- Home
- A-Z Publications
- Basin Research
- Previous Issues
- Volume 17, Issue 1, 2005
Basin Research - Volume 17, Issue 1, 2005
Volume 17, Issue 1, 2005
-
3D seismic technology: the geological ‘Hubble’
Authors Joe Cartwright and Mads HuuseAbstractThe proliferation of three‐dimensional (3D) seismic technology is one of the most exciting developments in the Earth Sciences over the past century. 3D reflection seismic data provide interpreters with the ability to map structures and stratigraphic features in 3D detail to a resolution of a few tens of metres over thousands of square kilometres. It is a geological ‘Hubble’, whose resolving power has already yielded some fascinating (and surprising) insights and will continue to provide a major stimulus for research into geological processes and products for many decades to come. Academic and other research institutions have a major role to play in the use of this data by exploiting the enormous volume of geological information contained in 3D seismic surveys. This paper reviews some of the recent advances in basin analysis made using the medium of 3D seismic data, focusing on the fields of structural and sedimentary geology, fluid–rock interactions and igneous geology. It is noted that the increased resolution of the 3D seismic method provided the essential catalyst necessary to stimulate novel observations and discover new geological structures such as mud diapir feeders, km‐long gas blow‐out pipes, giant pockmarks and sandstone intrusions, and to capture the spatial variability of diagenetic fronts. The UKs first impact crater was also discovered using 3D seismic data. The potential for future developments in this field of geophysical interpretation is considerable, and we anticipate that new discoveries will be made in many years to come.
-
Some considerations on the interpretation of seabed images based on commercial 3D seismic in the Faroe‐Shetland Channel
By J. BulatAbstractCommercial three‐dimensional (3D) seismic surveys now cover much of the continental slope and basin floor areas of the Faroe‐Shetland Channel. A mosaic of the seabed picks derived from these data sets and enhancement with visualisation techniques has resulted in detailed relief images of the seabed that testify to the action of a number of sedimentary processes such as glaciation, downslope and alongslope processes. The wealth of detail in these images is remarkable and extremely valuable for the identification and interpretation of seabed features. However, the level of detail can seduce the interpreter into treating the image purely as an aerial photograph. The interpreter needs to understand the limitations and artefacts inherent in such images to use them appropriately. This paper will present the major artefacts observed in the images and how certain aspects of 3D seismic survey acquisition and processing have contributed to their presence. The vertical and horizontal resolution of the images will also be discussed. Although primarily focused on seabed imagery these comments are equally pertinent to the application of 3D seismic surveys for shallower objectives than for which they were primarily designed.
-
3D seismic analysis of slope‐confined canyons from the Plio–Pleistocene of the Ebro Continental Margin (Western Mediterranean)
Authors Claudia Bertoni and Joe CartwrightAbstractThis paper documents the importance of three‐dimensional (3D) seismic data for integrated stratigraphic–morphological analysis of slope systems. Furthermore, it contributes to the general understanding of the evolutionary mechanisms of slope‐confined submarine canyons on continental margins and their significance in a sequence stratigraphic framework.
Recently acquired 3D seismic data from the Ebro Continental Margin (Western Mediterranean) have been used to study a series of remarkably well‐imaged submarine canyons in the Plio‐Pleistocene succession. Detailed mapping shows that these canyons are restricted to the slope, and thus can be compared with slope‐confined canyons observed on the present day seabed of many continental margins.
The slope‐confined canyons are typically 0.5–2 km wide, 10–15 km long, and incise more than 50 m into the slope units. Their most striking characteristic is an upslope branching geometry in the head region involving up to three orders of bifurcation, with downslope development of a single incisional axis. The submarine canyons are characterized by a nested stacking pattern, undergoing alternating phases of cutting and filling. Limited parts of the upper and middle slope remain outside the canyon system, confined in sharp depositional ridges.
The canyons are observed on closely spaced surfaces and exhibit a geometry that allowed the construction and discussion of a local sequence stratigraphic model for their evolution. In general, active incision of the canyons is observed at times throughout almost the entire cycle of base‐level change. However, erosional activity is more significant during the later stages of the relative sea level rise and the entire falling stage, with the timing of maximum erosion observed at the end of the cycle. The minimum erosional activity of the canyons is linked instead to the earliest part of the relative sea level rise.
