1887
Volume 25, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

The Crotone Basin was generated in the late Cenozoic as a forearc basin of the Ionian arc‐trench system. New data are gained through detailed field mapping, high‐resolution stratigraphic analysis of a key area and examination of offshore well data and seismic reflection profiles. Major unconformities divide the basin fill into major sequences, which reveal a three‐stage internal organization thought to reflect geodynamic events of the Calabrian arc and backarc area closely. The is characterized by extensional block faulting and uplift followed by rapid drowning during high subsidence and transtension in the basin along a major NNW‐ to NW‐striking fault system. This stage is interpreted to reflect resumption of rollback after an episode of slab tearing triggered by transitory docking of continental lithosphere in the trench. The initial uplift is inferred to reflect decoupling and rebound after the transitory coupling phase. The is characterized by increased subsidence and continued extension/transtension. This trend presumably reflects a decreasing rate of rollback resulting from a tendency towards viscous coupling after acceleration of slab downwelling. The is characterized by short‐lived transpression along major shear zones and local inversion of former basins. This is inferred to reflect entrance into the trench of buoyant continental lithosphere, resulting in significant deceleration of slab rollback and consequently a break in, or slowing of, backarc extension, and predominance of the effects of compression related to Africa–Europe convergence. Overall, the above evolution resulted in the formation of a progressively narrower and rapidly retreating slab, inducing extreme rates of backarc extension, and may have played a critical role in determining the intermittent nature of the backarc rifting.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2012.00549.x
2012-05-17
2024-04-28
Loading full text...

Full text loading...

References

  1. Alvarez, W., Cocozza, T. & Wezel, F.C. (1974) Fragmentation of the Alpine orogenic belt by microplate dispersal. Nature, 248, 309–314.
    [Google Scholar]
  2. Amodio Morelli, L., Bonardi, G., Colonna, V., Dietrich, D., Giunta, G., Ippolito, F., Liguori, V., Lorenzoni, S., Paglionico, A., Perrone, V., Picarretta, G., Russo, M., Scandone, P., Zanettin‐Lorenzoni, E. & Zuppetta, A. (1976) L'Arco Calabro‐Peloritano nell'orogene Appenninico‐Maghrebide. Mem. Soc. Geol. It., 17, 1–60.
    [Google Scholar]
  3. Anderson, H. & Jackson, J. (1987) The deep seismicity of the Tyrrhenian Sea. Geophys. J. Roy. Astr. Soc., 91, 613–637.
    [Google Scholar]
  4. Argnani, A. (2006) Some issues regarding the central Mediterranean neotectonics. Boll. Geofis. Teor. Appl., 47, 13–37.
    [Google Scholar]
  5. Argnani, A. & Savelli, C. (1999) Cenozoic volcanism and tectonics in the southern Tyrrhenian: space‐time distribution and geodynamic significance. J. Geodyn., 27, 409–432.
    [Google Scholar]
  6. Argnani, A. & Trincardi, F. (1990) Paola slope basin: evidence of regional contraction on the eastern Tyrrhenian margin. Mem. Soc. Geol. It., 44, 93–105.
    [Google Scholar]
  7. Auroux, C., Mascle, J., Campedron, R., Mascle, G. & Rossi, S. (1985) Cadre géodynamique et évolution récente de la Dorsale Apulienne et de ses bordures. Giorn. Geol., 3a, 47 (1–2), 101–127.
    [Google Scholar]
  8. Barone, A., Fabbri, A., Rossi, S. & Sartori, R. (1982) Geological structure and evolution of the marine areas adjacent to the Calabrian Arc. Earth Evol. Sci., 3, 207–221.
    [Google Scholar]
  9. Barone, M., Dominici, R., Muto, F. & Critelli, S. (2008) Detrital modes in a late Miocene wedge‐top basin, northeastern Calabria, Italy: compositional record of wedge‐top partitioning. J. Sediment. Res., 78, 693–711, doi: 10.2110/jsr.2008.071.
    [Google Scholar]
  10. Ben Avraham, Z. & Grasso, M. (1990) Collisional zone segmentation in Sicily and surrounding areas in the central Mediterranean. Ann. Tecton., 4, 131–139.
    [Google Scholar]
  11. Ben Avraham, Z. & Grasso, M. (1991) Crustal structure variations and transcurrent faulting at the eastern and western margins of the eastern Mediterranean. Tectonophysics, 75, 269–277.
    [Google Scholar]
  12. Bonardi, G., Cavazza, W., Perrone, V. & Rossi, S. (2001) Calabria‐Peloritani terrane and northern Ionian Sea. In: Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins (Ed. by G.B.Vai & I.P.Martini ), pp. 287–306. Kluwer Academic Publishers, Great Britain.
    [Google Scholar]
  13. Bousquet, J.C. & Philip, H. (1986) Neotectonics of the Calabrian Arc and Apennines (Italy): an example of Plio‐Quaternary evolution from island arcs to collision stages. In: The Origin of Arcs (Ed. by F.–C.Wezel ), Developments in Geotectonics, 21, 305–326.
    [Google Scholar]
  14. Capraro, L., Consolaro, C., Fornaciari, E., Massari, F. & Rio, D. (2006) Chronology of the Middle‐Upper Pliocene succession in the Strongoli area: constraints on the geological evolution of the Crotone Basin (Southern Italy). In: Tectonics of the Western Mediterranean and North Africa (Ed. by G.Moratti & A.Chalouan ), Geol. Soc., Lond, Spec. Publ., 262, 323–336.
    [Google Scholar]
  15. Capraro, L., Massari, F., Rio, D., Fornaciari, E., Asioli, A., Backman, J., Channell, J.E.T., Macrì, P., Prosser, G. & Speranza, F. (2011) Chronology of the Lower‐Middle Pleistocene succession of the south‐western part of the Crotone Basin (Calabria, Southern Italy): constraints for age of uplift. Quat. Sci. Rev., 30, 1185–1200.
    [Google Scholar]
  16. Carminati, E., Wortel, M.J.R., Spakman, W. & Sabadini, R. (1998) The role of slab detachment processes in the opening of the western‐central Mediterranean basins: some geological and geophysical evidence. Earth Planet. Sci. Lett., 160, 651–665.
