1887
Volume 17, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

The proliferation of three‐dimensional (3D) seismic technology is one of the most exciting developments in the Earth Sciences over the past century. 3D reflection seismic data provide interpreters with the ability to map structures and stratigraphic features in 3D detail to a resolution of a few tens of metres over thousands of square kilometres. It is a geological ‘Hubble’, whose resolving power has already yielded some fascinating (and surprising) insights and will continue to provide a major stimulus for research into geological processes and products for many decades to come. Academic and other research institutions have a major role to play in the use of this data by exploiting the enormous volume of geological information contained in 3D seismic surveys. This paper reviews some of the recent advances in basin analysis made using the medium of 3D seismic data, focusing on the fields of structural and sedimentary geology, fluid–rock interactions and igneous geology. It is noted that the increased resolution of the 3D seismic method provided the essential catalyst necessary to stimulate novel observations and discover new geological structures such as mud diapir feeders, km‐long gas blow‐out pipes, giant pockmarks and sandstone intrusions, and to capture the spatial variability of diagenetic fronts. The UKs first impact crater was also discovered using 3D seismic data. The potential for future developments in this field of geophysical interpretation is considerable, and we anticipate that new discoveries will be made in many years to come.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2005.00252.x
2005-02-28
2020-02-18
Loading full text...

Full text loading...

References

  1. Abreu, V., Sullivan, M., Pirmez, C. & Mohrig, D. (2003) Lateral accretion packages (LAPs): an important reservoir element in deep water sinuous channels. Mar. Petrol. Geol., 20, 631–648.
    [Google Scholar]
  2. Aplin, A.C., Yang, Y. & Hansen, S. (1995) Assessment of the β compression coefficient of mudstones and its relationship with detailed lithology. Mar. Petrol. Geol., 12 (8), 955–963.
    [Google Scholar]
  3. Archer, S.G., Bergman, S.C., Iliffe, J., Murphy, C.M. & Thornton, M. (2005) Palaeogene igneous rocksreveal new insights into the geodynamic evolution and petroleum potential of the Rockall Trough, NE Atlantic Margin. Basin Res., 17, 171–201.
    [Google Scholar]
  4. Bahorovic, M. & Farmer, S. (1995) The coherence cube. The Leading Edge, Vol. 14, pp. 1053–1058.
  5. Berkhout, A.J. (1980) Seismic migration; imaging of acoustic energy by wave field extrapolation. In: Developments in Solid Earth Geophysics. Elsevier Science Publication Co., Amsterdam, 339pp.
    [Google Scholar]
  6. Berndt, C., Bünz, S. & Mienert, J. (2003) Polygonal fault systems on the mid‐Norwegian margin: a long‐term source for fluid flow. In: Subsurface Sediment Mobilization (Ed. by P.Van Rensbergen , R.R.Hillis & C.K.Morley ), Geol. Soc. Spec. Publ. , 216, 283–290.
    [Google Scholar]
  7. Bertoni, C. & Cartwright, J. (2005) 3D seismic analysis of slope‐confined canyons from the Plio‐Pleistocene of the Ebro Continental Margin (Western Mediterranean). Basin Res., 17, 43–62.
    [Google Scholar]
  8. Bijwaard, H., Spakman, W. & Engdahl, E.R. (1998) Closing the gap between regional and global travel time tomography. J. Geophys. Res., 103, 30,055–30,078.
    [Google Scholar]
  9. Bradley, J. (1965) Intruion of major dolerite sills. Trans. Roy. Soc. N.Z., 3, 27–54.
    [Google Scholar]
  10. Brown, A.R. (2003) Interpretation of Three Dimensional Seismic Data, 6th edition, AAPG Mem., 42, 541 pp., Tulsa, OK.
    [Google Scholar]
  11. Buenz, S. & Mienert, J. (2004) Acoustic imaging of gas hydrate and free gas at the Storegga Slide. J. Geophys. Res., B109, B04102.
    [Google Scholar]
  12. Bünz, S., Mienert, J., Bryn, P. & Berg, K. (2005) Fluid flow impact on slope failures from 3D seismic data: a case study in the Storegga Slide. Basin Res., 17, 109–122.
    [Google Scholar]
  13. Bulat, J. (2005) Some considerations on the interpretation of seabed images based on commercial 3D seismic in the Faroe‐Shetland channel. Basin Res., 17, 21–42.
    [Google Scholar]
  14. Cartwright, J.A. (1994) Episodic basin‐wide fluid expulsion from geopressured shale sequences in the North Sea Basin. Geology, 22, 447–450.
    [Google Scholar]
  15. Cartwright, J. & Dewhurst, D. (1998) Layer‐bound compaction faults in fine‐grained sediments. Bull. Geol. Soc. Am., 110, 1242–1257.
