1887
Volume 25, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

The Corinth rift (Greece) is one of the world's most active rifts. The early Plio‐Pleistocene rift is preserved in the northern Peloponnese peninsula, south of the active Corinth rift. Although chronostratigraphic resolution is limited, new structural, stratigraphic and sedimentological data for an area >400 km2 record early rift evolution in three phases separated by distinct episodes of extension rate acceleration and northward fault migration associated with major erosion. Minimum total N–S extension is estimated at 6.4–7.7 km. The earliest asymmetrical, broad rift accommodated slow extension (0.6–1 mm a−1) over >3 Myrs and closed to the west. North‐dipping faults with throws of 1000–2200 m defined narrow blocks (4–7 km) with little footwall relief. A N‐NE flowing antecedent river system infilled significant inherited relief (Lower group). In the earliest Pleistocene, significant fluvial incision coincided with a 15 km northward rift margin migration. Extension rates increased to 2–2.5 mm a−1. The antecedent rivers then built giant Gilbert‐type fan deltas (Middle group) north into a deepening lacustrine/marine basin. N‐dipping, basin margin faults accommodated throws <1500 m. Delta architecture records initiation, growth and death of this fault system over ca. 800 ka. In the Middle Pleistocene, the rift margin again migrated 5 km north. Extension rate increased to 3.4–4.8 mm a−1. This transition may correspond to an unconformity in offshore lithostratigraphy. Middle group deltas were uplifted and incised as new hangingwall deltas built into the Gulf (Upper group). A final increase to present‐day extension rates (11–16 mm a−1) probably occurred in the Holocene. Fault and fault block dimensions did not change significantly with time suggesting control by crustal rheological layering. Extension rate acceleration may be due to strain softening or to regional tectonic factors.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2012.00550.x
2012-06-21
2024-04-28
Loading full text...

Full text loading...

References

  1. Allen, P.A. & Densmore, A.L. (2000) Sediment flux from an uplifting fault block. Basin Res., 12, 367–380.
    [Google Scholar]
  2. Ambraseys, N. & Jackson, J.A. (1997) Seismicity and strain in the Gulf of Corinth (Greece) since 1694. J. Earthquake Eng., 1, 433–474.
    [Google Scholar]
  3. Armijo, R., Meyer, B., King, G.C.P., Rigo, A. & Papanastassiou, D. (1996) Quaternary evolution of the Corinth rift and its implications for the late Cenozoic evolution of the Aegean. Geophys. J. Int., 126, 11–53.
    [Google Scholar]
  4. Armijo, R., Meyer, B., Hubert, A. & Barka, A. (1999) Westward propagation of the north Anatolian into the northern Aegean: timing and kinematics. Geology, 27, 267–270.
    [Google Scholar]
  5. Aubouin, J. (1959) Contribution à l'étude géologique de la Grèce septentrional: les confins de l'Epire et de la Thessalie. Ann. Géol. Pays Hellén., 10, 1–484.
    [Google Scholar]
  6. Avallone, A., Briole, P., Agatza‐Balodimou, A.M., Billiris, H., Charade, O., Mitsakaki, C., Nercessian, A., Papazissi, K., Paradissis, D. & Veis, G. (2004) Analysis of eleven years of deformation measured by GPS in the Corinth Rift Laboratory area. C.R. Géosciences, 336, 301–311.
    [Google Scholar]
  7. Backert, N. (2009) Interaction tectonique‐sédimentation dans le rift de Corinthe, Grèce. Architecture stratigraphique et sédimentologie du Gilbert delta de Kerinitis. Unpublished PhD thesis, Institut Polytechique de Lorraine, France.
  8. Backert, N., Ford, M. & Malartre, F. (2010) Architecture and sedimentology of the Kerinitis Gilbert‐type fan delta. Corinth Rift, Greece. Sedimentology, 57, 543–586.
    [Google Scholar]
  9. Bell, R., McNeill, L., Bull, J.M. & Henstock, T.J. (2008) Evolution of the offshore western Gulf of Corinth. Geol. Soc. Am. Bull., 120, 156–178.
    [Google Scholar]
  10. Bell, R., McNeill, L., Bull, J.M., Henstock, T.J., Collier, R.E.L. & Leeder, M.R. (2009) Fault architecture, basin structure and evolution of the Gulf of Corinth Rift, central Greece. Basin Res., 21, 824–835, doi: 10.1111/j.1365‐2117.2009.00401.x.
    [Google Scholar]
  11. Bell, R., McNeill, L., Henstock, T. & Bull, J. (2011) Comparing extension on multiple time and depth scales in the Corinth rift, central Greece. Geophys. J. Int., 186, 463–470, doi: 10.1111/j.1365‐246X.2011.05077.
