1887
Volume 33, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

The Cretaceous of southern France is characterised by a long erosional hiatus, outlined with bauxite deposits, which represent the only remaining sedimentary record of a key period for geodynamic reconstructions. Detrital zircons from allochthonous karst bauxites of Languedoc (Southern France) have been dated using LA‐ICP‐MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry), in order to specify the age of deposition and to constrain the provenance of the weathered material. We analysed 671 single detrital zircons grains from three karst bauxitic basins, stretching from close to the Variscan Montagne Noire to the present‐day Mediterranean Sea. Analytical results provide Variscan (300–350 Ma) and Late Proterozoic (550–700 Ma) ages as primary groups. In addition, Middle‐, Late Proterozoic and Early Archean (oldest grain at 3.55 Ga) represent significant groups. Mid‐Cretaceous zircons (118–113 Ma) provide a pooled age of 115.5 ± 3.8 Ma, which constitutes the maximum age for bauxite deposition. Results also suggest a dual source for the Languedoc bauxite: one generalised sedimentary source of regional extent and a localised source in the Variscan basement structural high, that has been progressively unroofed during Albian. Integration of these new findings with previously published thermochronological data support the presence of an Early Cretaceous marly cover on the Variscan basement, which has been weathered and then, removed during the Albian. The Languedoc bauxite provide a spatial and temporal link between the uplift of southern French Massif Central to the north, and the Pyrenean rift and its eastward extension to the south. These new results allow to constrain the timing and distribution of uplift/subsidence during the mid‐Cretaceous events in relation with the motion of the Iberian plate relative to Eurasia.

,

Schematic early cretaceous evolution of the southwest european plate. Albian allochthonous bauxite deposits of languedoc are derived from both the weathered variscan basement and its valaginian marl cover. Bauxite deposits are coeval with rifting and subsidence of the pyrenean and south provence rifts.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12465
2021-01-22
2024-04-26
Loading full text...

Full text loading...

References

  1. Alabouvette, B., Berger, G., Demange, M., & Guérangé‐Lozes, J. (2001). Montpellier ‐ Carte Géologique De La France À 1/250000eme, BRGM.
  2. Amouroux, G. (2003). Corrélations Géodynamiques Des Carbonates Du Crétacé Basal De La Bordure Sud Cévenole, (39 p). Montpellier: Diplôme d'Etudes Approfondies Thesis, Univ‐Montpellier2.
    [Google Scholar]
  3. Andrieux, J., Mattauer, M., Tomasi, P., Martinez, C., Reille, J. L., Matte, P., … Sauvel, M. (1971). Carte Géologique De La France Au 1/50 000. Feuille De Montpellier N°990, BRGM. Orléans.
  4. Arnaud, H., Ferry, S., & Masse, J. P. (1984). Crétacé Inférieur, Planche Ci7. In S.Debrand‐Passard, & S.Courbouleix (Eds.), Synthèse Géologique Du Sud‐Est De La France. Mem n°126. Orléans, France: BRGM.
    [Google Scholar]
  5. Arnaud‐Vanneau, A., Arnaud, H., Charollais, J., Conrad, M.‐A., Cotillon, P., Ferry, S., … Peybernès, B. (1979). Paléogéographie Des Calcaires Urgoniens Du Sud De La France. Geobios, Memoire Spécial, 3, 363–383.
    [Google Scholar]
  6. Aubague, M., Orgeval, J.‐J., Soulié, M., Boyer, F., & Combes, P.‐J. (1977). Les Gîtes Minéraux De La Terminaison Méridionale Du Massif Central Et De Sa Bordure Languedocienne. Bulletin Du BRGM, 2, 139–181.
    [Google Scholar]
  7. Azambre, B. (1970). Les Monchiquites Et Autres Roches Basiques Intrusives Accompagnant Les Syéntes Néphéliniques Des Corbières. Comptes Rendus De L'académie Des Sciences De Paris, 271, 641–643.
    [Google Scholar]
  8. Barbarand, J., Lucazeau, F., Pagel, M., & Séranne, M. (2001). Burial and exhumation history of the south‐eastern Massif Central (France) constrained by an apatite fission‐track thermochronology. Tectonophysics, 335, 275–290.
    [Google Scholar]
  9. Bardossy, G. (1982). Karst bauxites; Bauxite deposits on carbonate rocks, (p. 440). Amsterdam, Netherlands: Elsevier.
    [Google Scholar]
  10. Bardossy, G., & Aleva, G. J. J. (1990). Lateritic bauxites. Netherlands: Elsevier Amsterdam.
    [Google Scholar]
  11. Bardossy, G., & Combes, P.‐J. (1999). Karst bauxites: Interfingering of deposition and palaeoweathering. In M.Thiry, & R.Simon‐Coinçon (Eds.), Palaeoweathering, palaeosurfaces and related continental deposits. Special Publication (Vol. 27, pp. 189–206). Paris: International Association of Sedimentologists.