    [Google Scholar]
  16. Cartwright, J., James, D. & Bolton, A. (2003) The genesis of polygonal fault systems: a review. In: Subsurface Sediment Mobilization (Ed. by P.Van Rensbergen , R.R.Hillis & C.K.Morley ), Geol. Soc. Spec. Publ. , 216, 223–243.
    [Google Scholar]
  17. Cartwright, J.A. & Lonergan, L. (1996) Volumetric contraction during the compaction of mudrocks: a mechanism for the development of regional-scale polygonal fault systems. Basin Res., 8, 183–193.
    [Google Scholar]
  18. Cartwright, J. & Lonergan, L. (1997) Polygonal fault Systems in the Eromanga and North Sea Basins: a comparison. Explor. Geophys., 28, 323–331.
    [Google Scholar]
  19. Cartwright, J.A., Mansfield, C. & Trudgill, B.D. (1996) The growth of faults by segment linkage: evidence from the Canyonlands Grabens of S.E. Utah. In: Structural Validation of Cross‐Section Interpretation (Ed. by D.Nieuwland ), Geol. Soc. London Spec. Publ. , 99, 192–214.
    [Google Scholar]
  20. Chevallier, L. & Woodford, A. (1999) Morpho‐tectonics and mechanism of emplacement of the dolerite ring and sills of the western Karoo, South Africa. S. Afr. J. Geol., 102, 43–52.
    [Google Scholar]
  21. Childs, C., Watterson, J. & Walsh, J.J. (1995) Fault overlap zones within developing normal fault systems. J. Geol. Soc. London, 152, 535–549.
    [Google Scholar]
  22. Ching, H.J., Beih, Y.S., Jacques, A. & Tsu, C.H. (2001) Active deformation of Taiwan from GPS measurements and numerical simulations. J. Geophys. Res., B106, 2265–2280.
    [Google Scholar]
  23. Cole, D., Stewart, S.A. & Cartwright, J.A. (2000) Giant irregular pockmark craters in the Palaeogene of the Outer Moray Firth Basin, UK North Sea. Mar. Petrol. Geol., 17, 563–577.
    [Google Scholar]
  24. Davies, R.J. (2003) Kilometer‐scale fluidization structures formed during early burial of a deepwater slope channel on the Niger Delta. Geology, 31, 949–952.
    [Google Scholar]
  25. Davies, R.J., Bell, B., Cartwright, J.A. & Shoulders, S. (2002) Three‐dimensional seismic imaging of dike‐fed submarine volcanoes. Geology, 30, 223–226.
    [Google Scholar]
  26. Davies, R.J. & Cartwright, J.A. (2002) A fossilized Opal A‐Opal C/T transformation on the northeast Atlantic margin: support for a significantly elevated palaeogeothermal gradient during the Neogene. Basin Res., 14, 1–20.
    [Google Scholar]
  27. Davies, R.J., Cartwright, J.A. & Rana, J. (1999) Giant hummocks in deepwater marine sediments: evidence for large scale differential compaction and density inversion during early burial. Geology, 27, 907–910.
    [Google Scholar]
  28. Davies, R.J., Cartwright, J.A., Stewart, S.A., Lappin, M. & Underhill, J.R., (eds). (2004) 3D Seismic Technology: Application to the Exploration of Sedimentary Basins, Geol. Soc. London, Mem. , 29, 355 pp.
    [Google Scholar]
  29. Davies, R.J. & Stewart, S.A. (2005) Emplacement of giant mud volcanoes in the South Caspian Basin: 3D seismic reflection imaging of their root zones. J. Geol. Soc. London, 162, 1–4.
    [Google Scholar]
  30. Davison, I., Alsop, I., Birch, P., Elders, C., Evans, N., Nicholson, H., Rorison, P., Woodward, J. & Young, M. (2000) Geometry and late‐stage structural evolution of Central Graben salt diapirs. Mar. Petrol. Geol., 17, 499–522.
    [Google Scholar]
  31. Dawers, N.H. & Underhill, J.R. (2000) The role of fault interaction and linkage in controlling synrift stratigraphic sequences; Late Jurassic, Statfjord East area, northern North Sea. AAPG Bull., 84, 45–64.
    [Google Scholar]
  32. Demyttanaere, R.R.A., Sluijk, A.H. & Bentley, M.R. (1993) A fundamental reappraisal of the structure of the Cormorant Field and its impact on field development strategy. In: Petroleum Geology of Northwest Europe: Proceedings from the 4th Conference (Ed. by J.R.Parker ), Geol. Soc. London , 1151–1157.
    [Google Scholar]
  33. Dewhurst, D., Cartwright, J.A. & Lonergan, L. (1999) The development of polygonal fault systems by the syneresis of fine‐grained sediments. Mar. Petrol. Geol., 16, 793–810.