    [Google Scholar]
  17. Cavazza, W. & DeCelles, P.G. (1998) Upper Messinian siliciclastic rocks in southeastern Calabria (S Italy): Paleotectonic and eustatic implications for the evolution of the central Mediterranean region. Tectonophysics, 298, 223–241.
    [Google Scholar]
  18. Chiarabba, C., Jovane, L. & Di Stefano, R. (2005) A new view of Italian seismicity using 20 years of instrumental recording. Tectonophysics, 395, 251–268.
    [Google Scholar]
  19. Chiarabba, C., De Gori, P. & Speranza, F. (2008) The southern Tyrrhenian subduction zone: deep geometry, magmatism and Plio‐Pleistocene evolution. Earth Planet. Sci. Lett., 268, 408–423.
    [Google Scholar]
  20. Cifelli, F., Mattei, M. & Rossetti, F. (2007) Tectonic evolution of arcuate mountain belts on top of a retreating subduction slab: the example of the Calabrian Arc. J. Geophys. Res., 112, B09101, doi: 10.1029/2006JB004848.
    [Google Scholar]
  21. Cifelli, F., Mattei, M. & Della Seta, M. (2008) Calabrian Arc oroclinal bending: the role of subduction. Tectonics, 27, TC5001, doi: 10.1029/2008TC002272.
    [Google Scholar]
  22. Cita, M.B. (1975) Studi sul Pliocene e sugli strati di passaggio dal Miocene al Pliocene. VIII. Planktonic foraminiferal biozonation of the Mediterranean Pliocene deep‐sea record. A revision. Riv. It. Paleont. Strat., 81 (4), 527–544.
    [Google Scholar]
  23. Clift, P.D. (1994) Control on sedimentary and subsidence history of an active plate margin: an example from the Tonga arc (southwest Pacific). In: Proc. ODP Sci. Res. (Ed. by J.Hawkins , L.Parsons , J.Allan , Abrahamsen, N., Bedmarz, U., Blanc, G., Bloomer, S.H., Boe, R., Bruns, T.R., Bryan, W.B., Charponiere, G.C.H., Clift, P.D., Ewart, A., Fowler, M.G., Hergt, J.M., Hodgkinson, R.A., Lavoie, D., Ledbetter, J.K., Macleod, C.J., Nilsson, K., Nishi, H., Pratt, C.E., Quinterno, P.J., Reynolds, R.R., Rothwell, R.G., Sager, W.W., Schops, D., Soakai, S. & Styzen, M. J.), 135, 173–188.
    [Google Scholar]
  24. Cocchi, L., Caratori Tontini, F., Muccini, F., Marani, M.P., Bortoluzzi, G. & Carmisciano, C. (2009) Chronology of the transition from a spreading ridge to an accretional seamount in the Marsili backarc basin (Tyrrhenian Sea). Terra Nova, 21, 369–374.
    [Google Scholar]
  25. Corbi, F., Fubelli, G., Luca, F., Muto, F., Pelle, T., Robustelli, G., Scarciglia, F. & Dramis, F. (2009) Vertical movements in the Ionian margin of the Sila Massif (Calabria, Italy). It. J. Geosci., 128, 731–738.
    [Google Scholar]
  26. Critelli, S. (1999) The interplay of lithospheric flexure and thrust accommodation in forming stratigraphic sequences in the Southern Apennines foreland basin system, Italy. Rend. Lincei Sci. Fis. Nat, Acc. Naz. Lincei., Ser. IX, 10, 257–326.
    [Google Scholar]
  27. D'Agostino, N. & Selvaggi, G. (2004) Crustal motion along the Eurasia‐Nubia plate boundary in the Calabrian Arc and Sicily and active extension in the Messina Straits from GPS measurements. J. Geophys. Res., 109, B11402, doi:10.1029/2004JB002998.
    [Google Scholar]
  28. D'Agostino, N., Avallone, A., Cheloni, D., D'Anastasio, E., Mantenuto, S. & Selvaggi, G. (2008) Active tectonics of the Adriatic region from GPS and earthquake slip vectors. J. Geophys. Res., 113, B12413, doi: 10.1029/2008JB005860.
    [Google Scholar]
  29. Davies, J.H. & Von Blanckenburg, F. (1995) Slab breakoff. A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett., 129, 85–102.
    [Google Scholar]
  30. DeCelles, P.G. & Cavazza, W. (1995) Upper Messinian conglomerates in Calabria, southern Italy: response to orogenic wedge adjustment following Mediterranean sea‐level changes. Geology, 23, 775–778.
    [Google Scholar]
  31. Del Ben, A., Barnaba, C. & Taboga, A. (2008) Strike‐slip systems as the main tectonic features in the Plio‐Quaternary kinematics of the Calabrian Arc. Mar. Geophys. Res., 29, 1–12, doi: 10.1007/s11001‐007‐9041‐6.
    [Google Scholar]
  32. Dewey, J.F., Helman, M.L., Turco, E., Hutton, D.H.W. & Knott, S.D. (1989) Kinematics of the western Mediterranean. In: Alpine Tectonics (Ed. by M.P.Coward , D.Dietrich & R.G.Park ), Geol. Soc. Spec. Publ., 45, 421–443.
    [Google Scholar]
  33. Doglioni, C., Harabaglia, P., Martinelli, G., Mongelli, F. & Zito, G. (1996a) A geodynamic model of the Southern Apennines accretionary prism. Terra Nova, 8, 540–547.
    [Google Scholar]
  34. Doglioni, C., Tropeano, M., Mongelli, F. & Pieri, P. (1996b) Middle‐Late Pleistocene uplift of Puglia: an “anomaly” in the Apenninic foreland. Mem. Soc. Geol. It., 51, 101–117.
    [Google Scholar]
  35. Doglioni, C., Innocenti, F., Morellato, C., Procaccianti, D. & Scrocca, D. (2004) On the Tyrrhenian Sea opening. In: From Seafloor to Deep Mantle: Architecture of the Tyrrhenian Backarc Basin (Ed. by M.P.Marani , F.Gamberi & E.Bonatti ), Mem. Descr. Carta Geol. It., 64, 147–164.