-
The influence of tectonic regime on chalk deposition: examples of the sedimentary development and 3D‐seismic stratigraphy of the Chalk Group in the Netherlands offshore area
Authors A. S. Van Der Molen, H. W. Dudok van Heel and T. E. WongAbstractThe sediments of the Upper Cretaceous to lower Palaeogene Chalk Group were deposited through a wide range of depositional processes. Chalk was originally formed by settlement of coccolithophorid skeletal remains from suspension in the water column, with bottom currents redistributing the sediment shortly after deposition. Locally, tilting of the sea‐floor resulted in mass‐movement of chalk at scales varying from decimetre‐thick turbidites to slumps and slide sheets that were up to hundreds of metres thick. Syn‐depositional tectonic activity, therefore, constituted an important control on chalk facies. To study this relation in more detail, a three‐dimensional (3D)‐seismic stratigraphical analysis was carried out, comparing two study areas that experienced contrasting syn‐depositional tectonic evolutions. The Vlieland offshore area, which underwent gradual subsidence and westward tilting during deposition of the Chalk Group, is characterised by parallel and continuous reflections thought to represent pelagic chalk deposits. In the Dutch Central Graben, which was tectonically inverted during the Late Cretaceous to early Palaeogene, discontinuous and irregular seismic reflections that indicate large‐scale reworking of sediment are found. The improved image quality of 3D‐ vs. 2D‐seismic data allowed us to study the detailed geometry of allochthonous chalk bodies and aided the identification and tracing of the often subtle intra‐Chalk Group unconformities, resulting in a subdivision of the Chalk Group into seven seismic sequences.
-
3D seismic interpretation of slump complexes: examples from the continental margin of Israel
Authors Jose Frey Martinez, Joe Cartwright and Ben HallAbstractThis paper uses three‐dimensional (3D) seismic data from the continental margin of Israel (Eastern Mediterranean) to describe a series of slump deposits within the Pliocene and Holocene succession. These slumps are linked to the dynamics of subsidence and deformation of the transform margin of the eastern Mediterranean. Repeated slope failure occurred during the post‐Messinian, when a clay‐dominated progradational succession was forming. This resulted in large‐scale slump deposits accumulating in the mid‐lower slope region of the basin at different stratigraphic levels. It is probable that the slumps were triggered by a combination of slope oversteepening, seismic activity and gas migration.
The high spatial resolution provided by the 3D seismic data has been used to define a spectrum of internal and external geometries within slump deposits. Importantly, we recognise two main zones for many of the slumps on this margin: a depletion zone and an accumulation zone. The former is characterised by extension and translation, and the latter by complex imbricate thrusts and fold systems. Volume‐based seismic attribute analysis reveals transport directions within the slump deposits, which are predominately downslope, but with subtle variations particularly at the lateral margins. Basal shear surfaces are observed to ramp both up and down stratigraphy. Slump evolution occurs both by retrogressive upslope failure, and by downslope propagation (out‐of‐sequence) failure. Slump anatomy and the combination of factors responsible for slump failure and transport are relatively poorly understood, mainly because of the limited 3D of outcrop control; hence, this subsurface study is an example of how improved understanding of the mechanisms and products can be obtained using this 3D seismic methodology in unstable margin areas.
-
Fluid flow impact on slope failure from 3D seismic data: a case study in the Storegga Slide
Authors Stefan Bünz, Jürgen Mienert, Petter Bryn and Kjell BergAbstractAnalysis of three‐dimensional (3D) seismic data from the headwall area of the Storegga Slide on the mid‐Norwegian margin provides new insights into buried mass movements and their failure mechanisms. These mass movements are located above the Ormen Lange dome, a Tertiary dome structure, which hosts a large gas reservoir. Slope instabilities occurred as early as the start of the Plio‐Pleistocene glacial–interglacial cycles. The 3D seismic data provide geophysical evidence for gas that leaks from the reservoir and migrates upward into the shallow geosphere. Sediments with increased gas content might have liquefied during mobilization of the sliding and show different flow mechanisms than sediments containing less gas. In areas where there is no evidence for gas, the sediments remained intact. This stability is inherited by overlying strata. The distribution of gas in the shallow subsurface (<600 m) may explain the shape of the lower Storegga headwall in the Ormen Lange area.