    [Google Scholar]
  34. Dixon, R.J., Schofield, K., Anderton, R., Reynolds, A.D., Alexander, R.W.S., Williams, M.C. & Davies, K.G. (1995) Sandstone diapirism and clastic intrusion in the Tertiary submarine fans of the Bruce‐Beryl Embayment, Quadrant 9, UKCS. In: Characterisation of Deep‐Marine Clastic Systems, (Ed. by A.J.Hartley & D.J.Prosser ), Geol. Soc., London, Spec. Publ. , 94, 77–94.
    [Google Scholar]
  35. Dorn, A.G. (1998) Modern 3‐D seismic interpretation. The Leading Edge, Vol. 17, pp. 1262–1272.
  36. Droz, L., Rigaut, F., Cochonat, P. & Tofani, R. (1996) Morphology and recent evolution of the Zaire turbidite system (Gulf of Guinea). GSA Bull., 108, 253–269.
    [Google Scholar]
  37. Dugan, B. & Flemings, P.B. (2000) Overpressure and fluid flow in the New Jersey continental slope; implications for slope failure and cold seeps. Science, 289, 288–291.
    [Google Scholar]
  38. Du Toit, A.I. (1920) The Karoo dolerites. Trans. Geol. Soc. S. Afr., 33, 1–42.
    [Google Scholar]
  39. Edwards, H. The North Sea Mega Merges. In: Petroleum Geology of Northwest Europe: Proceedings of the 6th Conference (Ed. by A.Doré & B.Vining ), Geol. Soc. London in press.
    [Google Scholar]
  40. Elvebakk, G., Hunt, D.W. & Stemmerik, L. (2002) From isolated build‐ups to buildup mosaics: 3D seismic sheds new light on upper Carboniferous-Permian fault controlled carbonate build ups, Norwegian Barents Sea. Sediment. Geol., 152, 7–17.
    [Google Scholar]
  41. Fowler, J.N., Guritno, E., Sherwood, P., Smith, M.J., Algar, S., Busono, I., Goffey, G. & Strong, A. (2004) Depositional architectures of Recent deepwater deposits in the Kutei Basin, East Kalimantan. In: 3D Seismic Technology: Application to the Exploration of Sedimentary Basins (Ed. by R.J.Davies , J.Cartwright , S.A.Stewart , J.R.Underhill & M.Lappin ), Geol. Soc. London Mem. , 29, 25–33.
    [Google Scholar]
  42. Frey Martinez, J., Cartwright, J.A. & Hall, B. (2005) 3D seismic interpretation of slump complexes: examples from the continental margin of Israel. Basin Res., 17, 83–108.
  43. Gay, A., Lopez, M., Cochonat, P. & Sermondadas, G. (2004) Polygonal faults‐furrows system related to early stages of compaction‐upper Miocene to recent sediments of the Lower Congo Basin. Basin Res., 16, 101–116.
    [Google Scholar]
  44. Gay, A., Lopez, M., Cochonat, P., Sultan, N., Cauquil, E. & Brigaud, F. (2003) Sinuous pockmark belt as indicator of a shallow buried turbiditic channel on the lower slope of the Congo basin, West African margin. In: Subsurface Sediment Mobilization (Ed. by P.Van Rensbergen , R.R.Hillis & C.K.Morley ), Geol. Soc. Spec. Publ. , 216, 173–189.
    [Google Scholar]
  45. Gemmer, L., Huuse, M., Clausen, O.R. & Nielsen, S.B. (2002) Mid‐Paleocene palaeogeography of the eastern North Sea Basin: integrating geological evidence and 3D geodynamic modelling. Basin Res., 14, 329–346.
    [Google Scholar]
  46. Goulty, N.J. (2003) Mechanics of layer‐bound polygonal faulting in fine‐grained sediments. J. Geol. Soc. London, 159, 239–246.
    [Google Scholar]
  47. Grand, S.P., Van Der Hilst, R.D. & Widiyantoro, S. (1997) Global seismic tomography: a snapshot of convection in the Earth. GSA Today, Vol. 7, pp. 1–7.
  48. Graue, K. (2000) Mud volcanoes in deepwater Nigeria. Mar. Petrol. Geol., 17, 959–974.
    [Google Scholar]
  49. Gupta, S., Cowie, P.A., Dawers, N.H. & Underhill, J.R. (1998) A mechanism to explain rift‐basin subsidence and stratigraphic patterns through fault‐array evolution. Geology, 26, 595–598.
    [Google Scholar]
  50. Hansen, J.P.V., Cartwright, J.A., Huuse, M. & Clausen, O.R. (2005) 3D seismic expression of fluid migration and mud remobilization on the Gjallar Ridge, offshore mid‐Norway. Basin Res., 17, 123–139.