    [Google Scholar]
  12. Bernard, P., Lyon‐Caen, H., Briole, P., Deschamps, A., Boudin, F., Makroupoulos, K., Papadimitriou, P., Lemeille, F., Patau, G., Billiris, H., Paradissis, D., Papazissi, P., Castarede, H., Charade, O., Nercessian, A., Avallone, D., Pachiani, F., Zahradnik, J., Sacks, S. & Linde, A. (2006) Seismicity, deformation and hazard in the western rift of Corinth: New insights from the Corinth Rift Laboratory (CRL). Tectonophysics, 426, 7–30.
    [Google Scholar]
  13. Billiris, H., Paradissis, D., Veis, G., England, P., Featherstone, W., Parsons, B., Cross, P., Rands, P., Rayson, M., Sellers, P., Ashkenazi, V., Davidson, M., Jackson, J. & Ambraseys, N. (1991) Geodetic determination of tectonic deformation in central Greece from 1900 to 1988. Nature, 350, 124–129.
    [Google Scholar]
  14. Briole, P., Rigo, A., Lyon‐Caen, H., Ruegg, J., Papazissi, K., Mistakaki, C., Balodimou, A., Veis, G., Hatzfeld, D. & Deschamps, A. (2000) Active deformation of the Gulf of Korinthos, Greece: results from repeated GPS surveys between 1990 and 1995. J. Geophys. Res., 105, 25605–25625.
    [Google Scholar]
  15. Burchfiel, B.C. (2008) The Aegean: a natural laboratory for tectonics. In: Symposium on the Geology of the Aegean (Ed. by Donald.D.Harrington ), IOP Conference Series: Earth and Environmental Science, 2. IOP Publishing, doi:10.1088/1755‐1307/2/1/012001.
    [Google Scholar]
  16. Clarke, P., Davies, R., England, P., Parsons, B., Billiris, H., Paradissis, D., Veis, G., Cross, P., Denys, P., Ashkenazi, V., Bingley, R., Kahle, H.‐G., Müller, M.V. & Briole, P. (1998) Crustal strain in Central Greece from repeated GPS measurements in the interval 1989–1997. Geophys. J. Int., 134, 195–214.
    [Google Scholar]
  17. CLÉMENT, C. (2000) Imagerie sismique crustale de la subduction héllénique et du golfe de Corinthe. Unpublished PhD thesis, Université of Paris 7, Paris.
  18. Clément, C., Sachpazi, M., Charvis, P., Graindorge, D., Laigle, M., Hirn, A. & Zafiropoulos, G. (2004) Reflection‐refraction seismics in the Gulf of Corinth: hints at deep structure and control of the deep marine basin. Tectonophysics, 391, 97–108.
    [Google Scholar]
  19. Collier, R. & Jones, G. (2003) Rift sequences of the southern margin of the Gulf of Corinth (Greece) as exploration/production analogs. Extended Abstract, In: AAPG International Conference, Barcelona, Spain.
  20. COLLIER, R.E.L. & DART, C.J. (1991) Neogene to Quarternary rifting, sedimentation and uplift in the Corinth Basin, Greece. J. Geol. Soc., London, 148, 1049–1065.
    [Google Scholar]
  21. Collier, R.E.L., Leeder, M.R., Rowe, P.J. & Atkinson, T.C. (1992) Rates of tectonic uplift in the Corinth and Megara Basins, central Greece. Tectonics, 11, 1159–1167.
    [Google Scholar]
  22. Cowie, P.A., Underhill, J.R., Behn, J., Lin, J. & Gill, C. (2005) Spatio‐temporal evolution of strain accumulation derived from multi‐scale observations of Late Jurassic rifting in the northern North Sea: a critical evaluation of models for lithospheric extension. Earth Planet. Sci. Lett., 234, 401–419.
    [Google Scholar]
  23. Cowie, P.A., Roberts, G. & Mortimer, E. (2007) Strain localization within fault arrays over timescales of 100–107nYears: observations, explanations and debates. In: Tectonic Faults: Agents of Change on a Dynamic Earth (Ed. by M.R.Handy , G.Hirth & N.Hovius ), pp. 47–78. MIT Press and Frei Universität, Berlin.
    [Google Scholar]
  24. Cowie, P.A., Whittaker, A.C., Attal, M., Tucker, G.E., Roberts, G.P. & Ganas, A. (2008) New constraints on sediment‐flux dependent river incision: implications for extracting tectonic signals from river profiles. Geology, 36, 535–538.
    [Google Scholar]
  25. Dart, C.J., Collier, R.E.L., Gawthorpe, R.L., Keller, J.V.A. & Nichols, G. (1994) Sequence stratigraphy of (?)Pliocene‐Quaternary synrift, Gilbert‐type fan deltas, northern Peloponnesos, Greece. Mar. Petrol. Geol., 11, 545–560.