    [Google Scholar]
  36. Duermeijer, C.E., Van Vugt, N., Langereis, C.G., Meulenkamp, J.E. & Zachariasse, W.J. (1998) A major late Tortonian rotation phase in the Crotone basin using AMS as tectonic tilt correction and timing of the opening of the Tyrrhenian basin. Tectonophysics, 287, 233–249.
    [Google Scholar]
  37. Dvorkin, J., Nur, A., Mavko, G. & Ben‐Avraham, Z. (1993) Narrow subducting slabs and the origin of back‐arc basins. Tectonophysics, 227, 63–79.
    [Google Scholar]
  38. Fabbri, A., Ghisetti, F. & Vezzani, L. (1980) The Peloritani‐Calabria range and the Gioia Basin in the Calabrian arc (southern Italy): relationships between land and marine data. Geol. Romana, 19, 131–150.
    [Google Scholar]
  39. Fabbri, A., Rossi, S., Sartori, R. & Barone, A. (1982) Evoluzione Neogenica dei margini marini dell'Arco Calabro‐Peloritano: implicazioni geodinamiche. Mem. Soc. Geol. It., 24, 357–366.
    [Google Scholar]
  40. Faccenna, C., Mattei, M., Funiciello, R. & Jolivet, L. (1997) Styles of back‐arc extension in the central Mediterranean. Terra Nova, 9, 126–130.
    [Google Scholar]
  41. Faccenna, C., Becker, T.W., Lucente, F.P., Jolivet, L. & Rossetti, F. (2001a) History of subduction and back‐arc extension in the Central Mediterranean. Geophys. J. Int., 145, 809–820.
    [Google Scholar]
  42. Faccenna, C., Funiciello, F., Giardini, D. & Lucente, F.P. (2001b) Episodic back‐arc extension during restricted mantle convection in the Central Mediterranean. Earth Planet. Sci. Lett., 187, 105–116.
    [Google Scholar]
  43. Faccenna, C., Jolivet, L., Piromallo, C. & Morelli, A. (2003) Subduction and the depth of convection in the Mediterranean mantle. J. Geophys. Res., 108 (B2), 2099, doi:10.1029/2001JB001690.
    [Google Scholar]
  44. Faccenna, C., Piromallo, C., Crespo‐Blanc, A., Jolivet, L. & Rossetti, F. (2004) Lateral slab deformation and the origin of the western Mediterranean arcs. Tectonics, 23, TC1012, doi:10.1029/2002TC001488.
    [Google Scholar]
  45. Faccenna, C., Civetta, L., D'Antonio, M., Funiciello, F., Margheriti, L. & Piromallo, C. (2005) Constraints on mantle circulation around the deforming Calabrian slab. Geophys. Res. Lett., 32, L06311, doi:10.1029/2004GL021874, 2005.
    [Google Scholar]
  46. Ferranti, L., Santoro, E., Mazzella, M.E., Monaco, C. & Morelli, D. (2009) Active transpression in the northern Calabria Apennines, southern Italy. Tectonophysics, 476, 226–251.
    [Google Scholar]
  47. Finetti, I. & Del Ben, A. (1986) Geophysical study of the Tyrrhenian opening. Boll. Geofis. Teor. Appl., 28, 75–156.
    [Google Scholar]
  48. Florio, G., Fedi, M. & Cella, F. (2011) Insights on the spreading of the Tyrrhenian Sea from the magnetic anomaly pattern. Terra Nova, 23 (2), 127–133.
    [Google Scholar]
  49. Ghisetti, F. (1980) Caratterizzazione dei blocchi della Calabria meridionale in base alla velocità di sollevamento plio‐pleistocenico: una proposta di zonazione neotettonica. In: Nuovi contributi alla realizzazione della carta neotettonica d'Italia, Parte II. Pubbl. 356, Progetto Finalizzato Geodinamica, CNR, pp. 775–809.
  50. Ghisetti, F. & Vezzani, L. (1981) Contribution of structural analysis to understanding the geodynamic evolution of the Calabrian Arc (Southern Italy). J. Struct. Geol., 3, 371–381.
    [Google Scholar]
  51. Gliozzi, E. (1987) I terrazzi del Pleistocene superiore della penisola di Crotone (Calabria). Geol. Romana, 26, 17–79.
    [Google Scholar]
  52. Goes, S., Giardini, D., Jenny, S., Hollenstein, C., Kahle, H.‐G. & Geiger, A. (2004) A recent tectonic reorganization in the south‐central Mediterranean. Earth Planet. Sci. Lett., 226, 335–345.
    [Google Scholar]
  53. Govers, R. & Wortel, M.J.R. (2005) Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth Planet. Sci. Lett., 236, 505–523.
    [Google Scholar]
  54. Govers, R., Meijer, P. & Rijgsman, W. (2009) Regional isostatic response to Messinian Salinity Crisis events. Tectonophysics, 463, 109–129.
    [Google Scholar]
  55. Guarnieri, P. (2006) Plio‐Quaternary segmentation of the south Tyrrhenian fore‐arc basin. Int. J. Earth Sci., 95, 107–118.
    [Google Scholar]
  56. Guarnieri, P. & Carbone, S. (2003) Assetto geologico e lineamenti morfostrutturali dei bacini plio‐quaternari del Tirreno meridionale. Boll. Soc. Geol. It., 122, 377–386.
    [Google Scholar]
  57. Gueguen, E., Doglioni, C. & Fernandez, M. (1998) On the post‐25 Ma geodynamic evolution of the western Mediterranean. Tectonophysics, 298, 259–269.
    [Google Scholar]
  58. Guillaume, B., Funiciello, F., Faccenna, C., Martinod, J. & Olivetti, V. (2010) Spreading pulses of the Tyrrhenian Sea during the narrowing Calabrian slab. Geology, 38 (9), 819–822, doi: 10.1130/G31038.1.
    [Google Scholar]
  59. Gvirtzman, Z. & Nur, A. (1999) Plate detachment, asthenosphere upwelling, and topography across subduction zones. Geology, 27 (6), 563–566.