    [Google Scholar]
  12. Bardossy, G., & Dercourt, J. (1990). Les Gisements De Bauxites Téthysiens (Méditerranée, Proche Et Moyen Orient); Cadre Paléogeographique Et Contrôles Génétiques. Bulletin De La Société Géologique De France, 6, 869–888.
    [Google Scholar]
  13. Barnett‐Moore, N., Hosseinpour, M., & Maus, S. (2016). Assessing discrepancies between previous plate kinematic models of Mesozoic Iberia and their constraints. Tectonics, 35, 1843–1862.
    [Google Scholar]
  14. Beaudrimont, A. F., & Dubois, P. (1977). Un Bassin Mésogéen Du Domaine Péri‐Alpin: Le Sud‐Est De La France. Bull. Centres Rech. Explor.‐Prod. Elf Aquitaine, 1, 261–308.
  15. Berger, G. M. (1982). Carte Géologique De France À 1/50 000 ‐ Feuille De Leucate N°1079, BRGM, Orléans.
  16. Berger, G. M., Alabouvette, B., Bessiere, G., Bilotte, M., Crochet, B., Dubar, M., … Viallard, P. (1997). Carte Géologique De La France À 1/50 000, Feuille De Tuchan N° 1078, BRGM, Orléans.
  17. Bogdanoff, S., Donnot, M., Quenardel, J. M., Becq‐Giraudon, J. F., Boiteau, A., Boulanger, A. H., … Santarrelli, N. (1982). Carte Géologique De La France Au 1/50 000. Feuille De Bédarieux N° 988, BRGM. Orléans.
  18. Boni, M., Reddy, S. M., Mondillo, N., Balassone, G., & Taylor, R. (2012). A distant magmatic source for Cretaceous karst bauxites of southern Apennines (Italy), revealed through shrimp zircon age dating. Terra Nova, 24, 326–332.
    [Google Scholar]
  19. Bonijoly, D., Perrin, J., Roure, F., Bergerat, F., Courel, L., Elmi, S., & … (1996). The Ardèche paleomeargin of the South‐East Basin of France: Mesozoic evolution of a part of the Tethyan continental margin. Marine and Petroleum Geology, 13, 607–623.
    [Google Scholar]
  20. Bosch, D., Garrido, C. J., Bruguier, O., Dhuime, B., Bodinier, J.‐L., Padròn‐Navarta, J. A., & Galland, B. (2011). Building an island‐arc crustal section: Time constraints from a La‐Icp‐Ms zircon study. Earth and Planetary Science Letters, 309, 268–279.
    [Google Scholar]
  21. Bouillin, J. P., Durand‐Delga, M., & Olivier, P. (1986). Betic‐Rifain and Tyrrhenian arcs: Distinctive features, genesis and development stages. In F.Wezel (Ed.), The origin of arcs (pp. 281–304). Amsterdam, the Netherlands: Elsevier Science.
    [Google Scholar]
  22. Bourquin, S., Bercovici, A., López‐Gómez, J., Diez, J. B., Broutin, J., Ronchi, A., … Amour, F. (2011). The Permian‐Triassic transition and the onset of Mesozoic sedimentation at the northwestern peri‐Tethyan domain scale: Palaeogeographic maps and geodynamic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 299, 265–280.
    [Google Scholar]
  23. Brichau, S., Respaut, J.‐P., & Patrick, M. (2008). New age constraints on emplacement of the Cévenol granitoids, South French Massif Central. International Journal of Earth Sciences, 97, 725–738.
    [Google Scholar]
  24. Bruguier, O., Becq‐Giraudon, J. F., Bosch, D., & Lancelot, J. R. (1998). Late Visean hidden basins in the internal zones of the Variscan belt: U‐Pb zircon evidence from the French Massif Central. Geology, 26, 627–630.
    [Google Scholar]
  25. Bruguier, O., Becq‐Giraudon, J. F., Champenois, M., Deloule, E., Ludden, J., & Mangin, D. (2003). Application of in situ zircon geochronology and accessory phase chemistry to constraining basin development during post‐collisional extension: A case study from the French Massif Central. Chemical Geology, 201, 319–336.
    [Google Scholar]
  26. Bruguier, O., Bosch, D., Caby, R., Vitale‐Brovarone, A., Fernandez, L., Hammor, D., … Mechati, M. (2017). Age of Uhp metamorphism in the Western Mediterranean: Insight from rutile and minute zircon inclusions in a diamond‐bearing garnet megacryst (Edough Massif, Ne Algeria). Earth and Planetary Science Letters, 474, 215–225.