    [Google Scholar]
  26. Davies, R., England, P., Parsons, B., Billiris, H., Paradissis, D. & Veis, G. (1997) Geodetic strain of Greece in the interval 1892–1992. J. Geophys. Res., 102 (B11), 24571–24588.
    [Google Scholar]
  27. De Martini, P.M., Pantosti, D., Palyvos, N., Lemeille, F., McNeill, L. & Collier, R.E.L. (2004) Slip rates of the Aigion and Eliki Faults from uplifted marine terraces, Corinth Gulf, Greece. C.R. Géosciences, 336, 325–334.
    [Google Scholar]
  28. Degnan, P.J. & Robertson, A.H.F. (1998) Mesozoic‐early Tertiary passive margin of the Pindos ocean (NW Peloponnese, Greece). Sediment. Geol., 117, 33–70.
    [Google Scholar]
  29. Dercourt, J. (1964) Contribution à l'étude géologique du secteur du Péloponnèse septentrional. Unpublished PhD thesis, Université de Paris, Paris.
  30. Dornsiepen, U., Gerolymatos, E. & Jacobshagen, V. (1986) Die Phyllit‐Quartzit‐Serie im fenster von Feneos (Nord‐Peloponnes). IGME Geological and Geophysical Research Special Issue, 99–105.
    [Google Scholar]
  31. Doutsos, T. & Kokkalas, S. (2001) Stress and deformation patterns in the Aegean region. J. Struct. Geol., 23, 455–472.
    [Google Scholar]
  32. Doutsos, T. & Piper, D.J.W. (1990) Listric faulting, sedimentation, and morphological evolution of the Quaternary eastern Corinth rift, Greece: First stages of continental rifting. Geol. Soc. Am. Bull., 102, 812–829.
    [Google Scholar]
  33. Doutsos, T. & Poulimenos, G. (1992) Geometry and kinematics of active faults and their seismotectonic significance in the western Corinth‐Patras rift (Greece). J. Struct. Geol., 14, 689–699.
    [Google Scholar]
  34. Doutsos, T., Kontopoulos, N. & Poulimenos, G. (1988) The Corinth‐Patras rift as the initial stage of continental fragmentation behind an active island arc (Greece). Basin Res., 1, 177–190.
    [Google Scholar]
  35. Dufaure, J.J. (1975) Le relief du Peloponnèse. Unpublished Thèse d'Etat, University of Paris IV, France.
  36. Dufaure, J.J., Bousquet, B. & Péchoux, P.Y. (1979) Contribution de la géomorphologie à la connaissance du Quaternaire continental grec, en relation avec la néotectonique. Rev. Géol. Dynam. Géog. Phys., 21, 29–40.
    [Google Scholar]
  37. Fleury, J. (1980) Les zones de Gavrovo‐Tripolitza et du Pindos (Grèce continentale et Péloponnèse du Nord). Evolution d'une plateforme et d'un bassin dans leur cadre alpin. PhD thesis. Mémoire de la Société géologique du Nord, Lille, 651 pp.
  38. Flotté, N. (2003) Caractérisation structurale et cinématique d'un rift sur détachement: le rift de Corinthe‐Patras, Grèce. Unpublished PhD thesis, Université Paris XI, Paris.
  39. Flotté, N., Sorel, D., Müller, C. & Tensi, J. (2005) Along strike changes in the structural evolution over a brittle detachment fault: Example of the Pleistocene Corinth‐Patras rift (Greece). Tectonophysics, 403, 77–94.
    [Google Scholar]
  40. Ford, M., Williams, E.A., Malartre, F. & Popescu, S.‐M. (2007a) Stratigraphic architecture, sedimentology and structure of the Vouraikos Gilbert‐type delta, Gulf of Corinth, Greece. In: Sedimentary Processes, Environments and Basins: A Tribute to Peter Friend (Ed. by NicholsG.J. , WilliamsE.A. & PaolaC. ), Spec. Publ. Int. Assoc. Sedimentol., 38, 49–90.
    [Google Scholar]
  41. Ford, M., Le Carlier de Veslud, C. & Bourgeois, O. (2007b) Kinematic and geometric analysis of fault related folds in a rift setting: the Dannemarie basin, Upper Rhine Graben, France. J. Struct. Geol., 29, 1811–1830.
    [Google Scholar]
  42. Gautier, P., Brun, J.P., Moriceau, R., Sokoutis, D., Martinod, J. & Jolivet, L. (1999) Timing kinematics and cause of the Aegean extension: a scenario based on a comparison with simple analogue experiments. Tectonophysics, 315, 31–72.
    [Google Scholar]
  43. Gawthorpe, R.L. & Leeder, M.R. (2000) Tectono‐sedimentary evolution of active extensional basins. Basin Res., 12, 195–218.