    [Google Scholar]
  60. Gvirztman, Z. & Nur, A. (2001) Residual topography, lithospheric structure and sunken slabs in the central Mediterranean. Earth Planet. Sci. Lett., 187, 117–130.
    [Google Scholar]
  61. Hilgen, F., Kuiper, K., Krijgsman, W., Snel, E. & van der Laan, E. (2007) Astronomical tuning as the basis for high resolution chronostratigraphy: the intricate history of the Messinian Salinity Crisis. Stratigraphy, 4, 231–238.
    [Google Scholar]
  62. Hippolyte, J.‐C., Angelier, J. & Roure, F. (1994) A major geodynamic change revealed by Quaternary stress patterns in the Southern Apennines (Italy). Tectonophysics, 230, 199–210.
    [Google Scholar]
  63. Jenny, S., Goes, S., Giardini, D. & Kahle, H.‐G. (2006) Seismic potential of Southern Italy. Tectonophysics, 415, 81–101.
    [Google Scholar]
  64. Jolivet, L., Augier, R., Robin, C., Suc, J.‐P. & Rouchy, J.M. (2006) Lithospheric‐scale geodynamic context of the Messinian salinity crisis. Sediment. Geol., 188–189, 9–33.
    [Google Scholar]
  65. Kastens, K.A. & Mascle, J. (1990) The geological evolution of the Tyrrhenian Sea: an introduction to the scientific results of ODP Leg 107. Proceed. ODP Scient. Res., 107, 3–26, College Station, Texas.
    [Google Scholar]
  66. Kastens, K.A., Mascle, J., Auroux, C., Bonatti, E., Broglia, C., Channell, J., Curzi, P., Emeis, K.‐C., Glaçon, G., Hasegawa, S., Hieke, W., Mascle, G., McCoy, F., McKenzie, J., Mendelson, J., Müller, C., Réhault, J.‐P., Robertson, A., Sartori, R., Sprovieri, R. & Torii, M. (1988) ODP Leg 107 in the Tyrrhenian Sea: insights into passive margin and back‐arc basin evolution. GSA Bull., 100, 1140–1156.
    [Google Scholar]
  67. Kastens, K.A., Mascle, J. & Auroux, C.et al. (Eds.) (1990) Proc. ODP Sci. Res., 107, 772 pp., College Station, Texas.
  68. Knott, S. & Turco, E. (1991) Late Cenozoic kinematics of the Calabrian Arc, southern Italy. Tectonics, 10, 1164–1172.
    [Google Scholar]
  69. Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J. & Wilson, D.S. (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, 652–655.
    [Google Scholar]
  70. Lanzafame, G. & Tortorici, L. (1981) La tettonica recente della valle del fiume Crati (Calabria). Geogr. Fis. Dinam. Quat., 4, 11–21.
    [Google Scholar]
  71. Lourens, L.J., Hilgen, F., Shackleton, N.J., Laskar, J. & Wilson, D. (2004) The Neogene Period. In: A Geological Time Scale (Ed. by F.M.Gradstein , J.G.Ogg & A.G.Smith ), pp. 409–440. Cambridge University Press, Cambridge.
    [Google Scholar]
  72. Lucente, F.P., Chiarabba, C., Cimini, G.B. & Giardini, D. (1999) Tomographic constraints on the geodynamic evolution of the Italian region. J. Geophys. Res., 104, 20,307–20,327.
    [Google Scholar]
  73. Malinverno, A. & Ryan, W.B.F. (1986) Extension on the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics, 5, 227–245.
    [Google Scholar]
  74. Mantovani, E., Viti, M., Babbucci, D. & Tamburelli, C. (1996) Major evidence on the driving mechanism of the Tyrrhenian‐Apennines arc‐trench‐back arc system from CROP seismic data. Boll. Soc. Geol. It. (Ital. J. Geosci.), 126, 459–471.
    [Google Scholar]
  75. Marani, M. & Trua, T. (2002) Thermal constriction and slab tearing at the origin of a superinflated spreading ridge: Marsili volcano (Tyrrhenian Sea). J. Geophys. Res., 107 (B9), 2188, doi:10.1029/2001JB000285.
    [Google Scholar]
  76. Marson, I., Panza, G.F. & Suhadolc, P. (1995) Crust and upper mantle models along the active Tyrrhenian rim. Terra Nova, 7, 348–357.
    [Google Scholar]
  77. Massari, F., Sgavetti, M., Rio, D., D'Alessandro, A. & Prosser, G. (1999) Composite sedimentary record of falling stages of Pleistocene glacio‐eustatic cycles in a shelf setting (Crotone basin, south Italy). Sediment. Geol., 127, 85–110.
    [Google Scholar]
  78. Massari, F., Rio, D., Sgavetti, M., Prosser, G., D'Alessandro, A., Asioli, A., Capraro, L., Fornaciari, E. & Tateo, F. (2002) Interplay between tectonics and glacio‐eustacy: Pleistocene succession of the Crotone basin, Calabria (southern Italy). GSA Bull., 114, 1183–1209.
    [Google Scholar]
  79. Massari, F., Prosser, G., Capraro, L., Fornaciari, E. & Consolaro, C. (2010) A revision of the stratigraphy and geology of the south‐western part of the Neogene Crotone Basin (South Italy). It. J. Geosci., 129, 353–384, doi: 10.3301/IJG.2010.20.
    [Google Scholar]
  80. Mattei, M., Cipollari, P., Cosentino, D., Argentieri, A., Rossetti, F., Speranza, F. & Di Bella, L. (2002) The Miocene tectono‐sedimentary evolution of the southern Tyrrhenian Sea: stratigraphy, structural and palaeomagnetic data from the on‐shore Amantea basin (Calabrian Arc, Italy). Basin Res., 14, 147–168.
    [Google Scholar]
  81. Mattei, M., Petrocelli, V., Lacava, D. & Schiattarella, M. (2004) Geodynamic implications of Pleistocene ultrarapid vertical‐axis rotations in the Southern Apennines, Italy. Geology, 32, 789–792, doi: 10.1130/G20552.1.
