1887
Volume 22, Issue 2
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

The Integrated Ocean Drilling Program's Expedition 302, the Arctic Coring Expedition (ACEX), recovered the first Cenozoic sedimentary sequence from the central Arctic Ocean. ACEX provided ground truth for basin scale geophysical interpretations and for guiding future exploration targets in this largely unexplored ocean basin. Here, we present results from a series of consolidation tests used to characterize sediment compressibility and permeability and integrate these with high‐resolution measurements of bulk density, porosity and shear strength to investigate the stress history and the nature of prominent lithostratigraphic and seismostratigraphic boundaries in the ACEX record. Despite moderate sedimentation rates (10–30 m Myr−1) and high permeability values (10−15–10−18 m2), consolidation and shear strength measurements both suggest an overall state of underconsolidation or overpressure. One‐dimensional compaction modelling shows that to maintain such excess pore pressures, an fluid source is required that exceeds the rate of fluid expulsion generated by mechanical compaction alone. Geochemical and sedimentological evidence is presented that identifies the Opal A–C/T transformation of biosiliceous rich sediments as a potential additional fluid source. However, the combined rate of chemical and mechanical compaction remain too low to fully account for the observed pore pressure gradients, implying an additional diagenetic fluid source from within or below the recovered Cenozoic sediments from ACEX. Recognition of the Opal A–C/T reaction front in the ACEX record has broad reaching regional implications on slope stability and subsurface pressure evolution, and provides an important consideration for interpreting and correlating the spatially limited seismic data from the Arctic Ocean.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2009.00403.x
2009-03-16
2024-04-26
Loading full text...

Full text loading...

References

  1. Abeele, W.V. (1986) The influence of bentonite on the permeability of sandy silts. Nucl. Chem. Waste Manage., 6, 81–88.
    [Google Scholar]
  2. ASTM International
    ASTM International . 2007Standard test methods for one‐dimensional consolidation properties of soils using incremental loading (Standard D2435‐04). In: Annual Book of ASTM Standards (Vol. 04.08): Soil and Rock (I). Am. Soc. Testing and Mater., West Conshohocken, PA.
    [Google Scholar]
  3. ASTM International
    ASTM International . (1990) Standard test method for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter (Standard D5084–70). In: Annual Book of ASTM Standards. Am. Soc. Testing and Mater., Philadelphia, 63–70.
    [Google Scholar]
  4. Athy, L.F. (1930) Density, porosity, and compaction of sedimentary rocks. AAPG Bull., 14, 1–24.
    [Google Scholar]
  5. Backman, J., Jakobsson, M., Frank, M., Sangiorgi, F., Brinkhuis, H., Stickley, C., O'Regan, M., Løvlie, R., Pälike, H., Spofforth, D., Gattacecca, J., Moran, K., King, J. & Heil, C. (2008) Age model and core‐seismic integration for the Cenozoic Arctic coring expedition sediments from the LR. Paleoceanography, 23, 1–15 PA1S03, doi: DOI: 10.1029/2007PA001476.
    [Google Scholar]
  6. Backman, J. & Moran, K. (submitted). Expanding the Cenozoic paleoceanographic record in the Central Arctic Ocean: IODP Expedition 302 Synthesis. Central European Journal of Geosciences.
    [Google Scholar]
  7. Backman, J., Moran, K., McInroy, D.B. & Mayer, L.A. (2006) Proceedings IODP 302. Integrated Ocean Drilling Program Management International, Inc., Edinburgh, doi: DOI: 10.2204/iodp.proc.302.2006.
    [Google Scholar]
  8. Berndt, C., Bünz, S., Clayton, T., Mienert, J. & Saunders, M. (2004) Seismic character of bottom simulating reflectors: examples from the mid-Norwegian margin. Mar. Petrol. Geol., 21, 723–733.
    [Google Scholar]
  9. Berner, R.A. (1980) Early Diagenesis a Theoretical Approach. Princeton University Press, Princeton, NJ.
    [Google Scholar]
  10. Bethke, C.M., Lee, M.K. & Park, J. (2002) Basin Modeling with Basin2: A Guide to Using Basin2 Software Package. University of Illinois, Illinois.
    [Google Scholar]
  11. Blum, P. (1997) Physical properties handbook: a guide to the shipboard measurement of physical properties of deep-sea cores, ODP Tech. Note, vol. 26, 107 pp. [Online]. Available at http://www.odp.tamu.edu/publications/tnotes/tn26/INDEX.HTM.