    [Google Scholar]
  27. Bruxelles, L. (2001). Dépôts Et Altérites Des Plateaux Du Larzac Central: Causses De L'hospitalet Et De Campestre (Aveyron, Gard, Hérault) ‐ Evolution Morphogénétique, Conséquences Géologiques Et Implications Pour L'aménagement, Aix‐en‐Provence: Doctorat Thesis, Univ. Aix‐Marseille 1.
    [Google Scholar]
  28. Bruxelles, L., Ambert, P., Guendon, J. L., & Tronchetti, G. (1999). Les Affleurements De Crétacé Supérieur Sur Les Grands Causses Méridionaux (France). Comptes Rendus De L'académie Des Sciences De Paris, 329, 705–712.
    [Google Scholar]
  29. Chantraine, J., Autran, A., Cavelier, C., Alabouvette, B., Barfety, J. C., Cecca, F., … Ternet, Y. (1996). Carte Géologique De La France À L'échelle Du Millionième. 6eme Édition, BRGM. Orléans.
  30. Chanvry, E., Marchand, E., Lopez, M., Séranne, M., Le‐Sout, G., & Vinches, M. (submitted). (submitted). Tectonic and climate control on allochthonous bauxite deposition. Example from the mid‐Cretaceous Villeveyrac basin, Southern France. Sedimentary Geology.
    [Google Scholar]
  31. Charbonnier, G., & Follmi, K. B. (2017). Mercury enrichments in lower Aptian sediments support the link between Ontong Java large igneous province activity and oceanic anoxic episode 1a. Geology, 45, 63–66.
    [Google Scholar]
  32. Chelalou, R. (2015). Formation Et Évolution Du Bassin De Boucheville, Implication Sur L'évolution Tectonique, Métamorphique Et Sédimentaire Des Bassins Sédimentaires Mésozoïques Du Nord‐Est Des Pyrénées, Rennes: Université de Rennes 1.
    [Google Scholar]
  33. Chelalou, R., Nalpas, T., Bousquet, R., Prevost, M., Lahfid, A., Poujol, M., … Ballard, J.‐F. (2016). New sedimentological, structural and paleo‐thermicity data in the Boucheville Basin (eastern North Pyre‐Nean Zone, France). Comptes Rendus Géosciences, 348, 312–321.
    [Google Scholar]
  34. Clerc, C., Lahfid, A., Monié, P., Lagabrielle, Y., Chopin, C., Poujol, M., … Blanquat, M. D. S. (2015). High‐temperature metamorphism during extreme thinning of the continental crust: A reappraisal of the North Pyrenean passive paleomargin. Solid Earth, 6, 643–668.
    [Google Scholar]
  35. Cochelin, B., Lemirre, B., Denèle, Y., De Saint‐Blanquat, M., Lahfid, A., & Duchêne, S. (2018). Structural inheritance in the Central Pyrenees: The Variscan to Alpine tectonometamorphic evolution of the Axial Zone. Journal of the Geological Society of London, 175, 336–351.
    [Google Scholar]
  36. Combes, P.‐J.(1969). Recherches Sur La Genèse Des Bauxites Dans Le Nord‐Est De L'espagne, La Languedoc Et L'arige (France) Montpellier. Mémoire CERH, III‐IV, 1–342.
  37. Combes, P.‐J. (1990). Typologie, Cadre Géodynamique Et Genèse Des Bauxites Françaises. Geodinamica Acta, 2, 91–109.
    [Google Scholar]
  38. Combes, P.‐J., Glaçon, G., Grekoff, N., Médus, J., & Sigal, J. (1973). Etude Micropaléontologique D'une Argilite Associée À La Bauxite De Bédarieux (Hérault, France). Nouvelles Données Sur L'âge De Mise En Place Du Minerai. Comptes Rendus De L'académie Des Sciences De Paris, 276, 1669–1672.
    [Google Scholar]
  39. Cotillon, P. (1984). Crétacé Inférieur. In S.Debrand‐Passard, & S.Courbouleix (Eds.), Synthèse Géologique Du Sud‐Est De La France. Mem n°126, 287–387. Orléans, France: BRGM.
    [Google Scholar]
  40. Couzinié, S., Laurent, O., Chelle‐Michou, C., Bouilhol, P., Paquette, J.‐L., Gannoun, A.‐M., & Moyen, J. F. (2019). Detrital zircon U‐Pb–Hf systematics of Ediacaran metasediments from the French Massif Central: Consequences for the crustal evolution of the North Gondwana margin. Precambrian Research, 324, 269–284.
    [Google Scholar]
  41. Crepel, G. (2005). Les Bauxites Du Languedoc‐Roussillon ‐ Plus D'un Siècle D'exploitation, De 1873 À Nos Jours, (p. 476). Saint‐Rémy‐de‐Provence (France): Edisud.