    [Google Scholar]
  82. Mattei, M., Cifelli, F. & D'Agostino, N. (2007) The evolution of the Calabrian Arc: evidence from paleomagnetic and GPS observations. Earth Planet. Sci. Lett., 263, 259–274.
    [Google Scholar]
  83. Mauz, B. & Hassler, U. (2000) Luminescence chronology of Late Pleistocene raised beaches in southern Italy: new data of relative sea‐level changes. Mar. Geol., 170, 187–203.
    [Google Scholar]
  84. Mazzoli, S. & Helman, M. (1994) Neogene patterns of relative motion for Africa‐Europe: some implications for recent central Mediterranean tectonics. Geol. Rundsch., 83, 464–468.
    [Google Scholar]
  85. Meijer, P.Ph. & Wortel, M.J.R. (1997) Present‐day dynamics of the Aegean region: a model analysis of the horizontal pattern of stress and deformation. Tectonics, 16, 879–895.
    [Google Scholar]
  86. Mellere, D., Zecchin, M. & Perale, C. (2005) Stratigraphy and sedimentology of fault‐controlled backstepping shorefaces, middle Pliocene of Crotone Basin, Southern Italy. Sediment. Geol., 176, 281–303.
    [Google Scholar]
  87. Mercier, J.‐L. (1981) Extensional‐compressional tectonics associated with the Aegean arc: comparison with the Andean Cordillera of south Peru‐north Bolivia. Philosoph. Trans. R. Soc. Lond., 300A, 337–355.
    [Google Scholar]
  88. Mercier, J.‐L., Delibassis, N., Gauthier, A., Jarrige, J.‐J., Lemeille, F., Philip, H., Sébrier, M. & Sorel, D. (1979) La néotectonique de l'arc Egéen. Rev. Géol. Dyn. Géogr. Phys., 21, 67–92.
    [Google Scholar]
  89. Mercier, J.‐L., Sorel, D. & Simeakis, K. (1987) Changes in the state of stress in the overriding plate of a subduction zone: the Aegean Arc from the Pliocene to the Present. Ann. Tecton., 1, 20–39.
    [Google Scholar]
  90. Meulenkamp, J.E. & Hilgen, F.J. (1986) Event stratigraphy, basin evolution and tectonics of the Hellenic and Calabro‐Sicilian arcs. In: The Origin of Arcs (Ed. by F.C.Wezel ), pp. 327–350. Elsevier, Amsterdam.
    [Google Scholar]
  91. Meulenkamp, J.E., Hilgen, F. & Voogt, E. (1987) Late Cenozoic sedimentary‐tectonic history of the Calabrian Arc. Giorn. Geol., 48, 345–359.
    [Google Scholar]
  92. Milia, A., Turco, E., Pierantoni, P.P. & Schettino, A. (2009) Four‐dimensional tectono‐stratigraphic evolution of the Southeastern peri‐Tyrrhenian Basins (Margin of Calabria, Italy). Tectonophysics, 476, 41–56.
    [Google Scholar]
  93. Minelli, L. & Faccenna, C. (2010) Evolution of the Calabrian accretionary wedge (central Mediterranean). Tectonics, 29, TC4004, doi:10.1029/2009TC002562.
    [Google Scholar]
  94. Mitrovica, J.X., Beaumont, C. & Jarvis, G.T. (1989) Tilting of continental interiors by the dynamical effects of subduction. Tectonics, 8, 1079–1094.
    [Google Scholar]
  95. Monaco, C., Tortorici, L. & Paltrinieri, W. (1998) Structural evolution of the Lucanian Apennines, southern Italy. J. Struct. Geol., 20, 617–638.
    [Google Scholar]
  96. Moretti, A. (1993) Note sull'evoluzione tettono‐stratigrafica del bacino crotonese dopo la fine del Miocene. Boll. Soc. Geol. It., 112, 845–867.
    [Google Scholar]
  97. Moussat, E., Mascle, G. & Angelier, J. (1985) Régimes de paléocontraintes et déformation de l'arc tyrrhénien. C. R. Acad. Sci. Paris, 300, S. II(9) 417–422.
    [Google Scholar]
  98. Moussat, E., Rehault, J.‐P. & Fabbri, A. (1986) Rifting et evolution tectono‐sédimentaire du Bassin tyrrhénien au cours du Néogène et du Quaternaire. Giorn. Geol., 48, 41–62.
    [Google Scholar]
  99. Nicolosi, I., Speranza, F. & Chiappini, M. (2006) Ultrafast oceanic spreading of the Marsili basin, southern Tyrrhenian Sea. Evidence from magnetic anomaly analysis. Geology, 34, 717–720.
    [Google Scholar]
  100. Norman, S. & Chase, C.G. (1986) Uplift of the shores of the western Mediterranean due to Messinian desiccation and flexural isostasy. Nature, 322, 450–451.
    [Google Scholar]
  101. Ogniben, L. (1955) Le argille scagliose del Crotonese. Mem. Note Ist. Geol. Appl. Napoli, 6, 1–72.
    [Google Scholar]
  102. Oldow, J.S., Ferranti, L., Lewis, D.S., Campbell, J.K., D'Argenio, B., Catalano, R., Pappone, G., Carmignani, L., Conti, P. & Aiken, C.L.V. (2002) Active fragmentation of Adria, the north African promontory, central Mediterranean orogen. Geology, 30, 779–782.
    [Google Scholar]
  103. Patacca, E. & Scandone, P. (2001) Late thrust propagation and sedimentary response in the thrust‐belt foredeep system of the Southern Apennines (Pliocene‐Pleistocene). In: Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins (Ed. by G.B.Vai & I.P.Martini ), pp. 401–440. Kluwer Academic Publishers, Dordrecht, The Netherlands.
    [Google Scholar]
  104. Patacca, E. & Scandone, P. (2004) The Plio‐Pleistocene thrust belt‐foredeep system in the southern Apennines and Sicily (Italy). In: Geology of Italy (Ed. by U.Crescenti , S.D'Offizi , S.Merlino & L.Sacchi ), It. Geol. Soc., Spec. Vol. IGC 32, Florence 2004, 93–129.