    [Google Scholar]
  12. Bohrmann, G., Abelmann, A.M.S., Gersonde, R., Hubberten, H. & Kuhn, G. (1994) Pure siliceous ooze, a diagenetic environment for early chert formation. Geology, 22, 207–210.
    [Google Scholar]
  13. Boucsein, B. & Stein, R. (2009) Black shale formation in the late Paleocene/early Eocene Arctic Ocean and paleoenvironmental conditions: new results from a detailed organic petrological study. Mar. Petrol. Geol., 26, 416–426. doi: DOI: 10.1016/j.marpetgeo.2008.09.006.
    [Google Scholar]
  14. Brückmann, W., Moran, K. & MacKillop, A.K. (1997) Permeability and consolidation characteristics from Hole 949B, northern Barbados Ridge. In: Proceedings of the ODP, Scientific Results, Vol. 156 (Ed. by T.H.Shipley , Y.Ogawa , P.Blum & J.M.Bahr ), pp. 109–114. Ocean Drilling Program, College Station, TX, doi: DOI: 10.2973/odp.proc.sr.156.015.1997.
    [Google Scholar]
  15. Brekke, H., Dahlgren, S., Nyland, B. & Magnus, C. (1999) The prospectivity of the Voring and More Basins on the Norwegian Sea continental margin. In: Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference (Ed. by A.J.Fleet & S.A.R.Boldy Geol. Soc. Lond, Spec. Publ., 86, 261–274.
    [Google Scholar]
  16. Brinkhuis, H., Schouten, S., Collinson, M.E., Sluijs, A., Sinninghe Damsté, J.S., Dickens, G.R., Huber, M., Cronin, T.M., Onodera, J., Takahashi, K., Bujak, J.P., Stein, R., Van Der Burgh, J., Eldrett, J.S., Harding, I.C., Lotter, A.F., Sangiorgi, F., Van Konijnenburg‐van Cittert, H., De Leeuw, J.W., Matthiessen, J., Backman, J. & Moran, K.IODP Expedition 302 Scientists. (2006) Episodic fresh surface waters in the Eocene Arctic Ocean. Nature, 441, 606–609.
    [Google Scholar]
  17. Bryant, W.R. & Rack, F.R. (1990) Consolidation characteristics of Weddell Sea sediments: results of ODP Leg 113. In: Proceedings of the ODP, Scientific Results, 113 (Ed. by P.F.Barker & J.P.Kennett , et al.) pp. 211–223. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  18. Casagrande, A. (1936) The determination of pre‐consolidation load and its practical significance. In: Proceedings of the first International Conference of Soil Mechanics and Found Engineering (Ed. by A.Casagrande , P.C.Rutledge & J.D.Watson Am. Soc. Civ. Eng., 3, 60–64.
    [Google Scholar]
  19. Chaika, C. & Dvorkin, J. (2000) Porosity reduction during diagenesis of diatomaceous rocks. Am. Assoc. Petrol. Geol. Bull., 84, 1173–1184.
    [Google Scholar]
  20. Clark, D.L., Byers, C.W. & Pratt, L.M. (1986) Cretaceous black mud from the Central Arctic Ocean. Palaeoceanography, 1 (3), 265–271.
    [Google Scholar]
  21. Davies, R.J. (2005) Differential compaction in sedimentary basins due to silica diagenesis: a case study. Geol. Soc. Am. Bull., 117, 1146–1155.
    [Google Scholar]
  22. Davies, R.J. & Cartwright, J. (2002) A fossilised opal a to opal C/T transformation on the Northeast Atlantic Margin: support for a significantly elevated palaeogeothermal gradient during the Neogene? Basin Res., 14, 467–486.
    [Google Scholar]
  23. Davies, R.J. & Clark, I.R. (2006) Continental slope failure primed and triggered by silica and its diagenesis. Basin Res., 18, 339–350.
    [Google Scholar]
  24. Davies, R.J., Goulty, N.R. & Meadows, D. (2008) Fluid flow due to the advance of basin‐scale silica reaction zones. GSA Bull., 120 (1/2), 195–206, doi: DOI: 10.1130/B26099.1; 8.
    [Google Scholar]
  25. Deming, D. (1994) Factors necessary to define a pressure seal, Geologic Note. Bull. Am. Assoc. Petrol. Geol., 78, 1005–1009.