    [Google Scholar]
  51. Hansen, D.M., Cartwright, J. & Thomas, D. (2004) 3D seismic analysis of the geometry of igneous sills and sill junction relationships. In: 3D Seismic Technology: Application to the Exploration of Sedimentary Basins (Ed. by R.JDavies , J.Cartwright , S.A.Stewart , J.R.Underhill & M.Lappin ), Geol. Soc. London, Mem. , 29, 199–208.
    [Google Scholar]
  52. Hart, B.S. (1999) Definition of subsurface stratigraphy, structure and rock properties from 3‐D seismic data. Earth-Sci. Rev., 47, 189–218.
    [Google Scholar]
  53. Heffernan, A.S., Moore, J.C., Bangs, N.L., Moore, G.F. & Shipley, T.H. (2004) Initial deformation in a subduction thrust system: polygonal normal faulting in the incoming sedimentary sequence of the Nankai subduction zone, southwestern Japan. In: 3D Seismic Technology: Application to the Exploration of Sedimentary Basins (Ed. by R.J.Davies , J.Cartwright , S.AStewart , J.RUnderhill & M.Lappin ), Geol. Soc. London Mem. , 29, 143–148.
    [Google Scholar]
  54. Heggland, R. (1997) Detection of gas migration from a deep source by the use of exploration 3D seismic data. Mar. Geol., 137, 41–47.
    [Google Scholar]
  55. Heggland, R. (2004) Definition of geohazards in exploration 3‐D seismic data using attributes and neural‐network analysis. AAPG Bull., 88, 857–868.
    [Google Scholar]
  56. Hesthammer, J. & Fossen, H. (1997) Seismic attribute analysis in structural interpretation of the Gullfaks Field, northern North Sea. Petrol. Geosci., 3, 13–26.
    [Google Scholar]
  57. Higgs, W.G. & McClay, K.R. (1993) Analogue sandbox modelling of Miocene extensional faulting in the Outer Moray Firth. In: Tectonics and Seismic Sequence Stratigraphy (Ed. by G.DWilliams & A.Dodd ), Geol. Soc. Spec. Publ. , 71, 141–162.
    [Google Scholar]
  58. Hovland, M., Gardner, J.V. & Judd, A.G. (2002) The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids, 2, 127–136.
    [Google Scholar]
  59. Hovland, M. & Judd, A.G. (1988) Seabed Pockmarks and Seepages‐Impact on Geology, Biology and the Marine Environment. Graham & Trotman, London.
    [Google Scholar]
  60. Hurst, A., Cartwright, J., Huuse, M., Jonk, R., Schwab, A., Duranti, D. & Cronin, B. (2003) Significance of large‐scale sand injectites as long‐term fluid conduits: evidence from seismic data. Geofluids, 3, 263–274.
    [Google Scholar]
  61. Huuse, M. & Cartwright, J. (2004) Sandstone intrusions – Reservoirs and fluid conduits through sealing sequences. Proceedings of EAGE Conference: Faults and Top Seals – What do we know and where do we go? Montpellier, France, 8–11 September 2003, P‐11, 1–10. ISBN 90‐73781‐32‐9.
  62. Huuse, M., Duranti, D., Steinsland, N., Guargena, C.G., Prat, P., Holm, K., Cartwright, J.A. & Hurst, A. (2004) Seismic characteristics of large‐scale sandstone intrusions in the Paleogene of the South Viking Graben, UK and Norwegian North Sea. In: 3D Seismic Technology: Application to the Exploration of Sedimentary Basins (Ed. by R.J.Davies , J.Cartwright , S.A.Stewart , J.R.Underhill & M.Lappin ), Geol. Soc. London, Mem. , 29, 263–277.
    [Google Scholar]
  63. Huuse, M. & Mickelson, M. (2004) Eocene sandstone intrusions in the Tampen Spur area (Norwegian North Sea Quad 34) imaged by 3D seismic data. Mar. Petrol. Geol., 21, 141–155.
    [Google Scholar]
  64. Huvenne, V.A.I., Croker, P.F. & Henriet, J.‐P. (2002) A refreshing 3D view of an ancient sediment collapse and slope failure. Terra Nova, 14, 33–40.
    [Google Scholar]
  65. Ingram, G.M., Chisholm, T.J., Grant, C.J., Hedlund, C.A., Stuart‐Smith P, . & Teasdale, J. (2004) Deepwater North West Borneo: hydrocarbon accumulation in an active fold and thrust belt. Mar. Petrol. Geol., 21 (7), 879–887.
    [Google Scholar]
  66. Jackson, M.P.A. & Vendeville, B. (1994) Regional extension as a geologic trigger for diapirism. Bull. Geol. Soc. Am., 106, 57–73.
    [Google Scholar]
  67. Joppen, M. & White, R.S. (1990) The structure and subsidence of Rockall Trough from two‐ship seismic experiments. J. Geophys. Res., 95, 19,821–19,837.
    [Google Scholar]
  68. Karig, D.E. & Morgan, J.K. (1994) Tectonic deformation; stress paths and strain histories. In: The Geological Deformation of Sediments (Ed. by A.Maltman ) Chapman & Hall, London, UK.