    [Google Scholar]
  105. Patacca, E. & Scandone, P. (2007) Geology of the Southern Apennines. Boll. Soc. Geol. It. (Spec. Issue), 7, 75–119.
    [Google Scholar]
  106. Patacca, E. & Scandone, P. (1989) Post‐Tortonian mountain building in the Apennines. The role of the passive sinking of a relic lithospheric slab. In: The Lithosphere in Italy (Ed. by A.Boriani , M.Bonafede , G.B.Piccardo & G.B.Vai ), Acc. Naz. Lincei It. Nat. Comm. Int. Lithosph. Program, 157–176.
    [Google Scholar]
  107. Patacca, E., Sartori, R. & Scandone, P. (1990) Tyrrhenian basin and Apenninic arcs: kinematic relations since late Tortonian times. Mem. Soc. Geol. It., 45, 425–451.
    [Google Scholar]
  108. Patacca, E., Sartori, R. & Scandone, P. (1993) Tyrrhenian Basin and Apennines. Kinematic evolution and related dynamic constraints. In: Recent Evolution and Seismicity of the Mediterranean Region (Ed. by E.Boschi , E.Mantovani & A.Morelli ), pp. 161–171. Kluwer Academic Publishers, Netherlands.
    [Google Scholar]
  109. Philip, H. & Tortorici, L. (1980) Tectonique superposée dans les sédiments Miocène supérieur à Pléistocène de la Calabre centrale et septentrionale (Italie méridionale). C. Rend. Somm. Séances Soc. Géol. France, 5, 191–194.
    [Google Scholar]
  110. Praeg, D., Ceramicola, S., Barbieri, R., Unnithan, V. & Wardell, N. (2009) Tectonically‐driven mud volcanism since the late Pliocene on the Calabrian accretionary prism, central Mediterranean Sea. Mar. Petrol. Geol., 26, 1849–1865.
    [Google Scholar]
  111. Priest, G.R. (1990) Volcanic and tectonic evolution of the Cascade volcanic arc, central Oregon. J. Geophys. Res., 95, 19583–19599.
    [Google Scholar]
  112. Raffi, I., Backman, J., Fornaciari, E., Pälike, H., Rio, D., Lourens, L. & Hilgen, F. (2006) A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat. Sci. Rev., 25, 3113–3137.
    [Google Scholar]
  113. Rio, D., Raffi, I. & Villa, G. (1990) Pliocene‐Pleistocene calcareous nannofossil distribution patterns in the Western Mediterranean. Proc. ODP Sci. Res., 107, 513–533.
    [Google Scholar]
  114. Rio, D., Channell, J.E.T., Massari, F., Poli, M.S., Sgavetti, M., D'Alessandro, A. & Prosser, G. (1996) Reading Pleistocene eustasy in a tectonically active siliciclastic shelf setting (Crotone peninsula, southern Italy). Geology, 24, 743–746.
    [Google Scholar]
  115. Robertson, A.H.F. & Grasso, M. (1995) Overview of the Late Tertiary‐Recent tectonic and palaeo‐environmental development of the Mediterranean region. Terra Nova, 7, 114–127.
    [Google Scholar]
  116. Roda, C. (1964) Distribuzione e facies dei sedimenti Neogenici del Bacino Crotonese. Geol. Romana, 3, 319–366.
    [Google Scholar]
  117. Roda, C. (1965) Geologia della Tavoletta Belvedere di Spinello (Prov. Catanzaro, F. 237, I‐SE). Boll. Soc. Geol. It., 84, 159–285.
    [Google Scholar]
  118. Roda, C. (1967) I sedimenti neogenici autoctoni ed alloctoni della zona di Cirò‐Cariati (Catanzaro‐Cosenza). Mem. Soc. Geol. It., 6, 137–149.
    [Google Scholar]
  119. Rosenbaum, G.S. & Lister, G. (2004) Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides. Tectonics, 23, TC1013, doi: 10.1029/2003TC001518.
    [Google Scholar]
  120. Rosenbaum, G., Gasparon, M., Lucente, F.P., Peccerillo, A. & Miller, M.S. (2008) Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism. Tectonics, 27, TC2008, doi: 10.1029/2007TC002143.
    [Google Scholar]
  121. Rossetti, F., Goffè, B., Moniè, P., Faccenna, P. & Vignaroli, G. (2004) Alpine orogenic P‐T deformation history of the Catena Costiera area and surrounding regions (Calabrian Arc, southern Italy): the nappe edifice of north Calabria revised with insights on the Tyrrhenian‐Apennine system formation. Tectonics, 23, 1–23.
    [Google Scholar]
  122. Rossi, S. & Sartori, R. (1981) A seismic reflection study of the external Calabrian Arc in the northern Ionian Sea (eastern Mediterranean). Mar. Geophys. Res., 4, 403–426.
    [Google Scholar]
  123. Roveri, M., Bernasconi, A., Rossi, M.E. & Visentin, C. (1992) Sedimentary evolution of the Luna Field area, Calabria, Southern Italy. In: Accumulation and Production of Europe's Hydrocarbons II (Ed. by A.M.Spencer ), Spec. Publ. E.A.P.G., 2, 217–224.
    [Google Scholar]
  124. Roveri, M., Bassetti, M.A. & Ricci Lucchi, F. (2001) The Mediterranean Messinian salinity crisis: an Apennine foredeep perspective. Sediment. Geol., 140, 201–214.
    [Google Scholar]
  125. Roveri, M., Bertini, A., Cosentino, D., Di Stefano, A., Gennari, R., Gliozzi, E., Grossi, F., Iaccarino, S.M., Lugli, S., Manzi, V. & Taviani, M. (2008) A high‐resolution stratigraphic framework for the latest Messinian events in the Mediterranean area. Stratigraphy, 5, 323–342.
    [Google Scholar]
  126. Royden, L., Patacca, E. & Scandone, P. (1987) Segmentation and configuration of subducted lithosphere in Italy: an important control on thrust‐belt and foredeep‐basin evolution. Geology, 15, 714–717.
    [Google Scholar]
  127. Sagnotti, L. (1992) Paleomagnetic evidence for a Pleistocene counterclockwise rotation of the Sant‐Arcangelo Basin, southern Italy. Geophys. Res. Lett., 19, 135–138.
