C. (2016). Comparing submarine and fluvial channel kinematics: Implications for stratigraphic architecture. Geology, 44(11), 931–934. https://doi.org/10.1130/G38158.1
    [Google Scholar]
  35. Jobe, Z. R., Sylvester, Z., Parker, A. O., Howes, N. C., Slowey, N., & Pirmez, C. (2015). Rapid adjustment of submarine channel architecture to changes in sediment supply. Journal of Sedimentary Research, 85(6), 729–753.
    [Google Scholar]
  36. Jolly, B. A., Lonergan, L., & Whittaker, A. C. (2016). Growth history of fault‐related folds and interaction with seabed channels in the toe‐thrust region of the deep‐water Niger delta. Marine and Petroleum Geology, 70, 58–76.
    [Google Scholar]
  37. Kane, I. A., Kneller, B. C., Dykstra, M., Kassem, A., & McCaffrey, W. D. (2007). Anatomy of a submarine channel‐levee: An example from Upper Cretaceous slope sediments, Rosario Formation, Baja California, Mexico. Marine and Petroleum Geology, 24, 540–563. https://doi.org/10.1016/j.marpetgeo.2007.01.003
    [Google Scholar]
  38. Kneller, B. (2003). The influence of flow parameters on turbidite slope channel architecture. Marine and Petroleum Geology, 20, 901–910.
    [Google Scholar]
  39. Kolla, V. (2007). A review of sinuous channel avulsion patterns in some major deep‐sea fans and factors controlling them. Marine and Petroleum Geology, 24, 450–469.
    [Google Scholar]
  40. Kolla, V., Bourges, P., Urruty, J.‐M., & Safa, P. (2001). Evolution of Deepwater sinuous channels offshore Angola (West Africa) and implications for reservoir architecture. AAPG Bulletin, 85, 1373–1405.
    [Google Scholar]
  41. Krueger, S.W., & Grant, N.T. (2011). The growth history of toe thrusts of the Niger Delta andthe role of pore pressure. Sibirsk.Mmat.zh. https://doi.org/10.1306/13251345
  42. Lemay, M., Grimaud, J. L., Cojan, I., Rivoirard, J., & Ors, F. (2020). Geomorphic variability of submarine channelized systems along continental margins: Comparison with fluvial meandering channels. Marine and Petroleum Geology, 115, 104295.
    [Google Scholar]
  43. Lewis, G. W., & Lewin, J. (1983). Alluvial cutoffs in Wales and the Borderlands. In J. D.Collinson & J.Lewin (Eds.), Modern and ancient fluvial systems (pp. 145–154). Special Publications of the International Association of Sedimentologists. Wiley.
    [Google Scholar]
  44. Li, P., Kneller, B., & Hansen, L. (2021). Anatomy of a gas‐bearing submarine channel‐lobe system on a topographically complex slope (offshore Nile Delta, Egypt). Marine Geology, 437, 106496.
    [Google Scholar]
  45. Lonsdale, P., & Hollister, C. D. (1979). Cut‐offs at an abyssal meander south of Iceland. Geology, 7(12), 597–601.
    [Google Scholar]
  46. Maloney, D., Davies, R., Imber, J., Higgins, S., & King, S. (2010). New insights into deformation mechanisms in the gravitationally driven Niger Delta deep‐water fold and thrust belt. AAPG Bulletin, 94, 1401–1424.
    [Google Scholar]
  47. Mayall, M., Jones, E., & Casey, M. (2006). Turbidite channel reservoirs—Key elements in facies prediction and effective development. Marine and Petroleum Geology, 23, 821–841. https://doi.org/10.1016/j.marpetgeo.2006.08.001
    [Google Scholar]
  48. Mayall, M., Lonergan, L., Bowman, A., James, S., Mills, K., Primmer, T., Pope, D., Rogers, L., & Skeene, R. (2010). The response of turbidite slope channels to growth‐induced seabed topography. AAPG Bulletin, 94, 1011–1030.
    [Google Scholar]
  49. Mayall, M., & Stewart, I. (2000). The architecture of turbidite slope channels. In P.Weimer, R. M.Slatt, J. L.Coleman, N.Rosen, C. H.Nelson, A. H.Bouma, M.Styzen, & D. T.Lawrence (Eds.), Global deep‐water reservoirs: Gulf Coast Section SEPM Foundation 20th Annual Bob F. Perkins Research Conference (pp. 578–586).
    [Google Scholar]
  50. McArdle, N., & Ackers, M. (2012). Understanding seismic thin‐bed responses using frequency decomposition and RGB blending. First Break, 30, 57–65.