    [Google Scholar]
  42. Debroas, E.‐J.(1990). Le Flysch Noir Albo‐Cenomanien Temoin De La Structuration Albienne a Senonienne De La Zone Nord‐Pyreneenne En Bigorre (Hautes‐Pyrenees, France). Bulletin de la Société Géologique de France, VI, 273–285.
  43. Demangeon, P. (1965). Sur La Présence Et La Signification Probable Des Minéraux Du Massif Central Dans Les Bauxites De L’isthme Durancien. Comptes Rendus De L'académie Des Sciences De Paris, 261, 2685–2688.
    [Google Scholar]
  44. Dubois, P., & Delfaud, J. (1989). Le Bassin Du Sud‐Est. In Technip . (Ed.), Dynamique Et Méthodes D'étude Des Bassins Sédimentaires (pp. 277–297). Paris, France: Association des Sédimentologistes Français.
    [Google Scholar]
  45. Echtler, H., & Malavieille, J. (1990). Extensional tectonics, basement uplift and Stephano‐Permian collapse basin in a late Variscan metamorphic core complex (Montagne Noire, Southern Massif Central). Tectonophysics, 177, 125–138.
    [Google Scholar]
  46. Faure, M. (1995). Late orogenic carboniferous extensions in the Variscan French Massif Central. Tectonics, 14, 132–153.
    [Google Scholar]
  47. Faure, M., Lardeaux, J.‐M., & Ledru, P. (2009). A Review of the pre‐Permian geology of the Variscan French Massif Central. Comptes Rendus Geosciences, 341, 202–213.
    [Google Scholar]
  48. Fournier, F., Tassy, A., Thinon, I., Münch, P., Cornée, J.‐J., Borgomano, J., … Toullec, R. (2016). Pre‐Pliocene tectonostratigraphic framework of the Provence continental shelf (eastern Gulf of Lion, SE France). Bulletin De La Société Géologique De France, 187, 187–216.
    [Google Scholar]
  49. Gayte, D. (1984). Le Valanginien Et L'hauterivien De La Bordure Cévenole Méridionale ‐ Biostratigraphie, Paléontologie, Sédimentologie, (p. 147). Lyon, France: Université Claude Bernard.
    [Google Scholar]
  50. Gebauer, D., Williams, I. S., Compston, W., & Grünenfelder, M. (1989). The development of the Central European continental crust since the Early Archaean based on conventional and ion‐microprobe dating of up to 3.84 by old detrital zircons. Tectonophysics, 157, 81–96.
    [Google Scholar]
  51. Gee, D. G., & Stephenson, R. A. (2006) The European lithosphere: An introduction. In D. G.Gee, & R.Stephenson (Eds.), European lithosphere dynamics. Memoirs 3, 1–9. London: The Geological Society.
    [Google Scholar]
  52. Gehrels, G. E. (2014). Detrital zIrcon U‐Pb geochronology applied to tectonics. Annual Review of Earth and Planetary Sciences, 42, 127–149.
    [Google Scholar]
  53. Gignoux, M. (1926). Géologie Stratigraphique. Paris, France: Masson & Cie.
    [Google Scholar]
  54. Gottis, M., Denizot, G., Combes, P. J., Bertrand, J. M., Seguret, M., Gérard, M., … Ragot, M. (1967) Carte Géologique De La France Au 1/50 000. Feuille De Sète N°1016, BRGM. Orléans.
  55. Guennoc, P., Debeglia, N., Gorini, C., Le Marrec, A., & Mauffret, A. (1994). Anatomie D'une Marge Passive Jeune (Golfe Du Lion ‐ Sud France): Apports Des Données Géophysiques. Bull. Centres Rech. Explor.‐Prod. Elf Aquitaine, 18, 33–57.
  56. Gunther, D., Heinrich, A. C. (1999). Comparison of the ablation behaviour of 266 Nm Nd: Yag and 193 Nm Arf Excimer lasers for La‐Icp‐Ms analysis. Journal of Analytical Atomic Spectrometry, 14, 1369–1374.
    [Google Scholar]
  57. Guyonnet‐Benaize, C., Lamarche, J., Masse, J.‐P., Villeneuve, M., & Viseur, S. (2010). 3D structural modelling of small‐deformations in poly‐phase faults pattern. Application to the Mid‐Cretaceous Durance uplift, Provence (SE France). Journal of Geodynamics, 50, 81–93. https://doi.org/10.1016/j.jog.2010.1003.1003
    [Google Scholar]
  58. Handy, M. R., Schmid, S. M., Bousquet, R., Kissling, E., & Bernoulli, D. (2010). Reconciling plate‐tectonic reconstructions of Alpine Tethys with the geological‐geophysical record of spreading and subduction in the Alps. Earth Sciences Reviews, 102, 121–158. 110.1016/j.earscirev.2010.1006.1002
    [Google Scholar]
  59. Herrington, R., Mondillo, N., Boni, M., Thorne, R., & Tavlan, M. (2016) Bauxite and nickel‐cobalt lateritic deposits of the Tethyan belt.In J. P.Richards (Ed.), Tectonics and metallogeny of the Tethyan orogenic belt, Littleton, CO.: Special Publication 19, 349–387. Society of Economic Geologists.