-
3D seismic expression of fluid migration and mud remobilization on the Gjallar Ridge, offshore mid‐Norway
Authors J. P. V. Hansen, J. A. Cartwright, M. Huuse and O. R. ClausenAbstractThis paper presents a three‐dimensional (3D) seismic analysis of sediment remobilization and fluid migration in a 2000‐km2 area above the Gjallar Ridge located in the Vøring Basin, offshore Norway. Three distinct types of mounded structures have been identified as resulting from focused fluid/gas migration and associated mud remobilization and intrusion. Type A structures are gently mounded, and we infer that these structures formed because of in situ remobilization of Middle Eocene to Lower–Middle Oligocene fine‐grained sediments in response to fluid and minor sediment injection via deep‐seated normal faults. Type B structures comprise relatively steep‐sided mounds and are restricted to the pre‐Miocene interval. They are often located above narrow zones of discontinuous low‐amplitude reflections resembling gas chimneys. Some of the Type B structures are associated with stacked amplitude anomalies and possible mud volcanoes at the base Pleistocene indicating their long‐term significance as vertical fluid conduits. Type C structures comprise discrete mound features that seem to jack up the Top Palaeocene (Top Brygge) horizon. These are similar to hydrothermal mounds found elsewhere on the Norwegian Margin and associated with igneous sill intrusion during North Atlantic breakup. This study highlights the utility of 3D seismic data for mapping of fluid and sediment mobilization through time over large basinal areas.
-
Detection of fluid migration pathways in seismic data: implications for fault seal analysis
More LessAbstractA new and efficient method for fault seal analysis using seismic data is presented. It uses multiple seismic attributes and neural networks to enhance fluid migration pathways, including subtle features that are not detectable using single attributes only. The method may be used as a first estimate of fault seal or to calibrate results from other techniques. The results provide information about which faults and fault segments are sealing or leaking. Fluid flow along individual faults appears to be focused along zones of weakness, and fault seal research should thus be focused on finding such weak locations within fault zones, a task that is best done using three‐dimensional (3D) seismic data. Under certain conditions, it is suggested that fluids migrate along fault planes by a diapiric fluid flow mechanism. The results assist in calibrating the bulk hydraulic properties of faults and rock formations and can be used in basin modelling.
-
Detailed 3D seismic imaging of a fault zone beneath Lake Geneva, Switzerland
Authors M. Scheidhauer, F. Marillier and P. ThierryAbstractAn efficient high‐resolution (HR) three‐dimensional (3D) seismic reflection system for small‐scale targets in lacustrine settings was developed. In Lake Geneva, near the city of Lausanne, Switzerland, the offshore extension of a complex fault zone well mapped on land was chosen for testing our system. A preliminary two‐dimensional seismic survey indicated structures that include a thin (<40 m) layer of subhorizontal Quaternary sediments that unconformably overlie south‐east‐dipping Tertiary Molasse beds and a major fault zone (Paudèze Fault Zone) that separates Plateau and Subalpine Molasse (SM) units.
A 3D survey was conducted over this test site using a newly developed three‐streamer system. It provided high‐quality data with a penetration to depths of 300 m below the water bottom of non‐aliased signal for dips up to 30° and with a maximum vertical resolution of 1.1 m. The data were subjected to a conventional 3D processing sequence that included post‐stack time migration. Tests with 3D pre‐stack depth migration showed that such techniques can be applied to HR seismic surveys.
Delineation of several horizons and fault surfaces reveals the potential for small‐scale geologic and tectonic interpretation in three dimensions. Five major seismic facies and their detailed 3D geometries can be distinguished. Three fault surfaces and the top of a molasse surface were mapped in 3D. Analysis of the geometry of these surfaces and their relative orientation suggests that pre‐existing structures within the Plateau Molasse (PM) unit influenced later faulting between the Plateau and SM. In particular, a change in strike of the PM bed dip may indicate a fold formed by a regional stress regime, the orientation of which was different from the one responsible for the creation of the Paudèze Fault Zone. This structure might have later influenced the local stress regime and caused the curved shape of the Paudèze Fault in our surveyed area.