    [Google Scholar]
  26. Freeze, R.A. & Cherry, J.A. (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJ, 604pp.
    [Google Scholar]
  27. Fütterer, D.K. (1992) ARCTIC 091: the expedition ARK VIII/3 of RV Polarstern in 1991. Ber. Polarforsch., 107, 1–267.
    [Google Scholar]
  28. Gibson, R.E. (1958) The progress of consolidation in a clay layer increasing in thickness with time. Geotechnique, 8, 171–182.
    [Google Scholar]
  29. Glebovsky, V.Y., Kaminsky, V.D., Minakov, A.N., Merkur'ev, S.A., Childers, V.A. & Brozena, J.M. (2006) Formation of the Eurasia Basin in the Arctic Ocean as inferred from geohistorical analysis of the anomalous magnetic field. Geotectonics, 40 (6), 263–281.
    [Google Scholar]
  30. Gordon, D.S. & Flemings, P.B. (1998) Generation of overpressure and compaction‐driven fluid flow in a Plio‐Pleistocene growth‐faulted basin, Eugene Island 330, offshore Louisiana. Basin Res., 10, 177–196.
    [Google Scholar]
  31. Hart, B.S., Flemings, P.B. & Deshpande, A. (1995) Porosity and pressure; role of compaction disequilibrium in the development of geopressures in a Gulf Coast Pleistocene basin. Geology, 23 (1), 45–48.
    [Google Scholar]
  32. Hein, J.R., Scholl, D.W., Barren, J.A., Jones, M.G. & Miller, J. (1978) Diagenesis of late Cenozoic diatomaceous deposits and formation of the bottom‐simulating reflector in the southern Bering Sea. Sedimentology, 25, 155–181.
    [Google Scholar]
  33. Hempel, P., Mayer, L., Taylor, E., Bohrmann, G. & Pittenger, A. (1989) The influence of biogenic silica on seismic lithostratigraphy at ODP sites 642 and 643, Eastern Norwegian Sea. In Proceedings of the ODP, Scientific Results, 104 (Ed. by O.Eldholm , J.Thiede & E.Taylor , et al.) pp. 941–951. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  34. Holtz, R.D. & Kovacs, W.D. (1981) An Introduction to Geotechnical Engineering. Prentice‐Hall, Englewood Cliffs, NJ.
    [Google Scholar]
  35. Isaacs, C.M. (1981) Porosity reduction during diagenesis of the Monterey formation, Santa Barbara coastal area, California. In: The Monterey Formation and Related Siliceous Rocks of California (Ed. by R.E.Garrison & R.G.Douglas ), pp. 257–271. SEPM Pacific Section, Los Angeles.
    [Google Scholar]
  36. Jackson, H.R., Mudie, P.J. & Blasco, S.M. (1985) Initial geological report on CESAR—The Canadian Expedition to study the Alpha Ridge, Arctic Ocean. Geol. Surv. Can. Pap.84–22, 177pp.
    [Google Scholar]
  37. Jakobsson, M. (1999) First high‐resolution chirp sonar profiles from the Central Arctic Ocean reveal erosion of LR sediments. Mar. Geol., 158, 111–123.
    [Google Scholar]
  38. Jakobsson, M., Backman, J., Rudels, B., Nycander, J., Frank, M., Mayer, L., Jokat, W., Sangiorgi, F., O'Regan, M., Brinkhuis, H., King, J. & Moran, K. (2007) The early Miocene onset of a ventilated circulation regimen in the Arctic Ocean. Nature, 447, 986–990, doi: DOI: 10.1038/nature05924.
    [Google Scholar]
  39. Jakobsson, M., Flodén, T. & IODP 302 Expedition Scientists. (2006) Expedition 302 geophysics: integrating past data with new results. In: Proceedings IODP 302 (Ed. by J.Backman , K.Moran , D.B.McInroy & L.A.Mayer ), pp. 1–21. Integrated Ocean Drilling Program Management International, Inc., Edinburgh, doi: DOI: 10.2204/iodp.proc.302.102.2006.
    [Google Scholar]
  40. Jakobsson, M., Macnab, R., Mayer, L., Anderson, R., Edwards, M., Hatzky, J., Schenke, H.W. & Johnson, P. (2008a) An improved bathymetric portrayal of the Arctic Ocean: implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophys. Res. Lett., 35, L07602. 1–5, doi: DOI: 10.1029/2008GL033520.