    [Google Scholar]
  60. Husson, E. (2013). Interaction Géodynamique/Karstification Et Modélisation Géologique 3d Des Massifs Carbonatés : Implication Sur La Distribution Prévisionnelle De La Karstification. Exemple Des Paléokarsts Crétacés À Néogènes Du Languedoc Montpelliérain. Doctorat Thesis, Université Montpellier 2, p. 3124.
  61. Husson, E., Guillen, A., Séranne, M., Courrioux, G., & Couëffé, R. (2018). 3D Geological modeling and gravity inversion of a structurally complex carbonate area: Application for karstified massif localization. Basin Research, 30, 766–782.
    [Google Scholar]
  62. Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation‐inductively coupled plasma‐mass spectrometry to in situ U‐Pb zircon geochronology. Chemical Geology, 211, 47–69.
    [Google Scholar]
  63. Jammes, S., Manatschal, G., Lavier, L., & Masini, E. (2009). Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the Western Pyrenees. Tectonics, 28, https://doi.org/10.1029/2008TC002406
    [Google Scholar]
  64. Lagabrielle, Y., Asti, R., Fourcade, S., Corre, B., Labaume, P., Uzel, J., … Picazo, S. (2019) Mantle exhumation atmagma‐poor passive continental margins. Part II: Tectonic and metasomatic evolution of large‐displacement detachment faults preserved in a fossil distal margin domain (Saraillé Lherzolites, Northwestern Pyrenees, France). BSGF ‐ Earth Sciences Bulletin, 190, 14.
    [Google Scholar]
  65. Lagabrielle, Y., & Bodinier, J.‐L. (2008). Submarine reworking of exhumed subcontinental mantle rocks: Field evidence from the Lherz Peridotites, French Pyrenees. Terra Nova, 20, 11–21.
    [Google Scholar]
  66. Lagabrielle, Y., Labaume, P., & Saint Blanquat, M. (2010). Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics, 29, 1–16. https://doi.org/10.1029/2009TC002588
    [Google Scholar]
  67. Lajoinie, J.‐P., & Laville, P. (1979). Les Formations Bauxitiques De La Provence Et Du Languedoc. Dimensions Et Distribution Des Gisements. Mémoire Du BRGM, 100, 146.
    [Google Scholar]
  68. Lin, W., Faure, M., Li, X.‐H., Chu, Y., Ji, W., & Xue, Z. (2016). Detrital zircon age distribution from Devonian and Carboniferous sandstone in the Southern Variscan Fold‐and‐Thrust belt (Montagne Noire, French Massif Central), and their bearings on the Variscan belt evolution. Tectonophysics, 677–678, 1–33.
    [Google Scholar]
  69. Ludwig, K.R. (2003). User's manual for isoplot 3.00 : A geochronological toolkit for microsoft excel. Special Publication, 4, (74 p). Berkeley CA.: Berkeley Geochronology Center.
    [Google Scholar]
  70. Marchand, E. (2019). Rôle Des Interactions Tectonique‐Sédimentation Sur L'évolution Et La Variabilité Spatiale D'un Gisement De Bauxite Karstique: Exemple Du Bassin De Villeveyrac (Sud De La France), p.303, Université de Montpellier ‐ IMT Mines Alès.
  71. Margalef, A., Castiñeiras, P., Casas, J. M., Navidad, M., Liesa, M., Linnemann, U., … Gärtner, A. (2016). Detrital zircons from the Ordovician rocks of the Pyrenees: Geochronological constraints and provenance. Tectonophysics, 681, 124–134.
    [Google Scholar]
  72. Martínez, F. J., Dietsch, C., Aleinikoff, J., Cirés, J., Arboleya, M. L., Reche, J., & Gómez‐Gras, D. (2016). Provenance, age, and tectonic evolution of Variscan Flysch, southeastern France and northeastern Spain, based on zircon geochronology. Geological Society of America Bulletin, 128, 842–859.
    [Google Scholar]
  73. Mascle, A., Vially, R., Deville, E., Biju‐Duval, B., & Roy, J. P. (1996). The petroleum evaluation of a tectonically complex area: The western margin of the Southeast Basin (France). Marine and Petroleum Geology, 13, 941–961.