    [Google Scholar]
  69. Kennett, J.P., Cannariato, K.G., Hendy, I.L. & Behl, R.J. (2000) Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science, 288, 128–133.
    [Google Scholar]
  70. Knutz, P.K. & Cartwright, J.A. (2003) Seismic stratigraphy of the West Shetlands Drift: implications for late Neogene palaeocirculation in the Faeroe-Shetland gateway. Palaeoceanography, 18, doi:10.1029/2002PA000786.
    [Google Scholar]
  71. Kolla, V., Bourges, P., Urruty, J.M. & Safa, P. (2001) Evolution of deep‐water Tertiary sinuous channels offshore Angola (West Africa) and implications for reservoir architecture. AAPG Bull., 85, 1373–1405.
    [Google Scholar]
  72. Kolla, V. & Coumes, F. (1987) Morphology, internal structure, seismic stratigraphy, and sedimentation of Indus Fan. AAPG Bull., 71, 650–677.
    [Google Scholar]
  73. Kopf, A. (2002) Significance of mud volcanoes. Rev. Geophys., 40, 2–52.
    [Google Scholar]
  74. Lamers, E. & Carmichael, S.M.M. (1999) The Paleocene deepwater sandstone play West of Shetland. In: Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference (Ed. by A.J.Fleet & S.A.R.Boldy ), Geol. Soc. London , 645–659.
    [Google Scholar]
  75. Ligtenberg, J.H. (2005) Detection of fluid migration pathways in seismic data: implications for fault seal analysis. Basin Res., 17, 141–153.
    [Google Scholar]
  76. Lonergan, L. & Cartwright, J.A. (1999) Polygonal faults and their influence on reservoir geometries, Alba Field, United Kingdom Central North Sea. AAPG Bull., 83, 410–432.
    [Google Scholar]
  77. Lonergan, L., Lee, N., Johnson, H.D., Cartwright, J.A. & Jolly, R.J.H. (2000) Remobilization and injection in deepwater depositional systems: implications for reservoir architecture and prediction. In: Deep‐water reservoirs of the World, 20th Annual Conference (Ed. by P.Weimer , R.M.Slatt , J.Coleman , N.C.Rosen , H.Nelson , A.H.Bouma , M.J.Styzen & D.T.Lawrence ), pp. 515–532. GCSSEPM Foundation, Houston.
    [Google Scholar]
  78. Løseth, H., Wensaas, L., Arntsen, B., Hanken, N., Basire, C. & Graue, K. (2001) 1000 m long gas blow‐out pipes. 63rd EAGE Conference & Exhibition, Amsterdam, Extended Abstracts, P524.
  79. Long, D., Bulat, J. & Stoker, M.S. (2004) Sea bed morphology of the Faroe‐Shetland Channel derived from 3D seismic datasets. In: 3D Seismic Technology: Application to the Exploration of Sedimentary Basins (Ed. by R.J.Davies , J.Cartwright , S.A.Stewart , J.R.Underhill & M.Lappin ), Geol. Soc. London, Mem. , 29, 53–61.
    [Google Scholar]
  80. Mahaney, W.C., Stewart, A. & Kalm, V. (2001) Quantification of SEM microtextures in sedimentary environmental discrimination. Boreas, 30, 165–171.
    [Google Scholar]
  81. Maltman, A.
    , (ed.) (1994) The Geological Deformation of Sediments. Chapman & Hall, London, UK, 362pp.
    [Google Scholar]
  82. McIntosh, K.D. & Silver, E.A. (1996) Using 3D seismic reflection data to find fluid seeps from the Costa Rica accretionary prism. Geophys. Res. Lett., 23, 895–898.
    [Google Scholar]
  83. Mansfield, C. & Cartwright, J. (2001) Fault growth by linkage; observations and implications from analogue models. J. Struct. Geol., 23, 745–763.
    [Google Scholar]
  84. Masaferro, J.L., Bourne, R. & Jauffred, J.‐C. (2003) 3D visualization of carbonate reservoirs. The Leading Edge, Vol. 22, pp. 18–25.
  85. McClay, K.R., Dooley, T., Whitehouse, P., Fullarton, L. & Chantraprasert, S. (2004) 3D analogue models of rift systems: templates for 3D seismic interpretation. In: 3D Seismic Technology: Application to the Exploration of Sedimentary Basins (Ed. by R.J.Davies , J.Cartwright , S.A.Stewart , J.R.Underhill & M.Lappin ), Geol. Soc. London Mem. , 29, 101–115.
    [Google Scholar]
  86. McKenzie, D. (1978) Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett., 40, 25–32.
    [Google Scholar]
  87. Melzer, S., Gottschalk, M., Andrut, M. & Heinrich, W. (2000) Crystal chemistry of K‐richterite‐richterite‐tremolite solid solutions; a SEM, EMP, XRD, HRTEM and IR study. Eur. J. Mineral., 12, 273–291.