    [Google Scholar]
  44. Gawthorpe, R.L., Sharp, I., Underhill, J.R. & Gupta, S. (1997) Linked sequence stratigraphic and structural evolution of propagating normal faults. Geology, 25, 795–798.
    [Google Scholar]
  45. Gawthorpe, R.L., Jackson, C.A.‐L., Young, M.J., Sharp, I.R., Moustafa, A.R. & Leppard, C.W. (2003) Normal fault growth, displacement localisation and the evolution of normal fault populations: the Hammam Faraun fault block, Suez rift, Egypt. J. Struct. Geol., 25, 883–895.
    [Google Scholar]
  46. Géraud, Y., Diraison, M. & Orellana, N. (2006) Fault zone geometry of a mature active normal fault: a potential high permeability channel (Pirgaki fault, Corinth rift, Greece). Tectonophysics, 426, 61–76.
    [Google Scholar]
  47. Ghisetti, F. & Vezzani, L. (2004) Plio‐Pleistocene sedimentation and fault segmentation in the Gulf of Corinth (Greece) controlled by inherited structural fabric. C.R. Géosciences, 336, 243–249.
    [Google Scholar]
  48. Ghisetti, F. & Vezzani, L. (2005) Inherited structural controls on normal fault architecture in the Gulf of Corinth (Greece). Tectonics, 24, TC4016, doi:10.1029/2004TC001696.
    [Google Scholar]
  49. Goldsworthy, M. & Jackson, J. (2001) Migration of activity within normal fault systems: examples from the Quaternary of mainland Greece. J. Struct. Geol., 23, 489–506.
    [Google Scholar]
  50. Goldsworthy, M., Jackson, J. & Haines, J. (2002) The continuity of active fault systems in Greece. Geophys. J. Int., 148, 596–618.
    [Google Scholar]
  51. Gupta, S. & Cowie, P.A. (2000) Processes and controls in the stratigraphic development of extensional basins. Basin Res., 12, 185–194.
    [Google Scholar]
  52. Gupta, S., Cowie, P.A., Dawers, N.H. & Underhill, J.R. (1998) A mechanism to explain rift basin subsidence and stratigraphic patterns through fault array evolution. Geology, 26, 595–598.
    [Google Scholar]
  53. Hardy, S. & Finch, E. (2006) Discrete element modelling of the influence of cover strength on basement‐involved fault propagation folding. Tectonophysics, 415, 225–238.
    [Google Scholar]
  54. Hardy, S. & McClay, K. (1999) Kinematic modelling of extensional fault‐propagation folding. J. Struct. Geol., 21, 695–702.
    [Google Scholar]
  55. Houghton, S.L., Roberts, G.P., Papanikolaou, I.D., McArthur, J.M. & Gilmour, M.A. (2003) New 234U‐230U coral dates from the western Gulf of Corinth: implications for extensional tectonics. Geophys. Res. Lett., 30, 2013, doi: 10.1029/2003GL018112.
    [Google Scholar]
  56. Huismans, R.S. & Beaumont, C. (2003) Symmetric and asymmetric lithospheric extension: Relative effects of frictional‐plastic and viscous strain softening. J. Geophys. Res., 108 (B10), 2496, doi:10.1029/2002JB002026.
    [Google Scholar]
  57. Jackson, J. (1999) Fault death: a perspective from actively deforming regions. J. Struct. Geol., 21, 1003–1010.
    [Google Scholar]
  58. Jackson, J.A., Gagnepain, J., Houseman, G., King, G.C.P., Papadimitriou, P., Soufleris, C. & Virieux, J. (1982) Seismicity, normal faulting and the geomorphological development of the Gulf of Corinth (Greece): the Corinth earthquakes of February and March 1981. Earth Planet. Sci. Lett., 57, 377–397.
    [Google Scholar]
  59. Jackson, C.A., Gawthorpe, R.L., Leppard, C.W. & Sharp, I.R. (2006) Rift‐initiation development of normal fault blocks: insights from the Hammam Faraun fault block, Suez Rift, Egypt. J. Geol. Soc. Lond., 163, 165–184.
    [Google Scholar]
  60. Jolivet, L. (2001) A comparison of geodetic and finite strain pattern in the Aegean, geodynamic implications. Earth Planet. Sci. Lett., 187, 95–104.
    [Google Scholar]
  61. Jolivet, L., Brun, J.P., Gautier, P., Lallemant, S. & Patriat, M. (1994) 3D kinematics of extension in the Aegean region from the early Miocene to the present, insights from the ductile crust. Bull Soc. Géol. France, 165, 195–209.