    [Google Scholar]
  74. Masse, J.‐P., & Philip, J. (1976). Paléogéographie Et Tectonique Crétacé Moyen En Provence: Révision Du Concept D'isthme Durancien. Revue De Géographie Physique Et Géologie Dynamique, XVIII, 49–66.
    [Google Scholar]
  75. Mauffret, A., Pascal, G., Maillard, A., & Gorini, C. (1995). Tectonics and deep structure of the north‐western Mediterranean basin. Marine and Petroleum Geology, 12, 645–666.
    [Google Scholar]
  76. Melleton, J., Cocherie, A., Faure, M., & Rossi, P. (2010). Precambrian protoliths and Early Paleozoic magmatism in the French Massif Central: U–Pb data and the North Gondwana connection in the west European Variscan belt. Gondwana Research, 17, 13–25.
    [Google Scholar]
  77. Mongelli, G., Buccione, R., Gueguen, E., Langone, A., & Sinisi, R. (2016). Geochemistry of the Apulian allochthonous karst bauxite, Southern Italy: Distribution of critical elements and constraints on late Cretaceous Peri‐Tethyan palaeogeography. Ore Geology Reviews, 77, 246–259.
    [Google Scholar]
  78. Mongelli, G., Buccione, R., & Sinisi, R. (2015). Genesis of autochthonous and allochthonous Apulian karst bauxites (Southern Italy): Climate constraints. Sedimentary Geology, 325, 168–176.
    [Google Scholar]
  79. Mongin, D., & Peybernes, B. (1980). L'albien Du Chainon De Fontfroide (Zone Pré‐Pyrénèenne, Sud De La France): Observations Paléoecologiques Sur Le Gisement De Fontcouverte Par L'étude Des Mollusques. Palaeogeography, Palaeoclimatology, Palaeoecology, 32, 227–246.
    [Google Scholar]
  80. Montigny, R., Azambre, B., Rossy, M., & Thuizat, R. (1986). K‐Ar study of cretaceous magmatism and metamorphism in the Pyrenees: Age and length of rotation of the Iiberian peninsula. Tectonophysics, 129, 257–273.
    [Google Scholar]
  81. Odlum, M. L., & Stockli, D. F. (2019). Thermotectonic evolution of the North Pyrenean Agly Massif during early Cretaceous hyperextension using multi‐mineral U‐Pb thermochronometry. Tectonics, 38, 1509–1531.
    [Google Scholar]
  82. Olivet, J. L. (1996). Cinématique De La Plaque Ibérique. Bulletin Des Centres De Recherche Exploration‐Production Elf Aquitaine, 20, 131–195.
    [Google Scholar]
  83. Olivetti, V., Balestrieri, M. L., Godard, V., Bellier, O., Gautheron, C., Valla, P. G., … Manchuel, K. (2020). Cretaceous and late Cenozoic uplift of a Variscan Massif: The case of the French Massif Central studied through low‐temperature thermochronometry. Lithosphere, 12, 133–149.
    [Google Scholar]
  84. Padel, M., Alvaro, J. J., Claussen, S., Guillot, F., Poujol, M., Chichorro, M., … Vizcaino, D. (2017). U‐Pb Laser ablation Icp‐Ms zircon dating across the Ediacaran‐Cambrian transition of the Montagne Noire, southern France. Comptes Rendus Geoscience, 349, 380–390.
    [Google Scholar]
  85. Peyaud, J. B., Barbarand, J., Carter, A., & Pagel, M. (2005). Mid‐Cretaceous uplift and erosion on the northern margin of the Ligurian Tethys deduced from thermal history reconstruction. International Journal of Earth Sciences, 94, 462–474.
    [Google Scholar]
  86. Peybernès, B. (1982). Evolution Spatio‐Temporelle Des Plates‐Formes Carbonatées Et Des Bassins Terrigènes Dans Le Crétacé Inférieur Des Pyrénées Franco‐Espagnoles. Cretaceous Research, 3, 57–68.
    [Google Scholar]
  87. Pfeifer, L. S., Soreghan, G., Pochat, S., van den Driessche, J., & Thompson, S. (2018). Permian exhumation of the Montagne Noire core complex recorded in the Graissessac‐LodEve Basin, France. Basin Research, 30, 1–14.
    [Google Scholar]
  88. Philip, H., Mattauer, M., Bodeur, Y., Séguret, M., Puech, J. P., & Mattei, J. (1978).Carte Géologique De La France Au 1/50 000. Feuille De St Martin De Londres N°963. BRGM. Orléans.
  89. Philip, J., Masse, J.‐P., & Machhour, L. (1987). Lévolution Paléogéographique Et Structurale Du Front De Chevauchement Nord‐Toulonnais Basse‐Provence Occidentale (France). Bulletin De La Société Géologique De France, III, 541–550.