    [Google Scholar]
  88. Molyneux, S., Cartwright, J. & Lonergan, L. (2002) Conical sandstone injection structures imaged by 3D seismic in the central North Sea, UK. First Break, Vol. 20, pp. 383–393.
  89. Morgan, R. (2004) Structural controls on the positioning of submarine channels on the lower slopes of the Niger Delta. In: 3D Seismic Technology: Application to the Exploration of Sedimentary Basins (Ed. by R.J.Davies , J.Cartwright , S.AStewart , J.R.Underhill & M.Lappin ), Geol. Soc. London Mem. , 29, 45–51.
    [Google Scholar]
  90. Mosher, D.C., LaPierre, T. & Bigg, S. (2004) Comparison of 3D seismic reflection and multibeam sonar seafloor surface renders for deep water on the Scotian Slope: impact on seafloor process interpretations and geohazard evaluation. Presented at the Three Day International Conference on Seabed and Shallow Section Marine Geoscience, Geological Society, 24–26 February, Burlington House, London.
  91. Mutti, E., Steffens, G.S., Pirmez, C., Orlando, M. & Roberts, D., (eds) (2003) Turbidites: Models and Problems. Proceedings from Parma, Italy Workshop, 21–25 May 2002Mar. Petrol. Geol. , 20, 523–933.
    [Google Scholar]
  92. Nestvold, E.O. (1996) The impact of 3‐D seismic data on exploration, field development, and production. In: Applications of 3‐D Seismic Data to Exploration and Production (Ed. by P.Weimer & D.L.Thomas ), AAPG Stud. Geol. , 42, 1–7.
    [Google Scholar]
  93. Nicol, A., Watterson, J., Walsh, J.J. & Childs, C. (1996) The shapes, major axis orientations and displacement patterns of fault surfaces. J. Struct. Geol., 18, 235–248.
    [Google Scholar]
  94. Payton, C.E., (ed) (1977) Seismic Stratigraphy – Application to Hydrocarbon ExplorationAAPG Mem. 26, 516 pp., Tulsa, OK.
    [Google Scholar]
  95. Pirmez, C. & Flood, R.D. (1995) Morphology and structure of Amazon Channel. In: Proceedings of the ODP (Ocean Drilling Program), Initial Reports, Vol. 155 (Ed. by R.D.Flood , D.J.W.Piper & A.Klaus , et al.) pp. 23–45. College Station, TX.
    [Google Scholar]
  96. Planke, S., Symonds, P., Alvestad, E. & Skogseid, J. (2000) Seismic volcanostratigraphy of large‐volume basaltic extrusive complexes on rifted margins. J. Geophys. Res., 105, 19,335–19,351.
    [Google Scholar]
  97. Poole, I. & Lloyd, G.E. (2000) Alternative SEM techniques for observing pyritised fossil material. Rev. Paleobot.Palynol., 112, 287–295.
    [Google Scholar]
  98. Posamentier, H.W. (2001) Lowstand alluvial bypass systems; incised vs. unincised. AAPG Bull., 85, 1771–1793.
    [Google Scholar]
  99. Posamentier, H.W. (2003) Depositional elements associated with a basin floor channel‐levee system: case study from the Gulf of Mexico. Mar. Petrol. Geol., 20, 677–690.
    [Google Scholar]
  100. Posamentier, H.W., Dorn, G.A., Cole, M.J., Beierle, C.W. & Ross, S.P. (1996) Imaging elements of depositional systems with 3‐D seismic data: a case study. In: GCSEPM Foundation 17th Annual Research Conference, Stratigraphic Analysis, December 8‐111996 Proceedings (Ed. by J.A.Pacht , R.E.Sheriff & B.F.Perkins ), 213–228.
    [Google Scholar]
  101. Posamentier, H.W. (2004) Seismic geomorphology: imaging elements of depositional systems from shelf to deep basin using 3D seismic data: implications for exploration and development. In: 3D Seismic Technology: Application to the Exploration of Sedimentary Basins (Ed. by R.J.Davies , J.Cartwright , S.A.Stewart , J.R.Underhill & M.Lappin ), Geol. Soc. London, Mem. , 29, 11–24.
    [Google Scholar]
  102. Praeg, D. (2003) Seismic imaging of mid‐Pleistocene tunnel valleys in the North Sea Basin–high resolution from low frequencies. J. Appl. Geophys., 53, 273–298.
    [Google Scholar]
  103. Prather, B.E. (2003) Controls on reservoir distribution, architecture and stratigraphic trapping in slope settings. Mar. Petrol. Geol., 20, 529–545.