    [Google Scholar]
  41. Jakobsson, M., Polyak, L., Edwards, M., Kleman, J. & Coakley, B. (2008b) Glacial geomorphology of the Central Arctic Ocean: the Chukchi Borderland and the LR. Earth Surf. Process. Landforms, v, 33 (4), 526–545, doi: DOI: 10.1029/2008GL033520.
    [Google Scholar]
  42. Jokat, W. (2005) The sedimentary structure of the LR between 88°N and 80°N. Geophys. J. Int., 163, 698–726.
    [Google Scholar]
  43. Jokat, W., Kristoffersen, Y. & Rasmussen, T.M. (1992) LR – A double sided continental margin. Geology, 20, 887–890.
    [Google Scholar]
  44. Jokat, W., Weigelt, E., Kristoffersen, Y., Rasmussen, T. & Schöne, T. (1995) New insights into the evolution of the LR and the Eurasian Basin. Geophys. J. Int., 122, 378–392.
    [Google Scholar]
  45. Jones, B. & Renaut, R.W. (2004) Water content of opal‐A: implications for the origin of laminae in geyserite and sinter. J. Sediment. Res., 74, 117–128.
    [Google Scholar]
  46. Judd, A.G.2003The global importance and context of methane escape from the seabed. Geo-Mar. Lett., 23 (3–4), 147–154.
    [Google Scholar]
  47. Knies, J., Mann, U., Popp, B.N., Stein, R. & Brumsack, H.–J. (2008) Surface water productivity and paleoceanographic implications in the Cenozoic Arctic Ocean. Paleoceanography, 23, PA1S16, doi: DOI: 10.1029/2007PA001455, 1–12.
    [Google Scholar]
  48. Kristoffersen, Y., Coakley, B.J., Hall, J.K. & Edwards, M. (2007) Mass wasting on the submarine LR, central Arctic Ocean. Mar. Geol., 243, 132–142.
    [Google Scholar]
  49. Krylov, A.A., Andreeva, I.A., Vogt, C., Backman, J., Krupskaya, V.V., Grikurov, G.E., Moran, K. & Shoji, H. (2008) A shift in heavy and clay mineral provenance indicates a middle Miocene onset of a perennial sea ice cover in the Arctic Ocean. Paleoceanography, 23, PA1S06, doi: DOI: 10.1029/2007PA001497.
    [Google Scholar]
  50. Ladd, C.C. & Foot, R. (1974) A new design procedure for stability of soft clays. J. Geotechn. Eng. Div. ASCE, 100 (GT7), 763–786.
    [Google Scholar]
  51. Langinen, A.E., Lebedeva‐Ivanova, N.N., Gee, D.G. & Zamansky, Yu.Ya. (in press) Correlations between the LR, Marvin Spur and adjacent basins of the Arctic Ocean based on seismic data. Tectonophysics, doi: DOI: 10.1016/j.tecto.2008.05.029.
    [Google Scholar]
  52. Leith, T.L., Weiss, H.M., Mørk, A., Arhus, N., Elvebakk, G., Embry, A.F., Brooks, P.W., Stewart, K.R., Pchelina, T.M., Bro, E.G., Verba, M.L., Danyushevskaya, A. & Borisov, A.V. (1992) Mesozoic hydrocarbon source‐rocks of the Arctic region. In: Arctic Geology and Petroleum Potential, 2 (Ed. by T.O.Vorren , E.Bergsager , O.A.Dahl‐Stamnes , E.Holter , B.Johansen , E.Lie & T.B.Lund ), pp. 1–25. Norwegian Petroleum Society Special Publication 2, Elsevier, Amsterdam.
    [Google Scholar]
  53. Lunne, T., Berre, T. & Strandvik, S. (1999) Sample disturbance effects in soft low plastic Norwegian clay. Publ.—Nor. Geotek. Inst., 204, 81–102.
    [Google Scholar]
  54. Luo, X. & Vasseur, G. (1997) Sealing efficiency of shales. Terra Nova, 9 (2), 71–74, doi: DOI: 10.1111/j.1365-3121.1997.tb00005.x.