    [Google Scholar]
  90. Pitra, P., Poujol, M., Driessche, J. V. D., Poilvet, J.‐C., & Paquette, J.‐L. (2012). Early Permian extensional shearing of an ordovician granite: The saint‐eutrope “C/S‐Like” orthogneiss (montagne noire, French massif central). Comptes Rendus Géosciences, 344, 377–388.
    [Google Scholar]
  91. Poilvet, J.‐C., Poujol, M., Pitra, P., Van Den Driessche, J., & Paquette, J.‐L. (2011) The Montalet granite, Montagne Noire, France: An Early Permian syn‐extensional pluton as evidenced by new U‐Th‐Pb data on zircon and monazite. Comptes Rendus Geoscience, 343, 454–461.
    [Google Scholar]
  92. Poujol, M., Pitra, P., Van Den Driessche, J., Tartèse, R., Ruffet, G., Paquette, J.‐L., & Poilvet, J.‐C. (2017). Two‐stage partial melting during the Variscan extensional tectonics (Montagne Noire, France). International Journal Earth Science, 106, 477–500.
    [Google Scholar]
  93. Roger, F., Respaut, J.‐P., Brunel, M., Matte, P., & Paquette, J.‐L. (2004). Première Datation U‐Pb Des Orthogneiss Œillés De La Zone Axiale De La Montagne Noire (Sud Du Massif Central): Nouveaux Témoins Du Magmatisme Ordovicien Dans La Chaîne Varisque. Comptes Rendus Géoscienes, 336, 19–28.
    [Google Scholar]
  94. Roger, F., Teyssier, C., Respaut, J.‐P., Rey, P. F., Jolivet, M., Whitney, D. L., … Brunel, M. (2015). Timing of formation and exhumation of the Montagne Noire double dome, French Massif Central. Tectonophysics, 640–641, 53–69.
    [Google Scholar]
  95. Sabatino, N., Ferraro, S., Coccioni, R., Bonsignore, M., Core, M. D., Tancredi, V., & Sprovieri, M. (2018). Mercury anomalies in upper Aptian‐lower Albian sediments from the Tethys realm. Palaeogeography, Palaeoclimatology, Palaeoecology, 495, 163–170.
    [Google Scholar]
  96. Schettino, A., & Turco, E. (2011). Tectonic history of the western Tethys since the Late Triassic. Geological Society of America Bulletin, 123, 89–105.
    [Google Scholar]
  97. Scotese, C. R. (2014). Atlas of Early Cretaceous Paleogeographic Maps, Paleomap Atlas for Arcgis, Volume 2, the Cretaceous, Maps 23–31, Mollweide Projection. Evanston, IL.
    [Google Scholar]
  98. Séranne, M., Benedicto, A., Truffert, C., Pascal, G., & Labaume, P. (1995). Structural Style and evolution of the Gulf of Lion Oligo‐Miocene Rifting: Role of the Pyrenean orogeny. Marine and Petroleum Geology, 12, 809–820.
    [Google Scholar]
  99. Séranne, M., Camus, H., Lucazeau, F., Barbarand, J., & Quinif, Y. (2002). Surrection Et Érosion Polyphasées De La Bordure Cévenole ‐ Un Exemple De Morphogenèse Lente. Bulletin De La Société Géologique De France, 173, 97–112.
    [Google Scholar]
  100. Sibuet, J.‐C., Srivastava, S. P., & Spakman, W. (2004). Pyrenean orogeny and plate kinematics. Journal of Geophysical Research : Solid Earth, 109, B08104.
    [Google Scholar]
  101. Souquet, P., Debroas, E.‐J., Boirie, J.‐M., Pons, P., Fixari, G., Roux, J.‐C., … Peybernès, B. (1985). Le Groupe Du Flysch Noir (Albo‐Cénomanien) Dans Les Pyrénées. Bulletin Centre Recherche Exploration‐Production Elf‐Aquitaine, 9, 183–252.
    [Google Scholar]
  102. Stampfli, G. M., Borel, G. D., Marchant, R., & Mosar, J. (2002).Western alps geological constraints on western tethyan reconstructions. In: Rosenbaum, G. and Lister, G. S. Reconstruction of the evolution of the alpine‐himalayan orogen. Journal of the Virtual Explorer, 8, Clear Range, NSW, Australia.
    [Google Scholar]
  103. Stampfli, G. M., & Kozur, H. W. (2006).Europe from the Variscan to the Alpine cycles. In D. G.Gee, & R. A.Stephenson (Ed.), European lithosphere dynamics, Memoir 32, 57–82. London: The Geological Society.
    [Google Scholar]
  104. St‐Onge, M., VanGool, J. A., Garde, A. A., & Scott, D. J. (2009).Correlation of Archaean and Palaeoproterozoic units between northeastern Canada and western Greenland: Constraining the pre‐collisional upper plate accretionary history of the Trans‐Hudson orogen. In P. A.Cawood, & A.Kröner (Ed.), Earth accretionary systems in space and time. Special publication 318, 193–235. London: The geological Society.