    [Google Scholar]
  62. Jolivet, L., Labrousse, L., Agard, P., Lacombe, O., Bailly, V., Lecomte, E., Mouthereau, F. & Mehl, C. (2010) Rifting and shallow‐dipping detachments, clues from the Corinth rift and the Aegean. Tectonophysics, 483, 287–304.
    [Google Scholar]
  63. Keraudren, B. & Sorel, D. (1987) The terraces of Corinth (Greece) – A detailed record of eustatic sea‐level variations during the last 500 000 years. Mar. Geol., 77, 99–107.
    [Google Scholar]
  64. Koukouvelas, I.K., Asimakopoulos, M. & Doutsos, T.T. (1999) Fractal characteristics of active normal faults: an example of the eastern Gulf of Corinth, Greece. Tectonophysics, 308, 263–274.
    [Google Scholar]
  65. Le Pichon, X. & Angelier, J. (1979) The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics, 60, 1–42.
    [Google Scholar]
  66. Le Pichon, X.L. & Angelier, J. (1981) The Aegean Sea. Phil. Trans. Roy. Soc. Lond., 300, 357–372.
    [Google Scholar]
  67. Leeder, M.R. (2007) Cybertectonic Earth and Gaia's weak hand: sedimentary geology, sediment cycling and the Earth system. J. Geol. Soc. Lond., 167, 277–296.
    [Google Scholar]
  68. Leeder, M.R. & Mack, G.H. (2007) Basin‐fill incision, Rio Grande and Gulf of Corinth rifts: Convergent response to climatic and tectonic drivers. In: Sedimentary Processes, Environments and Basins: A Tribute to Peter Friend (Ed. by NicholsG.J. , WilliamsE.A. & PaolaC. ), Spec. Publ. Int. Assoc. Sedimentol., 38, 9–27.
    [Google Scholar]
  69. Leeder, M.R., Seger, M.J. & Stark, C.P. (1991) Sedimentation and tectonic geomorphology adjacent to major active and inactive normal faults, southern Greece. J. Geol. Soc. Lond., 148, 331–343.
    [Google Scholar]
  70. Leeder, M.R., Mack, G.H., Brasier, A.T., Parrish, R.R., McIntosh, W.C., Andrews, J.E. & Duermeijer, C.E. (2008) Late Pliocene timing of Corinth (Greece) rift‐margin fault migration. Earth Planet. Sci. Lett., 274, 132–141.
    [Google Scholar]
  71. Lüttig, G. (1976) Lignite investigations Peloponneses. In: Euboea 1974–1976. Report Hanover, Athens.
    [Google Scholar]
  72. Lyon‐Caen, H., Papadimitrion, P., Deschamps, A., Bernard, P., Makropoulos, K., Pacchiani, F. & Patau, G. (2004) First results of CRLN seismic array in the western Corinth rift: evidence for old fault reactivation. C.R. Geosciences, 336, 343–352.
    [Google Scholar]
  73. Lykousis, V., Sakellariou, D., Moretti, I. & Kaberi, H. (2007) Late Quaternary basin evolution of the Gulf of Corinth: sequence stratigraphy, sedimentation, fault slip and subsidence rates. Tectonophysics, 440, 29–51.
    [Google Scholar]
  74. selentis, G‐A & Makropoulos, K. (1986) Rates of crustal deformation in the Gulf of Corinth (Central Greece) as determined from seismicity. Tectonophysics, 124, 55–66.
    [Google Scholar]
  75. Malartre, F., Ford, M. & Williams, E.A. (2004) Preliminary biostratigraphy and 3D geometry of the Vouraikos Gilbert‐type fan delta, Gulf of Corinth, Greece. C.R. Géosciences, 336, 269–280.
    [Google Scholar]
  76. Marrett, R.A. & Allmendinger, R.W. (1990) Kinematic analysis of fault‐slip data. J. Struct. Geol., 12, 973–986.
    [Google Scholar]
  77. Mastronuzzi, G., Sanso, P. & Stamatopoulos, L. (1994) The glacial landforms of the Peloponnisos (Greece). Rivista geografica Italiana, 101, 77–86.
    [Google Scholar]
  78. McLeod, A.E., Dawers, N.H. & Underhill, J.R. (2003) The propagation and linkage of normal faults: insights from the Strathspey‐Brent‐Stratfjord fault array, northern North Sea. Basin Res., 12, 263–284.
    [Google Scholar]
  79. McNeill, L.C. & Collier, R.E.L. (2004) Uplift and slip rates of the eastern Eliki fault segment, Gulf of Corinth, Greece, inferred from Holocene and Pleistocene terraces. J. Geol. Soc. Lond., 161, 81–92.
    [Google Scholar]
  80. McNeill, L.C., Cotterill, C.J., Henstock, T.J., Bull, J.M., Stefatos, A., Collier, R.E.L., Papatheodorou, G., Ferentinos, G. & Hicks, S.E. (2005a) Active faulting within the offshore western Gulf of Corinth, Greece: implications for model of continental rift deformation. Geology, 33, 241–244.