    [Google Scholar]
  55. MacKillop, A.K., Moran, K., Jarrett, K., Farrell, J. & Murray, D. (1995) Consolidation properties of equatorial Pacific Ocean sediments and their relationship to stress history and offsets in the Leg 138 composite depth sections. In: Proceedings of the ODP, Scientific Results, 138 (Ed. by N.G.Pisias , L.A.Mayer , T.R.Janecek , A.Palmer‐Julson & T.H.Van Andel ), pp. 357–369. Ocean Drilling Program, College Station, TX, doi: DOI: 10.2973/odp.proc.sr.138.118.1995.
    [Google Scholar]
  56. Moore, T.C. & IODP 302 Expedition Scientists. (2006) Sedimentation and subsidence history of the Lomonosov Ridge. In: Proceedings IODP 302 (Ed. By J.Backman , K.Moran , D.B.McInroy & L.A.Mayer ), pp. 1–7. Integrated Ocean Drilling Program Management International, Inc., Edinburgh doi: DOI: 10.2204/iodp.proc.302.105.2006.
    [Google Scholar]
  57. Mondol, N.H., Bjorlykke, K., Jahren, J. & Hoegg, K. (2007) Experimental mechanical compactions of clay mineral aggregates – Changes in physical properties of mudstones during burial. Mar. Petrol. Geol., 24, 289–311.
    [Google Scholar]
  58. Moran, K., Backman, J., Brinkhuis, H., Clemens, S., Cronin, T., Dickens, G., Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R., Kaminski, M., King, J., Koc, N., Krylov, A., Martinez, N., Matthiessen, J., Moore, T., Onodera, J., O'Regan, M., Pälike, H., Rea, B., Rio, D., Sakamoto, T., Smith, D., Stein, R., St.John, K., Suto, I., Suzuki, N., Takahashi, K., Watanabe, M., Yamamoto, M., Frank, M., Kubik, P., Jokat, W., Kristoffersen, Y., McInroy, D. & Farrell, J. (2006) The Cenozoic palaeoenvironment of the Arctic Ocean. Nature, 441, 601–605.
    [Google Scholar]
  59. Neuzil, C.E. (1994) How permeable are clays and shales?Water Resource. Res., 30, 145–150.
    [Google Scholar]
  60. Nobes, D.C., Langseth, M.G., Kuramoto, S., Holler, P. & Hirata, N. (1992) Comparison and correlation of physicalproperty results from Japan Sea Basin and rise sites, legs 127 and 128, 1987. Proc. Ocean Drill. Progr. Sci. Res., 127/128, 1275–1296.
    [Google Scholar]
  61. Nygard, R., Gutierrez, M., Gautam, R. & Hoeg, K. (2004) Compaction behavior of argillaceous sediments as function of diagenesis. Mar. Petrol. Geol., 21, 349–362.
    [Google Scholar]
  62. Ogawa, Y., Takahashi, K. & Yamanaka, T. (2008) Paleoceanography of the middle Eocene Arctic Ocean based on geochemical measurements of biogenic matter. Mem. Fac. Sci., Kyushu Univ., Ser. D, Earth and Planet. Sci., Vol. XXXII (1), 31–48.
    [Google Scholar]
  63. O'Regan, M. (2007) Data report: high‐resolution bulk density, dry density, and porosity records from the Arctic Coring Expedition, IODP Expedition 302. In: Proceedings of the IODP, 302 (Ed. by J.Backman , K.Moran , D.B.McInroy & L.A.Mayer , the Expedition 302 Scientists.Integrated Ocean Drilling Program Management International, Inc., Edinburgh, doi: DOI: 10.2204/iodp.proc.302.201.2007.
    [Google Scholar]
  64. O'Regan, M. & Moran, K. (2007) Compressibility, permeability, and stress history of sediments from Demerara Rise. In: Proceedings of the ODP, Scientific Results, 207 (Ed. by D.C.Mosher , J.Erbacher & M.J.Malone ), pp. 1–35. Ocean Drilling Program, College Station, TX, doi: DOI: 10.2973/odp.proc.sr.207.114.2007.
    [Google Scholar]
  65. O'Regan, M., Moran, K., Backman, J., Jakobsson, M., Sangiorgi, F., Brinkhuis, H., Pockalny, R.A., Skelton, A., Stickley, C., Koç, N., Brumsack, H.–J. & Willard, D. (2008b) Mid‐Cenozoic tectonic and paleoenvironmental setting of the central Arctic Ocean. Paleoceanography, 23, 1–15, PA1S20, doi: DOI: 10.1029/2007PA001559.