    [Google Scholar]
  51. McHargue, T., Pyrcz, M. J., Sullivan, M. D., Clark, J. D., Fildani, A., Romans, B. W., Covault, J. A., Levy, M., Posamentier, H. W., & Drinkwater, N. J. (2011). Architecture of turbidite channel systems on the continental slope: Patterns and predictions. Marine and Petroleum Geology, 28(3), 728–743.
    [Google Scholar]
  52. Micheli, E. R., & Larse, E. W. (2010). River channel cutoff dynamics, Sacramento River, California, USA. River Research and Applications, 27, 328–344. https://doi.org/10.1002/rra.1360
    [Google Scholar]
  53. Mitchell, W. H., Whittaker, A., Mayall, M., Lonergan, L., & Pizzi, M. (2021). Quantifying structural controls on submarine channel architecture and kinematics. GSA Bulletin, 134(3–4), 928–940. https://doi.org/10.1130/B36001.1
    [Google Scholar]
  54. Mitchell, W. H., Whittaker, A., Mayall, M., Lonergan, L., & Pizzi, M. (2021a). Quantifying the relationship between structural deformation and the morphology of submarine channels on The Niger Delta continental slope. Basin Research., 33, 186–209. https://doi.org/10.1111/bre.12460
    [Google Scholar]
  55. Mitchell, W. H., Whittaker, C., Mayall, M., & Lonergan, L. (2021). New models for submarine channel deposits on structurally complex slopes: Examples from The Niger delta system. Marine and Petroleum Geology, 129, 105040. https://doi.org/10.1016/j.marpetgeo.2021.105040
    [Google Scholar]
  56. Morgan, R. (2004). Structural controls on the positioning of submarine channels on the lower slopes of the Niger Delta. In R. J.Davies, J. A.Cartwright, S. A.Stewart, M.Lappin, & J. R.Underhill (Eds.), 3D seismic technology: Application for the exploration of sedimentary basins (Vol. 29, pp. 45–51). Geological Society London Memoirs.
    [Google Scholar]
  57. Moscardelli, L., & Wood, L. (2008). New classification system for mass transport complexes in offshore Trinidad. Basin Research, 20, 73–98.
    [Google Scholar]
  58. Nakajima, T., Peakall, J., McCaffrey, W. D., Paton, D. A., & Thompson, P. J. P. (2009). Outer‐bank bars: A new intra‐channel architectural element within sinuous submarine slope channels. Journal of Sedimentary Research, 79, 872–886.
    [Google Scholar]
  59. Olayiwola, M. A., Bamford, M. K., & Durugbo, E. U. (2017). Graphic correlation: A powerful tool for biostratigraphic correlation of petroleum exploration and production in the Cenozoic deep offshore Niger Delta, Nigeria. Journal of African Earth Sciences, 131, 156–165.
    [Google Scholar]
  60. Oluboyo, A. P., Gawthorpe, R. L., Bakke, K., & Hadler‐Jacobsen, F. (2014). Salt tectonic controls on deep‐water turbidite depositional systems: Miocene, southwestern Lower Congo Basin, offshore Angola. Basin Research, 26, 597–620.
    [Google Scholar]
  61. Ortiz‐Karpf, A., Hodgson, D. M., & McCaffrey, W. D. (2015). The role of mass‐transport complexes in controlling channel avulsion and the subsequent sediment dispersal patterns on an active margin: The Magdalena Fan, offshore Colombia. Marine and Petroleum Geology, 64, 58–75.
    [Google Scholar]
  62. Ortiz‐Karpf, A., Hodgson, D. M., Jackson, C. A. L., & Mccaffrey, W. D. (2017). Influence of seabed morphology and substrate composition on mass‐transport flow processes and pathways: insights from the Magdalena fan, offshore Colombia. Journal of Sedimentary Research, 87, 189–209. https://doi.org/10.2110/jsr.2017.10
    [Google Scholar]
  63. Palm, F. A., Peakall, J., Hodgson, D. M., Marsset, T., Jacinto, R. S., Dennielou, B., Babonneau, N., & Wright, T. J. (2021). Width variation around submarine channel bends: Implications for sedimentation and channel evolution. Marine Geology, 437, 106504. https://doi.org/10.1016/j.margeo.2021.106504
    [Google Scholar]
  64. Peakall, J., & Sumner, E. J. (2015). Submarine channel flow processes and deposits: A process‐product perspective. Geomorphology, 244, 95–120. https://doi.org/10.1016/j.geomorph.2015.03.005
    [Google Scholar]
  65. Pirmez, C., & Imran, J. (2003). Reconstruction of turbidity currents in Amazon channel. Marine and Petroleum Geology, 20, 823–850. https://doi.org/10.1016/j.marpetgeo.2003.03.005
    [Google Scholar]
  66. Pizzi, M., Lonergan, L., Whittaker, A. C., & Mayall, M. (2020). Growth of a thrust fault array in space and time: An example from the deep‐water Niger delta. Journal of Structural Geology, 137, 104088. https://doi.org/10.1016/j.jsg.2020.104088
    [Google Scholar]
  67. Posamentier, H. W., & Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. Journal of Sedimentary Research, 73, 367–388.