    [Google Scholar]
  128. Sartori, R. (1989) Evoluzione neogenico‐recente del bacino tirrenico e i suoi rapporti con la geologia delle aree circostanti. Giorn. Geol., 51, 1–39.
    [Google Scholar]
  129. Sartori, R. (1990) The main results of ODP Leg 107 in the frame of Neogene to Recent geology of perityrrhenian areas. Proc. ODP Sci. Res., 107, 715–730.
    [Google Scholar]
  130. Sartori, R. (2003) The Tyrrhenian back‐arc basin and subduction of the Ionian lithosphere. Episodes, 26, 217–221.
    [Google Scholar]
  131. Sartori, R., Torelli, L., Zitellini, N., Carrara, G., Magaldi, M. & Mussoni, P. (2004) Crustal features along a W‐E Tyrrhenian transect from Sardinia to Campania margins. Tectonophysics, 383, 171–192.
    [Google Scholar]
  132. Scandone, P., Patacca, E., Meletti, C., Bellatalla, M., Perilli, N. & Santini, U. (1990) Struttura geologica, evoluzione cinematica e schema sismotettonico della penisola italiana. Atti Conv. GNDT 1990, 1, 119–135, Pisa.
    [Google Scholar]
  133. Scheepers, P.J.J. & Langereis, C.G. (1994) Magnetic fabric of Pleistocene clays from the Tyrrhenian arc: a magnetic lineation induced in the final stage of the middle Pleistocene compressive event. Tectonics, 13, 1190–1200.
    [Google Scholar]
  134. Scheepers, P.J.J., Langereis, C.G., Zijderveld, J.D.A. & Hilgen, F.J. (1994) Paleomagnetic evidence for a Pleistocene clockwise rotation of the Calabro‐Peloritan block (southern Italy). Tectonophysics, 230, 19–48.
    [Google Scholar]
  135. Scrocca, D. (2006) Thrust front segmentation induced by differential slab retreat in the Apennines. Terra Nova, 18, 154–161, doi: 10.1111/j.1365‐3121.2006.00675.x.
    [Google Scholar]
  136. Selli, R. (1962) Le Quaternaire marin du versant Adriatique Jonien de la péninsule italienne. Quaternaria, 6, 391–413.
    [Google Scholar]
  137. Selli, R. & Fabbri, A. (1971) Tyrrhenian: a Pliocene deep sea. Rend. Cl. Sci. Fis. Mat. Nat. Acc. Lincei, 50 (5), 580–592.
    [Google Scholar]
  138. Selvaggi, G. & Chiarabba, C. (1995) Seismicity and P‐wave velocity image of the Southern Tyrrhenian subduction zone. Geophys. J. Int., 121, 818–826.
    [Google Scholar]
  139. Serpelloni, E., Anzidei, M., Baldi, P., Casula, G., Galvani, A., Pesci, A. & Riguzzi, F. (2002) Combination of permanent and non‐permanent GPS networks for the evaluation of the strain‐rate field in the central Mediterranean area. Boll. Geof. Teor. Appl., 43, 195–219.
    [Google Scholar]
  140. Spakman, W. & Wortel, R. (2004) A tomographic view on the Western Mediterranean geodynamics. In: The TRANSMED Atlas ‐ the Mediterranean Region From Crust to Mantle (Ed. by W.Cavazza , F.M.Roure , W.Spakman , G.M.Stampfli & P.A.Ziegler ), pp. 31–52, Springer, Berlin.
    [Google Scholar]
  141. Speranza, F., Mattei, M., Sagnotti, L. & Grasso, F. (2000) Rotational differences between the northern and southern Tyrrhenian domains: palaeomagnetic constraints from the Amantea basin (Calabria, Italy). J. Geol. Soc., Lond., 157, 327–334.
    [Google Scholar]
  142. Speranza, F., Macrì, P., Rio, D., Fornaciari, E. & Consolaro, C. (2011) Paleomagnetic evidence for a past‐1.2 Ma disruption of the Calabria terrane: consequences of slab break‐off on orogenic wedge tectonics. GSA Bull., 123, 925–933.
    [Google Scholar]
  143. Spina, V., Tondi, E. & Mazzoli, S. (2011) Complex basin development in a wrench‐dominated back‐arc area: Tectonic evolution of the Crati Basin, Calabria, Italy. J. Geodyn., 51, 90–109.
    [Google Scholar]
  144. Tansi, C., Muto, F., Critelli, S. & Iovine, G. (2007) Neogene‐Quaternary strike‐slip tectonics in the central Calabrian Arc (southern Italy). J. Geodyn., 43, 393–414.
    [Google Scholar]
  145. Ten Veen, J.H. & Meijer, P.Th. (1998) Late Miocene to Recent tectonic evolution of Crete (Greece): geological observations and model analysis. Tectonophysics, 298, 191–208.
    [Google Scholar]
  146. Thomson, S.N. (1994) Fission track analysis of the crystalline basement rocks of the Calabrian Arc, Southern Italy: evidence of the Oligo‐Miocene late orogenic extension and erosion. Tectonophysics, 238, 331–352.
    [Google Scholar]
  147. Tortorici, L. (1981) Analisi delle deformazioni fragili dei sedimenti postorogeni della Calabria settentrionale. Boll. Soc. Geol. It., 100, 291–308.
    [Google Scholar]
  148. Underhill, J.R. (1989) Late Cenozoic deformation of the Hellenide foreland, western Greece. GSA Bull., 101, 613–634.
    [Google Scholar]
  149. Uyeda, S. & Mc Cabe, R. (1983) A possible mechanism of episodic spreading of the Philippine Sea. In: Accretion Tectonics in the Circum‐Pacific Regions (Ed. by M.Hashimoto & S.Uyeda ), pp. 291–306. Terra Scientific Publishing, Tokyo.
    [Google Scholar]
  150. Van de Zedde, D.M.A. & Wortel, M.J.R. (2001) Shallow slab detachment as a transient source of heat at midlithospheric depths. Tectonics, 20 (6), 868–882.