    [Google Scholar]
  66. O'Regan, M., Sakamoto, T. & King, J. (2008a) Data report: regional stratigraphic correlation and a revised composite depth scale for IODP Expedition 302. In: Proceedings of the IODP, 302 (Ed. by J.Backman , K.Moran , D.B.McInroy & L.A.Mayer , the Expedition 302 Scientists.Integrated Ocean Drilling Program Management International, Inc., Edinburgh, doi: DOI: 10.2204/iodp.proc.302.202.2008.
    [Google Scholar]
  67. Osborne, M.J. & Swarbrick, R.E. (1997) Mechanisms for generating overpressure in sedimentary basins: a reevaluation. AAPG Bull., 81, 1023–1041.
    [Google Scholar]
  68. Perrier, R. & Quiblier, J. (1974) Thickness changes in sedimentary layers during compaction history; Methods for quantitative evaluation. AAPG, 58 (3), 507–520.
    [Google Scholar]
  69. Polyak, L., Edwards, M.H., Coakley, B.J. & Jakobsson, M. (2001) Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep‐sea bedforms. Nature, 410, 453–457.
    [Google Scholar]
  70. Sangiorgi, F., Brumsack, H.–J., Willard, D.A., Schouten, S., Stickley, C., O'Regan, M., Reichart, G.–J., Sinninghe Damsté, J.S. & Brinkhuis, H. (2008) A 26 million year gap in the central Arctic record at the greenhouse–icehouse transition: looking for clues. Paleoceanography, 23, PA1S04, doi: DOI: 10.1029/2007PA001477, 1–13.
    [Google Scholar]
  71. Stein, R. (2007) Upper Cretaceous/lower Tertiary black shales near the North Pole: organic–carbon origin and source–rock potential. Mar. Petrol. Geol., 24, 67–73, doi: DOI: 1016/j.marpetgeo.2006.10.002.
    [Google Scholar]
  72. Stein, R., Boucsein, B. & Meyer, H. (2006) Anoxia and high primary production in the Paleogene central Arctic Ocean: first detailed records from the LR. Geophys. Res. Lett., 33, 1–6 doi: DOI: 10.1029/2006GL026776.
    [Google Scholar]
  73. Tada, R. (1991) Compaction and cementation in siliceous rocks and their possible effect on bedding enhancement. In: Cycles and Events in Stratigraphy (Ed. by G.Einsele , et al.) pp. 480–491. Springer‐Verlag, Berlin Heidelberg.
    [Google Scholar]
  74. Taylor, D.W. (1948) Fundamentals of Soil Mechanics. John Wiley, New York.
    [Google Scholar]
  75. Terzaghi, K. (1943) Theoretical Soil Mechanics. John Wiley, New York.
    [Google Scholar]
  76. Vogt, C., (in press) Data report: semiquantitative determination of detrital input to ACEX sites based on bulk sample X‐ray diffraction data. In: Proceedings of the IODP, 302 (Ed. by J.Backman , K.Moran , D.B.McInroy & L.A.Mayer , the Expedition 302 Scientists.Integrated Ocean Drilling Program Management International Inc., Edinburgh.
    [Google Scholar]
  77. Vogt, C., Lauterjung, J. & Fischer, R.X. (2002) Investigation of the clay fraction (<2 μm) of the clay mineral society reference clays. Clays Clay Mineral., 50 (3), 388–400.
    [Google Scholar]
  78. Vogt, P.R., Taylor, P.T., Kovacs, L.C. & Johnson, G.L. (1979) Detailed aeromagnetic investigation of the Arctic Basin. J. Geophys. Res., 84, 1071–1089.
    [Google Scholar]
  79. Volpi, V., Camerlenghi, A., Hillenbrand, C.‐D., Rebesco, M. & Ivaldi, R. (2003) Effects of biogenic silica on sediment compaction and slope stability on the Pacifi c margin of the Antarctic Peninsula. Basin Res., 15, 339–363, doi: DOI: 10.1046/j.1365-2117.2003.00210.x.
    [Google Scholar]
  80. Wangen, M. (2001) A quantitative comparison of some mechanisms generating overpressure in sedimentary basins. Tectonophysics, 34, 211–234.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2009.00403.x
Loading
/content/journals/10.1111/j.1365-2117.2009.00403.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error