    [Google Scholar]
  68. Qi, K., Ding, L., Gong, C., Wang, H., Shao, D., Cai, Z., Ma, H., Xu, X., & Jin, Z. (2021). Different avulsion events throughout the evolution of submarine channel‐levee systems: A 3D seismic case study from the northeastern Bengal Fan. Marine and Petroleum Geology, 134, 105310. https://doi.org/10.1016/j.marpetgeo.2021.105310
    [Google Scholar]
  69. Reimchen, A. P., Hubbard, S. M., Stright, L., & Romans, B. W. (2016). Using sea‐floor morphometrics to constrain stratigraphic models of sinuous submarine channel systems. Marine and Petroleum Geology, 77, 92–115. https://doi.org/10.1016/j.marpetgeo.2016.06.003
    [Google Scholar]
  70. Rouby, D., Nalpas, T., Jermannaud, P., Robin, C., Guillocheau, F., & Raillard, S. (2011). Gravity driven deformation controlled by the migration of the delta front: The Plio‐Pleistocene of the eastern Niger Delta. Tectonophysics, 513, 54–67.
    [Google Scholar]
  71. Rovere, M., Gamberi, F., Mercorella, A., Rashed, H., Gallerani, A., Leidi, E., Marani, M., Funari, V., & Pini, G. A. (2014). Venting and seepage systems associated with mud volcanoes and mud diapirs in the southern Tyrrhenian Sea. Marine Geology, 347, 153–171. https://doi.org/10.1016/j.margeo.2013.11.013
    [Google Scholar]
  72. Short, K. C., & Stäuble, A. J. (1967). Outline of geology of Niger delta. AAPG Bulletin, 51, 761–779.
    [Google Scholar]
  73. Sprague, A. R. G., Garfield, T. R., Goulding, F. J., Beaubouef, R. T., Sullivan, M. D., Rossen, C., Cmapion, K. M., Sickafoose, D. K., Abreu, V., Schellpeper, M. E., Jensen, G. N., Jennette, D. C., Pirmez, C., Dixon, B. T., Ying, D., Ardill, J., Mohrig, D. C., Porter, M. L., Farrell, M. E., & Mellere, D. (2005). Integrated slope channel depositional models: The key to successful prediction of reservoir presence and quality in offshore West Africa. In CIPM, Cuarto E‐Exitep 2005, February 20–23, 2005, Veracruz, Mexico (pp. 1–13).
  74. Sylvester, Z., Pirmez, C., & Cantelli, A. (2011). A model of submarine channel‐levee evolution based on channel trajectories; implications for stratigraphic architecture. Marine and Petroleum Geology, 28, 716–727.
    [Google Scholar]
  75. Viero, D. P., Dubon, S. L., & Lanzoni, S. (2018). Chute cutoffs in meandering rivers: Formative mechanisms and hydrodynamic forcing. In M.Ghinassi, L.Colombera, N. P.Mountney, & A. J. H.Reesink (Eds.), Fluvial meanders and their sedimentary products in the rock record (Vol. 48, pp. 201–230). International Association of Sedimentologists, Special Publication. Wiley.
    [Google Scholar]
  76. Wynn, R. B., Cronin, B. T., & Peakall, J. (2007). Sinuous deep‐water channels: Genesis, geometry and architecture. Marine and Petroleum Geology, 14(6), 341–387.
    [Google Scholar]
  77. Zhang, J., Wu, S., Hu, G., Fan, T., Yu, B., Lin, P., & Jiang, S. (2018). Sea‐level control on the submarine fan architecture in a Deepwater sequence. Marine and Petroleum Geology, 94, 179–197.
    [Google Scholar]
  78. Zhao, X., Qi, K., Patacci, M., Chengpeng, T., & Xie, T. (2019). Submarine channel network evolution above an extensive mass‐transport complex: A 3D seismic case study from the Niger delta continental slope. Marine and Petroleum Geology, 104, 231–248.
    [Google Scholar]
  79. Zucker, E., Gvirtzman, Z., Steinberg, J., & Enzel, Y. (2017). Diversion and morphology of submarine channels in response to regional slopes and localized salt tectonics, Levant basin. Marine and Petroleum Geology, 81, 98–111.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12750
Loading
/content/journals/10.1111/bre.12750
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error