    [Google Scholar]
  81. McNeill, L.C., Collier, R.E.Ll., De Martini, P., Pantosti, D. & D'Addezio, G. (2005b) Recent history of the Eastern Eliki Fault, Gulf of Corinth: Geomorphology, palaeoseismology and impact on palaeoenvironments. Geophys. J. Int., 161, 154–166.
    [Google Scholar]
  82. Micarelli, L., Moretti, I. & Daniel, J.M. (2003) Structural properties of rift‐related normal faults: the case study of the Gulf of Corinth, Greece. J. Geodyn., 36, 275–303.
    [Google Scholar]
  83. Moretti, I., Sakellariou, D., Lykousis, V. & Micarelli, L. (2003) The Gulf of Corinth: an active half graben?J. Geodyn., 36, 323–340.
    [Google Scholar]
  84. Moretti, I., Lykouisis, V., Sakellariou, D., Reynaud, J.Y., Benziane, B. & Prinzhoffer, A. (2004) Sedimentation and subsidence rate in the Gulf of Corinth: what we learn from the Marion Dufresne's long piston coring. C.R. Geosciences, 336, 291–299.
    [Google Scholar]
  85. Mouyaris, N., Papastamatiou, D. & Vita‐Finzi, C. (1992) The Helice fault?Terra Nova, 4, 124–129.
    [Google Scholar]
  86. Nyst, M. & Thatcher, W. (2004) New constraints on the active tectonic deformation of the Aegean. J. Geophys. Res., 109., B11406, doi:10.1029/2003JB002830 23pp.
    [Google Scholar]
  87. Ori, G.G. (1989) Geological history of the extensional basin of the Gulf of Corinth (?Miocene‐Pleistocene), Greece. Geology, 17, 918–921.
    [Google Scholar]
  88. Ori, G.G., Roveri, M. & Nichols, G. (1991) Architectural patterns in large‐scale Gilbert‐type delta complexes, Pleistocene, Gulf of Corinth, Greece. In: The Three‐dimensional Facies Architecture of Terrigenous Clastic Sediments and its Implications for Hydrocarbon Discovery and Recovery (Ed. by MiallA.D. & TylerN. .), SEPM Concepts in Sedimentology and Palaeontology, 3, 207–216.
    [Google Scholar]
  89. Pacchiani, F. & Lyon‐Caen, H. (2010) Geometry and spatio‐temporal evolution of the 2001 Agios Ioanis earthquake swarm (Corinth Rift, Greece). Geophys. J. Int., 180, 59–72.
    [Google Scholar]
  90. Palyvos, N., Pantosti, D., De Martini, P.M., Lemeille, F., Sorel, D. & Pavlopoulos, K. (2005) The Aigion‐Neos Erineos coastal normal fault system (west Corinth Gulf Rift, Greece): geomorphological signature, recent earthquake history and evolution. J. Geophys. Res., B 110, B09302.
    [Google Scholar]
  91. Palyvos, N., Mancini, M., Sorel, D., Lemeille, F., Pantosti, D., Julia, R., Triantaphyllou, M. & De Martini, P.M. (2010) Geomorphological, stratigraphic and geochronological evidence of fast Pleistocene coastal uplift in the westernmost part of the Corinth Gulf Rift (Greece). Geol. Jour., 45, 78–104.
    [Google Scholar]
  92. Pantosti, D., De Martini, P.‐M., Koukouvelas, I., Stamatopoulos, L., Palyvos, N., Pucci, S., Lemeille, F. & Pavlides, S. (2004) Palaeoseismological investigations across the Aigeon Fault (Gulf of Corinth, Greece). C.R. Géosciences, 336, 335–342.
    [Google Scholar]
  93. Papanikolaou, D.J. & Royden, L.H. (2007) Disruption of the Hellenic arc: Late Miocene extensional detachment faults and steep Pliocene‐Quaternary normal faults—Or what happened at Corinth?Tectonics, 26, TC5003, doi:10.1029/2006TC002007.
    [Google Scholar]
  94. Papanikolaou, D., Dehmer, J. & Fowler, M. (2000) Petrological and organic geochemical characteristics of coal samples from Florina, Lava, Moschopotamos and Kalavryta coal fields. Int. J. Coal Geol., 44, 267–292.
    [Google Scholar]
  95. Patton, T.L., Moustafa, A.R., Nelson, A.E. & Abdine, S.A. (1994) Tectonic evolution and structural setting of the Suez rift. In: Interior Rift Basins (Ed. by LandonS.M. ), Am. Assoc. Petrol. Geol. Mem., 59, 7–55.