-
Palaeogene igneous rocks reveal new insights into the geodynamic evolution and petroleum potential of the Rockall Trough, NE Atlantic Margin
Authors Stuart G. Archer, Steven C. Bergman, James Iliffe, Craig M. Murphy and Mick ThorntonAbstractData acquired from petroleum exploration well 164/7‐1 drilled in the UK sector of the Rockall Trough have yielded fresh insights into the igneous and thermal history of this frontier region. The well targeted a large four‐way dip closed structure of presumed Mesozoic age named ‘The Dome Prospect’. The structure is now known to have a magmatic, rather than a purely structural origin, which was the preferred pre‐well interpretation. The well encountered 1.2 km of Palaeocene age basaltic lavas, overlying Late Cretaceous mudstones which were intruded by over 70 dolerite sills ranging from <1.5‐ to 152‐m thick. 40Ar/39Ar dating of the dolerite intrusions indicates an Early Palaeocene age (63–64±0.5 Ma), which are among the oldest 40Ar/39Ar dates recognised in the North Atlantic Igneous Province. Radiometric dating of the overlying basaltic lavas proved unsuccessful, because of excessive alteration. Biostratigraphic dating of underlying and overlying sedimentary strata was utilised to constrain the age of the lavas to Late Paleocene to Early Eocene age (∼55 Ma). Despite being related to two distinct events separated by ∼8 Ma, the intrusives and extrusives are compositionally similar. The basaltic rocks from well 164/7‐1 possess Sr–Nd isotopic, major and trace‐element geochemical compositions similar to other volcanic and intrusive rocks of the British Tertiary Igneous Province and represent partial melts of both lithospheric and asthenospheric mantle associated with the proto‐Icelandic mantle plume head.
Joint consideration of thermal maturity, potential fields and 3D seismic data indicate a deeper igneous body in addition to the sills encountered in well 164/7‐1. Jack‐up and arching mechanisms associated with both scales of intrusive body are believed to have developed the dome structure. The preferred interpretation is of a mafic laccolith, 17 km in diameter, ∼7 km thick, intruded at 64.5 Ma, situated ∼2.5 km below the bottom of the well. 3D thermal modelling suggests that all of Tranche 52 was thermally affected by the intrusion of the magmatic body. The thermal aureole, between 27 and 51 km in diameter, is not thought to play an important role in the hydrocarbon prospectivity of the surrounding Tranches in the NE Rockall Basin.
Results show that hydrocarbon exploration prospects that are circular in map view should be interpreted with caution on volcanic continental margins. In sedimentary basins, where salt domes and shale diapirs are absent and igneous rocks prevalent, periclinal structures such as ‘The Dome Prospect’ should undergo a thorough multi‐disciplinary risk assessment.
Volumes & issues
-
Volume 35 (2023)
-
Volume 34 (2022)
-
Volume 33 (2021)
-
Volume 32 (2020)
-
Volume 31 (2019)
-
Volume 30 (2018)
-
Volume 29 (2017)
-
Volume 28 (2016)
-
Volume 27 (2015)
-
Volume 26 (2014)
-
Volume 25 (2013)
-
Volume 24 (2012)
-
Volume 23 (2011)
-
Volume 22 (2010)
-
Volume 21 (2009)
-
Volume 20 (2008)
-
Volume 19 (2007)
-
Volume 18 (2006)
-
Volume 17 (2005)
-
Volume 16 (2004)
-
Volume 15 (2003)
-
Volume 14 (2002)
-
Volume 13 (2001)
-
Volume 12 (2000)
-
Volume 11 (1999)
-
Volume 10 (1998)
-
Volume 9 (1997)
-
Volume 8 (1996)
-
Volume 7 (1994)
-
Volume 6 (1994)
-
Volume 5 (1993)
-
Volume 4 (1992)
-
Volume 3 (1991)
-
Volume 2 (1989)
-
Volume 1 (1988)
Most Read This Month