    [Google Scholar]
  151. Van der Meulen, M.J., Meulenkamp, J.E. & Wortel, M.J.R. (1998) Lateral shifts of Apenninic foredeep depocentres reflecting detachment of subducted lithosphere. Earth Planet. Sci. Lett., 154, 203–219.
    [Google Scholar]
  152. Van Dijk, J.P. (1990) Sequence stratigraphy, kinematics and dynamic geohistory of the Crotone Basin (Calabrian arc, central Mediterranean): an integrated approach. Mem. Soc. Geol. It., 44, 259–285.
    [Google Scholar]
  153. Van Dijk, J.P. (1991) Basin dynamics and sequence stratigraphy in the Calabrian Arc (Central Mediterranean); records and pathways of the Crotone Basin. Geol. Mijnbouw, 70, 187–201.
    [Google Scholar]
  154. Van Dijk, J. (1992) Late Neogene fore‐arc basin evolution in the Calabrian Arc (central Mediterranean); tectonic sequence stratigraphy and dynamic geohistory. With special reference to the geology of Central Calabria. Geol. Ultraiectina, 92, 288.
    [Google Scholar]
  155. Van Dijk, J.P. (1994) Late Neogene kinematics of intra‐arc oblique shear‐zone: the Petilia‐Rizzuto fault zone (Calabrian Arc, Central Mediterranean). Tectonics, 13, 1201–1230.
    [Google Scholar]
  156. Van Dijk, J.P. & Okkes, M. (1991) Neogene tectonostratigraphy and kinematics of Calabrian basins; implications for the geodynamics of the Central Mediterranean. Tectonophysics, 196, 23–60.
    [Google Scholar]
  157. Van Dijk, J.P. & Scheepers, P.J.J. (1995) Neotectonic rotations in the Calabrian Arc: implications for a Pliocene‐Recent geodynamic scenario for the Central Mediterranean. Earth Sci. Rev., 39, 207–246.
    [Google Scholar]
  158. Van Dijk, J.P., Barberis, A., Cantarella, G., Massa, E. & Pescatori, L. (1998) Central Mediterranean Messinian basin evolution: tectono‐eustasy or eustato‐tectonics?Ann. Tecton., 12, 7–27.
    [Google Scholar]
  159. Van Hinsbergen, D.J.J., van der Meer, D.G., Zachariasse, W.J. & Meulenkamp, J.E. (2006) Deformation of western Greece during Neogene clockwise rotation and collision with Apulia. Int. J. Earth Sci., 95, 463–490.
    [Google Scholar]
  160. Walcott, C.R. & White, S.H. (1998) Constraints on the kinematics of post‐orogenic extension imposed by stretching lineations in the Aegean region. Tectonophysics, 298, 155–175.
    [Google Scholar]
  161. Wallace, L.M., McCaffrey, R., Beavan, J. & Ellis, S. (2005) Rapid microplate rotations and backarc rifting at the transition between collision and subduction. Geology, 33, 857–860, doi: 10.1130/G21834.1.
    [Google Scholar]
  162. Westaway, R. (1993) Quaternary uplift of southern Italy. J. Geophys. Res., 98, 21 741–21 772.
    [Google Scholar]
  163. Wortel, M.J.R. & Spakman, W. (2000) Subduction and slab detachment in the Mediterranean‐Carpathian region. Science, 290, 1910–1917, doi: 10.1126/science.290.5498.1910.
    [Google Scholar]
  164. Zecchin, M., Massari, F., Mellere, D. & Prosser, G. (2003) Architectural styles of prograding wedges in a tectonically active setting, Crotone Basin, Southern Italy. J. Geol. Soc., Lond., 160, 863–880.
    [Google Scholar]
  165. Zecchin, M., Massari, F., Mellere, D. & Prosser, G. (2004a) Anatomy and evolution of a Mediterranean‐type fault bounded basin: the Lower Pliocene of the northern Crotone Basin (Southern Italy). Basin Res., 16 (1), 117–143, doi: 10.1111/j.1365‐2117.2004.00225.
    [Google Scholar]
  166. Zecchin, M., Nalin, R. & Roda, C. (2004b) Raised Pleistocene marine terraces of the Crotone peninsula (Calabria, southern Italy): facies analysis and organization of their deposits. Sediment. Geol., 172, 165–185.
    [Google Scholar]
  167. Zito, G., Mongelli, F., de Lorenzo, S. & Doglioni, C. (2003) Heat flow and geodynamics in the Tyrrhenian Sea. Terra Nova, 15, 425–432.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2012.00549.x
Loading
/content/journals/10.1111/j.1365-2117.2012.00549.x
Loading

Data & Media loading...

Supplements

Stratigraphy of the Crotone basin fill

WORD

Adopted time framework. Chronology after Lourens et al. (1996). Calcareous nannofossil biostratigraphy after Rio et al. (1990) (emend.) and Raffi et al. (2006). Planktonic foraminifera events after Cita (1975) (emend.). Standard Oxygen Isotope Stratigraphy after Lisiecki & Raymo (2005). Mediterranean sapropel layers after Lourens et al. (1994, 1996).

IMAGE

. Profiles drawn from photomosaics depicting the Lower Pliocene succession exposed on the eastern (top) and the western side (bottom), respectively, of the valley of Vitravo River in the area between the villages of Zinga and Belvedere Spinello (northern part of Crotone basin). Thin‐skinned listric‐extensional syndepositional tectonics was related to the activity of NE‐trending normal faults affecting Molassa di Zinga. Inferred gravity‐driven displacements were possibly triggered by diapiric rise of salt‐cored growth folds. A: Imbricate listric normal growth faults affect the lower sandstone member and partly the upper member of Molassa di Zinga. B: Collapse of the upper member of Molassa di Zinga into a growing half‐graben and focusing of sand deposition (sandstone member of the Molassa di Zinga) on a structural high are controlled by the rise of Russomanno anticline. After Zecchin et al. (2003, 2004a), partly modified.

IMAGE

. Mutual relationships and schematic Lower Pleistocene stratigraphy of three adjoining sectors located in the area between Marcedusa‐Steccato and Tacina faults. Note the remarkably different sedimentary successions.

IMAGE
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error