    [Google Scholar]
  96. Pirazzoli, P.A., Stiros, S.C., Fontugne, M. & Arnold, M. (2004) Holocene and Quaternary uplift in the central part of the southern coast of the Corinth Gulf (Greece). Mar. Geol., 212, 35–44.
    [Google Scholar]
  97. Prosser, S. (1993) Rift‐related linked depositional systems and their seismic expression. In: Tectonics and Seismic Sequence Stratigraphy (Ed. by WilliamsG.D. & DobbA. ), Geol. Soc. Lond. Spec. Publ., 71, 35–66.
    [Google Scholar]
  98. Richter, D. (1976) Das Flysch‐Stadium der Helleniden‐Ein Uberblick. Zeitschrift Dt. Geol. Ges., 127, 96–128.
    [Google Scholar]
  99. Rigo, A., Lyon‐Caen, H., Armijo, R., Deschamps, A., Hatzfeld, D., Makropoulos, K., Papadimitriou, E. & Kassaras, I. (1996) A microseismic study in the western part of the gulf of Corinth (Greece) implication for large‐scale normal faulting mecanisms. Geophys. J. Int., 126, 663–688.
    [Google Scholar]
  100. Roberts, G.P. (1996) Non‐characteristic normal faulting surface ruptures from the gulf of Corinth Greece. J. Geophys. Res., 101, 25255–25267.
    [Google Scholar]
  101. Roberts, G.P. & Koukouvelas, I. (1996) Structural and seismological segmentation of the gulf of Corinth fault system: implication for models of fault growth. Ann. Geofis., 39, 619–646.
    [Google Scholar]
  102. Roberts, G.P., Gawthorpe, R.L. & Stewart, I. (1993) Surface faulting within active normal fault‐zones: examples from the Gulf of Corinth fault system, central Greece. Zeitschrift für Geomorphologie N.F., B‐94 (suppl.), 303–328.
    [Google Scholar]
  103. Rohais, S. (2007) Architecture stratigraphique et flux sédimentaires de la marge sud du golfe de Corinthe (Grèce): approches terrain, expérimentale et numérique. Unpublished PhD Thesis, Université de Rennes 1, Mémoire Géoscience Rennes and IFP report no. 3489.
  104. Rohais, S., Eschard, R., Ford, M., Guillocheau, F. & Moretti, I. (2007a) Stratigraphic architecture of the Plio‐Pleistocene infill of the Corinth Rift: implications for its structural evolution. Tectonophysics, 440, 5–28.
    [Google Scholar]
  105. Rohais, S., Joannin, S., Colin, J.P., Suc, J.P., Guillocheau, F. & Eschard, R. (2007b) Age and environmental evolution of the syn‐rift fill of the southern coast of the gulf of Corinth (Akrata‐Derveni region, Greece). Bull. Soc. Géol. France, 178, 231–243.
    [Google Scholar]
  106. Rohais, S., Eschard, R. & Guillocheau, F. (2008) Depositional model and stratigraphic architecture of rift climax Gilbert‐type fan deltas (Gulf of Corinth, Greece). Sediment. Geol., 210, 132–145.
    [Google Scholar]
  107. Sachpazi, M., Clement, C., Laigle, M., Hirn, A. & Roussos, N. (2003) Rift structure, evolution, and earthquakes in the Gulf of Corinth, from reflection seismic images. Earth Planet. Sci. Lett., 216, 243–257.
    [Google Scholar]
  108. Sachpazi, M., Galvé, A., Laigle, M., Hirn, A., Sokos, E., Serpetsidaki, A., Marthelot, J.‐M., Pi Alperin, J.M., Zelt, B. & Taylor, B. (2007) Moho topography under central Greece and its compensation by Pn time terms for the accurate location of hypocenters: the example of the Gulf of Corinth 1995 Aigion earthquake. Tectonophysics, 440, 53–65.
    [Google Scholar]
  109. Sakellariou, D., Lykousis, V., Alexandri, S., Kaberi, H., Rousakis, G., Nomikou, P., Georgiou, P. & Ballas, D. (2007) Faulting, seismic‐stratigraphic architecture and Late Quaternary evolution of the Gulf of Alkyonides Basin – East Gulf of Corinth, Central Greece. Basin Res., 19, 273–295.
    [Google Scholar]
  110. Schmidt, J.F.J. (1879) Studien uber Erdbeben. Carl Scholtze, Leipzig, 68–83.
    [Google Scholar]
  111. Schultz, R.A. & Fossen, H. (2002) Displacement‐length scaling in three dimensions: the importance of aspect ratio and application to deformation bands. J. Struct. Geol., 24, 1389–1411.