    [Google Scholar]
  104. Rafaelsen, B., Andreassen, K., Kuilman, L.W., Lebesbye, E., Hogstad, K. & Midtbø, M. (2002) Geomorphology of buried glacigenic horizons in the Barents Sea from three‐dimensional seismic data. In: Glacier‐Influenced Sedimentation on High‐Latitude Continental Margins (Ed. By J.A.Dowdeswell & C.O'Cofaigh ), Geol. Soc. London. Spec. Publ. , 203, 259–276.
    [Google Scholar]
  105. Rank‐Friend, M. & Elders, C. (2004) The evolution and growth of Central Graben salt structures, Salt Dome Province, Danish North Sea. In: 3D Seismic Technology: Application to the Exploration of Sedimentary Basins (Ed. by R.J.Davies , J.Cartwright , S.AStewart , J.R.Underhill & M.Lappin ), Geol. Soc. London, Mem. , 29, 149–163.
    [Google Scholar]
  106. Riis, F., Berg, K., Cartwright, J., Eidvin, T. & Hansch, K. Formation of huge crater structures in ooze sediments in the Norwegian Sea. Possible implications for the triggering of the Storegga Slide. Mar. Petrol. Geol., in press.
    [Google Scholar]
  107. Rouby, D., Hongbin, X. & Suppe, J. (2000) 3‐D restoration of complexly folded surfaces using multiple unfolding mechanisms. AAPG Bull., 84, 805–829.
    [Google Scholar]
  108. Rowan, M.G., Hart, B.S., Nelson, S., Flemings, P.B. & Trudgill, B.D. (1998) Three‐dimensional geometry and evolution of a salt‐related growth‐fault array; Eugene Island 330 Field, offshore Louisiana, Gulf of Mexico. Mar. Petrol. Geol., 15, 309–328.
    [Google Scholar]
  109. Rowan, M.G., Jackson, M.P.A. & Trudgill, B.D. (1999) Salt‐related fault families and fault welds in the northern Gulf of Mexico. AAPG Bull., 83, 1454–1484.
    [Google Scholar]
  110. Scheidhauer, M., Marillier, F. & Thierry, P. (2005) Detailed 3D seismic imaging of a fault zone beneath Lake Geneva, Switzerland. Basin Res., 17, 155–169.
    [Google Scholar]
  111. Sheriff, R.E. & Geldart, L.P. (1995) Exploration Seismology. Cambridge University Press, USA.
    [Google Scholar]
  112. Shoulders, S. & Cartwright, J. (2004) Constraining the depth and timing of large‐scale conical sandstone intrusions. Geology, 32, 661–664.
    [Google Scholar]
  113. Skogseid, J., Pedersen, T., Eldholm, O. & Larsen, B.T. (1992) Tectonism and magmatism during the NE Atlantic continental break‐up: the Vøring Margin. In: Magmatism and the Causes of Continental Break‐up (Ed. by B.C.Storey , T.Alabaster & R.J.Pankhurst ), Geol. Soc. London. Spec. Publ. , 68, 305–320.
    [Google Scholar]
  114. Smallwood, J.R. & Gill, C.E. (2003) The rise and fall of the Faroe‐Shetland Basin: evidence from seismic mapping of the Balder Formation. J. Geol. Soc., 159, 627–630.
    [Google Scholar]
  115. Smallwood, J.R. & Maresh, J. (2002) The properties, morphology and distribution of igneous sills: modelling, borehole data and 3D seismic from the Faroe‐Shetland area. In: The North Atlantic Igneous Province: Stratigraphy, tectonic, volcanic and magmatic processes (Ed. by D.WJolley & B.R.Bell ), Geol. Soc. London. Spec. Publ. , 197, 271–306.
    [Google Scholar]
  116. Smith, K. (2004) The North Sea Silverpit Crater: impact structure or pull-apart basin? J. Geol. Soc., 161, 593–602.
    [Google Scholar]
  117. Stewart, S.A. The Silverpit impact crater revisited. Bull. Geol. Soc. Am., in press.
    [Google Scholar]
  118. Stewart, S.A. & Allen, P.J. (2002) A 20‐km‐diameter multi‐ringed impact structure in the North Sea. Nature, 418, 520–523.
    [Google Scholar]
  119. Stewart, S.A. & Allen, P.J. (2004) A 20‐km‐diameter multi‐ringed impact structure in the North Sea. Nature, doi:10.1038/nature02480.
    [Google Scholar]
  120. Stuevold, L.M., Faerseth, R.B., Arnesen, L., Cartwright, J. & Möller, N. (2003) Polygonal faults in the Ormen Lange Field, Møre Basin, offshore Mid Norway. In: Subsurface Sediment Mobilization (Ed. by P.Van Rensbergen , R.R.Hillis , A.J.Maltman & C.K.Morley ), Geol. Soc. Spec. Publ. , 216, 263–281.