    [Google Scholar]
  105. Tardy, Y., & Roquin, C. (1998). Dérive Des Continents, Paléoclimats Et Altérations Tropicales, (473 p). Orléans.
    [Google Scholar]
  106. Tavani, S., Bertok, C., Granado, P., Piana, F., Salas, R., Vigna, B., & Munoz, J. A. (2018). The Iberia‐Eurasia plate boundary east of the Pyrenees. Earth‐Science Reviews, 187, 314–337.
    [Google Scholar]
  107. Tendil, A.‐J.‐B., Frau, C., Léonide, P., Fournier, F., Borgomano, J. R., Lanteaume, C., … Rolando, J.‐P. (2018). Platform‐to‐basin anatomy of a Barremian‐Aptian Tethyan carbonate system: New insights into the regional to global factors controlling the stratigraphic architecture of the Urgonian Provence platform (Southeast France). Cretaceous Research, 91, 382–411.
    [Google Scholar]
  108. Thiry, M., Quesnel, F., Yans, J., Wyns, R., Vergari, A., Theveniaut, H., … Baele, J.‐M. (2006). Continental France and Belgium during the Early Cretaceous: Paleoweatherings and paleolandforms. Bulletin De La Societe Geologique De France, 177, 155–175. 110.2113/gssgfbull.2177.2113.2155
    [Google Scholar]
  109. Trap, P., Roger, F., Cenki‐Tok, B., & Paquette, J.‐L. (2017). Timing and duration of partial melting and magmatism in the Variscan Montagne Noire gneiss dome (French Massif Central). International Journal of Earth Sciences, 106, 453–476.
    [Google Scholar]
  110. Tugend, J., Manatschal, G., Kusznir, N. J., Masini, E., Mohn, G., & Thinon, I. (2014). Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay‐Pyrenees. Tectonics, 33, 1239–1276.
    [Google Scholar]
  111. Ubide, T., Wijbrans, J. R., Galé, C., Arranz, E., Lago, M., & Larrea, P. (2014). Age of the Cretaceous alkaline magmatism in northeast Iberia: Implications for the Alpine cycle in the Pyrenees. Tectonics, 33, 1444–1460.
    [Google Scholar]
  112. Van Achterbergh, E.Ryan, C., Jackson, S., & Griffin, W. L. (2001). Appendix 3 data reduction software for La‐Icp‐Ms.In P.Sylvester (Ed.), Laser‐ablation‐ICPMS in the earth sciences. Short Courses 29, 239–243. Mineralogical Association of Canada.
    [Google Scholar]
  113. Van Den Driessche, J., & Brun, J. P. (1992). Tectonic evolution of the Montagne Noire (French Massif Central): A model of extensional gneiss dome. Geodynamica Acta, 5, 85–97.
    [Google Scholar]
  114. Van Hinsbergen, D. J., Spakman, W., Vissers, R. L. M., Meer, R. L. M., & Douwe, G. (2017). Assessing discrepancies between previous plate kinematic models of Mesozoic Iberia and their constraints; discussion. Tectonics, 36, 3277–3285.
    [Google Scholar]
  115. Villeneuve, M., Gärtner, A., Nury, D., Fournier, F., Arlhac, P., Linneman, U., & Caron, J. P. (2018). Age and provenance of detrital zircons from the Oligocene formations of the Marseille‐Aubagne basins (SE France): Consequences on the geodynamic and palaeogeographic evolution of the northern Gondwana margin. International Journal of Earth Sciences, 108, 187–212.
    [Google Scholar]
  116. Vissers, R. L. M., & Meijer, P. T. (2012). Mesozoic rotation of Iberia: Subduction in the Pyrenees?Earth‐Science Reviews, 110, 93–110.
    [Google Scholar]
  117. Whitmeyer, S., & Karlstrom, K. E. (2007). Tectonic model for the proterozoic growth of North America. Geosphere, 3, 220–259.
    [Google Scholar]
  118. Wiedenbeck, M. (1995). An example of reverse discordance during ion microprobe zircon dating: An artifact of enhanced ion yields from a radiogenic labile Pb. Chemical Geology, 125, 197–218.
    [Google Scholar]
  119. Wyns, R., Quesnel, F., Simon‐Coinçon, R., Guillocheau, F., & Lacquement, F. (2003). Major weathering in France related to lithospheric deformation. Géologie De La France, 1, 79–87.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12465
Loading
/content/journals/10.1111/bre.12465
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Durancian uplift; erosion; karst; mid‐Cretaceous; provenance analysis; Pyrenees

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error