    [Google Scholar]
  112. Seger, M. & Alexander, J. (1993) Distribution of Plio‐Pleistocene and Modern coarse‐grained deltas south of the Gulf of Corinth, Greece. In: Tectonic controls and signatures in sedimentary successions (Ed. by FrostickL.E. & SteelR.J ), Spec. Publ. Int. Ass. Sediment., 20, 37–48.
    [Google Scholar]
  113. Sharp, I.R., Gawthorpe, R.L., Underhill, J. & Gupta, S. (2000) Fault‐propagation folding in extensional settings: examples of structural style and synrift sedimentary response from the Suez rift, Sinai, Egypt. Geol. Soc. Am. Bull., 112, 1877–1899.
    [Google Scholar]
  114. Skourlis, K. & Doutsos, T. (2003) The Pindos fold and thrust belt (Greece): inversion kinematics of a passive continental margin. Int. J. Earth Sci., 92, 891–903.
    [Google Scholar]
  115. Skourtsos, E. & Kranis, H. (2009) Structure and evolution of the western Corinth Rift, through new field data from the Northern Peloponnesus. In: Extending a Continent: Architecture, Rheology and Heat Budget (Ed. by RingU. & WernickeB. ), Geol. Soc. Lond. Spec. Publ., 321, 119–138.
    [Google Scholar]
  116. Soliva, R., Benedicto, A. & Maerten, L. (2006) Spacing and linkage of confined normal faults: importance of mechanical thickness. J. Geophys. Res., 111, B01402, 17pp doi: 10.1029/2004JB003507.
    [Google Scholar]
  117. Sorel, D. (2000) A Pleistocene and still‐active detachment fault and the origin of the Corinth‐Patras rift, Greece. Geology, 28, 83–86.
    [Google Scholar]
  118. Stefatos, A., Papatheodorou, G., Ferentinos, G., Leeder, M. & Collier, R. (2002) Seismic reflection imaging of active offshore faults in the Gulf of Corinth: their seismotectonic significance. Basin Res., 14, 487–502.
    [Google Scholar]
  119. Stewart, I. (1996) Holocene uplift and palaeoseismicity on the Eliki fault, western Gulf of Corinth, Greece. Ann. Geofis., 39, 575–588.
    [Google Scholar]
  120. Stewart, I. & Vita‐Finzi, C. (1996) Coastal uplift on active normal faults: the Eliki fault, Greece. Geophys. Res. Lett., 23, 1853–1856.
    [Google Scholar]
  121. Symeonidis, N., Theothorou, G., Schutt, H. & Velitzelos, E. (1987) Paleontological and stratigraphic observations in the area of Achaia and Etoloakarnania W‐Greece. Annales Géol. des Pays Hell., 38, 317–353.
    [Google Scholar]
  122. Taylor, S.K., Bull, J.M., Lamarche, G. & Barnes, P.M. (2004) Normal fault growth and linkage in the Whakatane Graben, New Zealand during the last 1.3 Ma. J. Geophys. Res., 109, B02408.
    [Google Scholar]
  123. Taylor, B., Weiss, J.R., Goodliffe, A.M., Sachpazi, M., Laigle, M. & Hirn, A. (2011) The structures, stratigraphy and evolution of the Gulf of Corinth rift, Greece. Geophys. J. Int., 185, 1189–1219, doi: 10.1111/j.1365‐246X.2011.05014.x.
    [Google Scholar]
  124. Trotet, F., Goffé, B., Vidal, O. & Jolivet, L. (2006) Evidence of retrograde Mg‐carpholite in the Phyllite‐Quartzite nappe of the Peloponnese from thermobarometric modelisation ‐ geodynamic implications. Geodyn. Acta, 19, 323–343.
    [Google Scholar]
  125. Ulicný, D., Nichols, G. & Waltham, D. (2002) Role of initial depth at basin margins in sequence architecture: field examples and computer models. Basin Res., 14, 347–360.
    [Google Scholar]
  126. Weiss, J.R. (2004) A geophysical investigation of the Gulf of Corinth. Master of Science thesis, University of Hawaii, Manoa.
  127. Withjack, M.O. & Calloway, S. (2000) Active normal faulting beneath a salt layer: an experimental study of deformation patterns in the cover sequence. Am. Assoc. Petrol. Geol. Bull., 84, 627–651.
    [Google Scholar]
  128. Young, M.J., Gawthorpe, R.L. & Hardy, S. (2001) Growth and linkage of a segmented normal fault zone; the Late Jurassic Murchison‐Statfjord North Fault, northern North Sea. J. Struct. Geol., 23, 1933–1952.
    [Google Scholar]
  129. Zelilidis, A. (2000) Drainage evolution in a rifted basin, Corinth graben, Greece. Geomorphology, 35, 69–85.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2012.00550.x
Loading
/content/journals/10.1111/j.1365-2117.2012.00550.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error