    [Google Scholar]
  121. Svensen, H., Planke, S., Malthe‐Sørensen, A., Jamtveit, B., Myklebust, R., Eiden, T.R. & Rey, S.S. (2004) Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429, 542–544.
    [Google Scholar]
  122. Thomson, K. & Hutton, D. (2004) Geometry and growth of sill complexes: insights using 3D seismic from the North Rockall Trough. Bull. Volcanol., 66, 364–375.
    [Google Scholar]
  123. Trude, K.J. (2004) Kinematic indicators for shallow level igneous intrusions from 3D seismic data: evidence of flow direction and feeder location. In: 3D Seismic Technology: Application to the Exploration of Sedimentary Basins (Ed. by R.J.Davies , J.Cartwright , S.A.Stewart , J.R.Underhill & M.Lappin ), Geol. Soc. London, Mem. , 29, 209–217.
    [Google Scholar]
  124. Trude, K.J., Cartwright, J.A., Davies, R.J. & Smallwood, J.R. (2003) A new technique for dating igneous sills. Geology, 31, 813–816.
    [Google Scholar]
  125. Underhill, J.R. (2004) An alternative origin for the ‘Silverpit crater’. Nature, doi:10.1038/nature02476.
    [Google Scholar]
  126. Van der Molen, A.S., Dudok van Heel, H.W. & Wong, T.E. (2005) The influence of tectonic regime on chalk deposition: examples of the sedimentary development and 3D‐seismic stratigraphy of the Chalk Group in the Netherlands offshore area. Basin Res., 17, 63–81.
    [Google Scholar]
  127. Van Rensbergen, P. & Morley, C.K. (2003) Re‐evaluation of mobile shale occurrences on seismic sections of the Champion and Baram deltas, offshore Brunei. In: Subsurface Sediment Mobilization (Ed. by P.Van Rensbergen , R.R.Hillis , A.J.Maltman & C.K.Morley ), Geol. Soc. Spec. Publ. , 216, 395–409.
    [Google Scholar]
  128. Van Rensbergen, P., Morley, C.K., Ang, D.W., Q, H.T. & Lam, N.T. (1999) Structural evolution of shale diapirs from reactive rise to mud volcanism: 3D seismic data from the Baram delta, offshore Brunei Darussalam. J. Geol. Soc., 156, 633–650.
    [Google Scholar]
  129. Wallace, G., Moore, J.C. & DiLeonardo, C.G. (2003) Controls on localization and densification of a modern décollement: Northern Barbados accretionary prism. Geol. Soc. Am. Bull., 115, 288–297.
    [Google Scholar]
  130. Walsh, J.J., Bailey, W.R., Childs, C., Nicol, A. & Bonson, C.G. (2003) Formation of segmented normal faults: a 3-D perspective. J. Struct. Geol., 25, 1251–1262.
    [Google Scholar]
  131. Walsh, J.J. & Watterson, J. (1987) Distributions of cumulative displacement and seismic slip on a single normal fault surface. J. Struct. Geol., 9, 1039–1046.
    [Google Scholar]
  132. Walsh, J.J. & Watterson, J. (1988) Analysis of the relationship between displacements and dimensions of faults. J. Struct. Geol., 10, 239–247.
    [Google Scholar]
  133. Weimer, P. & Davis, T.L. (1996) Applications of 3‐D seismic data to exploration and production. AAPG Studies in Geology, 42, 270pp, Tulsa, OK.
    [Google Scholar]
  134. Weimer, P. & Slatt, R.M. (2004) Petroleum Systems of Deepwater Settings. SEG/EAGE Distinguished Instructor Series, 7.
  135. White, R. & McKenzie, D. (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res., 94, 7,685–7,729.
    [Google Scholar]
  136. White, N.J., Thompson, M. & Barwise, T. (2003) Understanding the thermal evolution of deep‐water continental margins. Nature, 426, 334–343.
    [Google Scholar]
  137. Wonham, J.P., Jayr, S., Mougamba, R. & Chuilon, P. (2000) 3D sedimentary evolution of a canyon fill (Lower Miocene‐age) from the Mandorove Formation, offshore Gabon. Mar. Petrol. Geol., 17, 175–197.
    [Google Scholar]
  138. Xu, X., Aiken, C.V., Bhattacharaya, J.P., Corbeanu, R.M., Nielsen, K.C., McMehan, G.A. & Abdelsalam, M.G. (2000) Creating virtual 3‐D outcrop. The Leading Edge, Vol. 19, pp. 197–202.
  139. Zampetti, V., Schlager, W., Van Konijnenburg, J.‐H. & Everst, A.‐J. (2004) Architecture and growth history of a Miocene carbonate platform from 3D seismic reflection data; Luconia Province, offshore Sarawak, Malaysia. Mar. Petrol. Geol., 21, 517–534.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2005.00252.x
Loading
/content/journals/10.1111/j.1365-2117.2005.00252.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error